
Network Working Group W. Kumari
Internet-Draft Google
Intended status: Informational July 8, 2016
Expires: January 9, 2017

Secure Device Install
draft-wkumari-opsawg-sdi-00

Abstract

 Deploying a new network device often requires that an employee
 physically travel to a datacenter to perform the initial install and
 configuration, even in shared datacenters with "smart-hands" type
 support. In many cases, this could be avoided if there was a
 standard, secure way to initially provision the devices.

 This document extended existing auto-install / Zero-Touch
 Provisioning to make the process more secure.

 [Ed note: Text inside square brackets ([]) is additional background
 information, answers to frequently asked questions, general musings,
 etc. They will be removed before publication. This document is
 being collaborated on in Github at: https://github.com/wkumari/draft-

wkumari-opsawg-sdi. The most recent version of the document, open
 issues, etc should all be available here. The authors (gratefully)
 accept pull requests.]

 [Ed note: This document introduces concepts and serves as the basic
 for discussion - because of this it is conversational, and would need
 to be firmed up before being published]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Kumari Expires January 9, 2017 [Page 1]

https://github.com/wkumari/draft-wkumari-opsawg-sdi
https://github.com/wkumari/draft-wkumari-opsawg-sdi
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft template July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements notation 3

2. Overview / Example Scenario 4
3. Vendor Role / Requirements 4
3.1. CA Infrastructure . 4
3.2. Certificate Publication Server 5
3.3. Initial Device Boot 5
3.4. Subsequent Boots . 5

4. Operator Role / Responsibilities 6
4.1. Administrative . 6
4.2. Technical . 6

5. Future enhancements / Discussion 6
5.1. Key storage . 6
5.2. Key replacement . 6
5.3. Device reinstall . 7

6. IANA Considerations . 7
7. Security Considerations 7
8. Acknowledgements . 7
9. References . 7
9.1. Normative References 7
9.2. Informative References 8

Appendix A. Changes / Author Notes. 8
Appendix B. Demo / proof of concept 8
B.1. Step 1: Generating the certificate. 8
B.1.1. Step 1.1: Generate the private key. 8
B.1.2. Step 1.2: Generate the certificate signing request. . 8

 B.1.3. Step 1.3: Generate the (self signed) certificate
 itself. 9
 B.2. Step 2: Generating the encrypted config. 9
 B.2.1. Step 2.1: Fetch the certificate. 9
 B.2.2. Step 2.2: Encrypt the config file. 9

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Kumari Expires January 9, 2017 [Page 2]

Internet-Draft template July 2016

B.2.3. Step 2.3: Copy config to the config server. 10
 B.3. Step 3: Decrypting and using the config. 10
 B.3.1. Step 3.1: Fetch encrypted config file from config
 server. 10

B.3.2. Step 3.2: Decrypt and use the config. 10
 Author's Address . 11

1. Introduction

 In a growing, global network, significant amounts of time and money
 are spent simply deploying new devices and "forklift" upgrading
 existing devices. In many cases these devices are in shared
 datacenters (for example, Internet Exchange Points (IXP) or "carrier
 neutral datacenters"), which have staff on hand which can be
 contracted to perform things like physical installs, reboot devices,
 load initial configurations, etc. There are also a number of (often
 vendor proprietary) protocols to perform initial device installs and
 configurations - for example, many network devices will attempt to
 use DHCP to get an IP address and configuration server, and then
 fetch and install a configuration when they are first powered on.

 Network device configurations contain a significant amount of
 security related and / or proprietary information (for example,
 RADIUS or TACACS secrets). Exposing these to a third party to load
 onto a new device (or using an auto-install techniques which fetch an
 (unencrypted) config file via something like TFTP) is simply not
 acceptable to many operators, and so they have to send employees to
 remote locations to perform the initial configuration work. As well
 as having a significant monetary cost, it also takes significantly
 longer to install devices, and is inefficient.

 There are some workarounds to this, such as asking the vendor to pre-
 configure the devices before shipping it; asking the smart-hands to
 install a terminal server; providing a minimal, unsecured
 configuration and using that to bootstrap to a complete
 configuration, etc; but these are often clumsy and have security
 issues - for example, in the terminal server case, the console port
 connection could be easily snooped.

 This document layers security onto existing auto-install solutions to
 provide a secure method to initially configure new devices.

1.1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Kumari Expires January 9, 2017 [Page 3]

Internet-Draft template July 2016

2. Overview / Example Scenario

 Sirius Cybernetics Corp needs another peering router, and so they
 order another router from Acme Network Widgets, to be dropped-shipped
 to a POP. Acme begins assembling the new device, and tells Sirius
 what the new device's serial number will be (SN:17894321). During
 the initial boot / testing, the router generates a public-private
 keypair, and publishes the public part to Acme's keyserver (in a
 certificate, for ease of use).

 While Acme is shipping the new device, Sirius begins generating the
 initial device configuration. Once the config is ready, Sirius
 contacts the Acme keyserver, provides the serial number of the new
 device and fetches the device's public key. Sirius then encrypts the
 device configuration and puts this encrypted config on a (local) TFTP
 server.

 When the POP recieves the new device, they install it in Sirius'
 rack, and connect the cables as instructed. The new device powers up
 and discovers that it has not yet been configured. It enters its
 autoboot state, and begins DHCPing. Sirius' DHCP server provides it
 with an IP address and the address of the configuration server. The
 router uses TFTP to fetch a file named according to its serial number
 (acme_17894321.cfg). It then uses its private key to decrypt this
 file, and, assuming it validates, install the new configuration.

 Only the "correct" device will have the required private key and be
 able to decrypt and use the config file (See Security
 Considerations). An attacker would be able to connect to the network
 and get an IP address. They would also be able to retrieve
 (encrypted) config files by guessing serial numbers (or perhaps the
 server would allow directory listing), but without the private keys
 they will not be able to decrypt the files.

 [Ed note: This example uses TFTP because that is what many vendors
 use in their auto-install / ZTP feature. It could easily instead be
 HTTP, FTP, etc.]

3. Vendor Role / Requirements

 This section describes the vendors roles and responsibilities and
 provides an overview of what the device needs to do.

3.1. CA Infrastructure

 The vendor needs to run some (simple) CA infrastructure to sign and
 publish certificates. When a device is initially powered on (in the
 factory) it will generate a public / private keypair and a

Kumari Expires January 9, 2017 [Page 4]

Internet-Draft template July 2016

 Certificate Signing Request (CSR), with the commonName being the
 Serial Number of the device [TODO(WK): Define Serial Number (RE,
 chassis, ?)]. The device sends this CSR to the CA, which signs the
 CSR, returns the certificate to the device and also sends it to a
 certificate publication server.

3.2. Certificate Publication Server

 The certificate publication server contains a database of all signed
 certificates. Customers (e.g Sirius Cybernetics Corp) query this
 server with a serial number, and retrieve the associated certificate.
 It is expected that operators will receive the serial numbers of
 newly purchased devices when they purchase them, and that some
 automated system will download and store / cache the certificate.
 This means that there is not a hard requirement on the uptime /
 reachability of the certificate publication server.

 [Ed: The vendor may not want to expose (for commercial reasons) how
 many devices it has made. This can be mitigated by using non-
 contiguous serial numbers, and simply creating "fake devices", etc.]

3.3. Initial Device Boot

 When the device is very first powered on, it will generate its
 keypair. It then generates a CSR (including the device serial
 number) and sends it to the vendor's CA, which signs the certificate.
 The device receives the signed certificate and stores it.

3.4. Subsequent Boots

 After the initial boot, it the device has no (valid) configuration
 file, it will perform standard an auto-install type functionality.
 For example, it will perform DHCP Discovery until it gets a DHCP
 offer including DHCP option 66 or 150. It will contact the server
 listed in these DHCP options and download a configuration file named
 config_<serial_number>.cfg. This is all existing (often vendor
 proprietary) functionality.

 After retrieving the config file, Secure Device Install devices will
 attempt to decrypt the configuration file using its private key. If
 it is able to decrypt and validate the file it will install the
 configuration, and start using it.

 [Ed note: SDI will also allows additional functionality, like always
 storing the configs encrypted, having the device store its config
 encrypted in flash (so that e.g RMAing a routing engine will not leak
 config, etc. I'm not describing this in detail because:

Kumari Expires January 9, 2017 [Page 5]

Internet-Draft template July 2016

 1. I want to keep this document simple and focused and, more
 importantly

 2. I left converting this into ID format until the draft cuff-off
 and have run out of time :-)]

4. Operator Role / Responsibilities

4.1. Administrative

 When purchasing a new device, the accounting department will need to
 get the serial number of the new device and communicate it to the
 operations group.

4.2. Technical

 The operator will contact the vendor's publication server, and
 download the certificate (by providing the serial number of the
 device). They will then encrypt the initial configuration to that
 key, and place it on the TFTP server, named config_<SN>.enc. See

Appendix B for examples.

5. Future enhancements / Discussion

 [Ed note: Ed / RFC Editor to remove this section before publication.
]

5.1. Key storage

 Currently most network devices will store the private key in NV
 storage (NVRAM / Flash / Disk), but some vendors are already planning
 on including a TPM module in their devices. Ideally, the keypair
 would be stored in a TPM on something which is identified as the
 "router" - for example, the chassis / backplane. This is so that a
 keypair is bound to what humans think of as the "device", and not,
 for example, (redundant) routing engines.

5.2. Key replacement

 It is anticipated that some operator may want to replace the (vendor
 provided) keys after installing the device. This would remove (some)
 concerns that the vendor may have kept a copy of the private key, or
 that the device may have been intercepted during shipping and the
 private key duplicated. This would also allow for the use of
 certificates signed by the operator's CA (e.g using RFC7030 -
 Enrollment over Secure Transport) this is a trivial operation, but is
 not described here (to avoid cluttering up the doc).

https://datatracker.ietf.org/doc/html/rfc7030

Kumari Expires January 9, 2017 [Page 6]

Internet-Draft template July 2016

5.3. Device reinstall

 Increasingly, operations is moving towards an automated model of
 device management, whereby portions (or the entire) configuration is
 programmatically generated. This means that operators may want to
 generate an entire configuration after the device has been initially
 installed and ask the device to load and use this new configuration.
 It is expected (but not defined in this document, as it is too vendor
 specific) that vendors will allow the operator to e.g scp a new,
 encrypted config (or part of a config) onto a device and then request
 that the device decrypt and install it (e.g: 'load replace <filename>
 encrypted)).

6. IANA Considerations

 This document contains no IANA considerations.Template: Fill this in!

7. Security Considerations

 This needs to be completed, including:

 1. We are trusting the vendor to have not kept a copy of the private
 key when the device initially generated its keypair.
 Unfortunately you are already trusting the vendor in many ways -
 it could have included a backdoor in it's code, etc.

 2. Devices should be storing their keying information in something
 like a TPM, to help mitigate the private key being extracted (e.g
 read off disk) in shipping, when the device is first unpacked by
 smart-hands, etc). A number of vendors are already discussing
 including TPM for other security functions.

8. Acknowledgements

 The authors wish to thank some folk.

9. References

9.1. Normative References

 [IANA.AS_Numbers]
 IANA, "Autonomous System (AS) Numbers",
 <http://www.iana.org/assignments/as-numbers>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

http://www.iana.org/assignments/as-numbers
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Kumari Expires January 9, 2017 [Page 7]

Internet-Draft template July 2016

9.2. Informative References

 [I-D.ietf-sidr-iana-objects]
 Manderson, T., Vegoda, L., and S. Kent, "RPKI Objects
 issued by IANA", draft-ietf-sidr-iana-objects-03 (work in
 progress), May 2011.

Appendix A. Changes / Author Notes.

 [RFC Editor: Please remove this section before publication]

 From -00 to -01

 o Nothing changed in the template!

Appendix B. Demo / proof of concept

 This section contains a rough demo / proof of concept of the system.
 It is only intended for illustration; presumably things like
 algorithms, key lengths, format / containers will provide much fodder
 for discussion.

 It uses OpenSSL from the command line, in production something more
 automated would be used. In this example, the serial number of the
 router is SN19842256.

B.1. Step 1: Generating the certificate.

 This step is performed by the router. It generates a key, then a
 csr, and then a self signed certificate.

B.1.1. Step 1.1: Generate the private key.

 $ openssl genrsa -out key.pem 2048
 Generating RSA private key, 2048 bit long modulus
 ...
 ...
 +++
 +++
 e is 65537 (0x10001)

B.1.2. Step 1.2: Generate the certificate signing request.

https://datatracker.ietf.org/doc/html/draft-ietf-sidr-iana-objects-03

Kumari Expires January 9, 2017 [Page 8]

Internet-Draft template July 2016

 $ openssl req -new -key key.pem -out SN19842256.csr
 Country Name (2 letter code) [AU]:.
 State or Province Name (full name) [Some-State]:.
 Locality Name (eg, city) []:.
 Organization Name (eg, company) [Internet Widgits Pty Ltd]:.
 Organizational Unit Name (eg, section) []:.
 Common Name (e.g. server FQDN or YOUR name) []:SN19842256
 Email Address []:.

 Please enter the following 'extra' attributes
 to be sent with your certificate request
 A challenge password []:
 An optional company name []:.

B.1.3. Step 1.3: Generate the (self signed) certificate itself.

 $ openssl req -x509 -days 36500 -key key.pem -in SN19842256.csr -out
 SN19842256.crt

 The router then sends the key to the vendor's keyserver for
 publication (not shown).

B.2. Step 2: Generating the encrypted config.

 The operator now wants to deploy the new router.

 They generate the initial config (using whatever magic tool generates
 router configs!), fetch the router's certificate and encrypt the
 config file to that key. This is done by the operator.

B.2.1. Step 2.1: Fetch the certificate.

 $ wget http://keyserv.example.net/certificates/SN19842256.crt

B.2.2. Step 2.2: Encrypt the config file.

 I'm using S/MIME because it is simple to demonstrate. This is almost
 definetly not the best way to do this.

Kumari Expires January 9, 2017 [Page 9]

Internet-Draft template July 2016

 $ openssl smime -encrypt -aes-256-cbc -in SN19842256.cfg\
 -out SN19842256.enc -outform PEM SN19842256.crt
 $ more SN19842256.enc
 -----BEGIN PKCS7-----
 MIICigYJKoZIhvcNAQcDoIICezCCAncCAQAxggE+MIIBOgIBADAiMBUxEzARBgNV
 BAMMClNOMTk4NDIyNTYCCQDJVuBlaTOb1DANBgkqhkiG9w0BAQEFAASCAQBABvM3
 ...
 LZoq08jqlWhZZWhTKs4XPGHUdmnZRYIP8KXyEtHt
 -----END PKCS7-----

B.2.3. Step 2.3: Copy config to the config server.

 $ scp SN19842256.enc config.example.com:/tftpboot

B.3. Step 3: Decrypting and using the config.

 When the router connects to the operator's network it will detect
 that does not have a valid configuration file, and will start the
 "autoboot" process. This is a well documented process, but the high
 level overview is that it will use DHCP to obtain an IP address and
 config server. It will then use TFTP to download a configuration
 file, based upon its serial number (this document modifies the
 solution to fetch an encrypted config file (ending in .enc)). It
 will then then decrypt the config file, and install it.

B.3.1. Step 3.1: Fetch encrypted config file from config server.

 $ tftp 192.0.2.1 -c get SN19842256.enc

B.3.2. Step 3.2: Decrypt and use the config.

 $ openssl smime -decrypt -in SN19842256.enc -inform pkcs7\
 -out config.cfg -inkey key.pem

 If an attacker does not have the correct key, they will not be able
 to decrypt the config:

 $ openssl smime -decrypt -in SN19842256.enc -inform pkcs7\
 -out config.cfg -inkey wrongkey.pem
 Error decrypting PKCS#7 structure
 140352450692760:error:06065064:digital envelope
 routines:EVP_DecryptFinal_ex:bad decrypt:evp_enc.c:592:
 $ echo $?
 4

Kumari Expires January 9, 2017 [Page 10]

Internet-Draft template July 2016

Author's Address

 Warren Kumari
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 US

 Email: warren@kumari.net

Kumari Expires January 9, 2017 [Page 11]

