
Network Working Group W. Kumari
Internet-Draft Google
Intended status: Informational C. Doyle
Expires: December 14, 2019 Juniper Networks
 June 12, 2019

Secure Device Install
draft-wkumari-opsawg-sdi-04

Abstract

 Deploying a new network device often requires that an employee
 physically travel to a datacenter to perform the initial install and
 configuration, even in shared datacenters with "smart-hands" type
 support. In many cases, this could be avoided if there were a
 standard, secure way to initially provision the devices.

 This document extends existing auto-install / Zero-Touch Provisioning
 mechanisms to make the process more secure.

 [Ed note: Text inside square brackets ([]) is additional background
 information, answers to frequently asked questions, general musings,
 etc. They will be removed before publication. This document is
 being collaborated on in Github at: https://github.com/wkumari/draft-

wkumari-opsawg-sdi. The most recent version of the document, open
 issues, etc should all be available here. The authors (gratefully)
 accept pull requests.]

 [Ed note: This document introduces concepts and serves as the basic
 for discussion - because of this, it is conversational, and would
 need to be firmed up before being published]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Kumari & Doyle Expires December 14, 2019 [Page 1]

https://github.com/wkumari/draft-wkumari-opsawg-sdi
https://github.com/wkumari/draft-wkumari-opsawg-sdi
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft template June 2019

 This Internet-Draft will expire on December 14, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements notation 4

2. Overview / Example Scenario 4
3. Vendor Role / Requirements 5
3.1. Device key generation 5
3.2. Certificate Publication Server 5

4. Operator Role / Responsibilities 6
4.1. Administrative . 6
4.2. Technical . 6
4.3. Initial Customer Boot 7

5. Additional Considerations 9
5.1. Key storage . 9
5.2. Key replacement . 10
5.3. Device reinstall . 10

6. IANA Considerations . 10
7. Security Considerations 10
8. Acknowledgements . 11
9. References . 11
9.1. Normative References 11
9.2. Informative References 11

Appendix A. Changes / Author Notes. 12
Appendix B. Demo / proof of concept 12
B.1. Step 1: Generating the certificate. 13
B.1.1. Step 1.1: Generate the private key. 13
B.1.2. Step 1.2: Generate the certificate signing request. . 13

 B.1.3. Step 1.3: Generate the (self signed) certificate
 itself. 13
 B.2. Step 2: Generating the encrypted config. 14
 B.2.1. Step 2.1: Fetch the certificate. 14

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Kumari & Doyle Expires December 14, 2019 [Page 2]

Internet-Draft template June 2019

 B.2.2. Step 2.2: Encrypt the config file. 14
B.2.3. Step 2.3: Copy config to the config server. 14

 B.3. Step 3: Decrypting and using the config. 14
 B.3.1. Step 3.1: Fetch encrypted config file from config
 server. 14

B.3.2. Step 3.2: Decrypt and use the config. 15
 Authors' Addresses . 15

1. Introduction

 In a growing, global network, significant amounts of time and money
 are spent simply deploying new devices and "forklift" upgrading
 existing devices. In many cases, these devices are in shared
 datacenters (for example, Internet Exchange Points (IXP) or "carrier
 neutral datacenters"), which have staff on hand that can be
 contracted to perform tasks including physical installs, device
 reboots, loading initial configurations, etc. There are also a
 number of (often vendor proprietary) protocols to perform initial
 device installs and configurations - for example, many network
 devices will attempt to use DHCP to get an IP address and
 configuration server, and then fetch and install a configuration when
 they are first powered on.

 Network device configurations contain a significant amount of
 security related and / or proprietary information (for example,
 RADIUS or TACACS+ secrets). Exposing these to a third party to load
 onto a new device (or using an auto-install techniques which fetch an
 (unencrypted) config file via something like TFTP) is simply not
 acceptable to many operators, and so they have to send employees to
 remote locations to perform the initial configuration work. As well
 as having a significant monetary cost, it also takes significantly
 longer to install devices and is generally inefficient.

 There are some workarounds to this, such as asking the vendor to pre-
 configure the devices before shipping it; asking the smart-hands to
 install a terminal server; providing a minimal, unsecured
 configuration and using that to bootstrap to a complete
 configuration, etc; but these are often clumsy and have security
 issues - for example, in the terminal server case, the console port
 connection could be easily snooped.

 This document layers security onto existing auto-install solutions to
 provide a secure method to initially configure new devices. It is
 optimized for simplicity, both for the implementor and the operator;
 it is explicitly not intended to be an "all singing, all dancing"
 fully featured system for managing installed / deployed devices, nor
 is it intended to solve all use-cases - rather it is a simple
 targeted solution to solve a common operational issue. Solutions

Kumari & Doyle Expires December 14, 2019 [Page 3]

Internet-Draft template June 2019

 such as Secure Zero Touch Provisioning (SZTP)" [RFC8572] are much
 more fully featured, but also more complex to implement and / or are
 not widely deployed yet.

1.1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Overview / Example Scenario

 Sirius Cybernetics Corp needs another peering router, and so they
 order another router from Acme Network Widgets, to be drop-shipped to
 the Point of Presence (POP) / datacenter. Acme begins assembling the
 new device, and tells Sirius what the new device's serial number will
 be (SN:17894321). When Acme first installs the firmware on the
 device and boots it, the device generates a public-private keypair,
 and Acme publishes it on their keyserver (in a certificate, for ease
 of use).

 While the device is being shipped, Sirius generates the initial
 device configuration, fetches the certificate from Acme keyservers by
 providing the serial number of the new device. Sirius then encrypts
 the device configuration and puts this encrypted config on a (local)
 TFTP server.

 When the device arrives at the POP, it gets installed in Sirius'
 rack, and cabled as instructed. The new device powers up and
 discovers that it has not yet been configured. It enters its
 autoboot state, and begins the DHCP process. Sirius' DHCP server
 provides it with an IP address and the address of the configuration
 server. The router uses TFTP to fetch its config file (note that all
 this is existing functionality). The device attempts to load the
 config file - if the config file is unparsable, (new functionality)
 the devies tries to uses its private key to decrypt the file, and,
 assuming it validates, installs the new configuration.

 Only the "correct" device will have the required private key and be
 able to decrypt and use the config file (See Security
 Considerations). An attacker would be able to connect to the network
 and get an IP address. They would also be able to retrieve
 (encrypted) config files by guessing serial numbers (or perhaps the
 server would allow directory listing), but without the private keys
 an attacker will not be able to decrypt the files.

 This document uses the serial number of the device as a unique
 identifier for simplicity; some vendors may not want to implement the

https://datatracker.ietf.org/doc/html/rfc8572
https://datatracker.ietf.org/doc/html/rfc2119

Kumari & Doyle Expires December 14, 2019 [Page 4]

Internet-Draft template June 2019

 system using the serial number as the identifier for business reasons
 (a competitor or similar could enumerate the serial numbers and
 determine how many devices have been manufactured). Implementors are
 free to choose some other way of generating identifiers (e.g UUID
 [RFC4122]), but this will likely make it somewhat harder for
 operators to use (the serial number is usually easy to find on a
 device, a more complex system is likely harder to track).

 [Ed note: This example uses TFTP because that is what many vendors
 use in their auto-install / ZTP feature. It could easily instead be
 HTTP, FTP, etc.]

3. Vendor Role / Requirements

 This section describes the vendors roles and responsibilities and
 provides an overview of what the device needs to do.

3.1. Device key generation

 During the manufacturing stage, when the device is intially powered
 on, it will generate a public-private keypair. It will send its
 unique identifier and the public key to the vendor's Certificate
 Publication Server to be published. The mechanism used to do this is
 left undefined. Note that some devices may be contrained, and so may
 send the raw public key and unique identifier to the certificate
 publication server, while mode capable devices may generate and send
 self-signed certifcates.

3.2. Certificate Publication Server

 The certificate publication server contains a database of
 certificates. If newly manufactured devices upload certificates the
 certificate publication server can simply publish these, if the
 devices provide raw public keys and unique identfiers the certificate
 publication server will need to wrap these in a certificate. Note
 that the certificat publication server MUST only accept certifcates
 or keys from the vendor's manufacturing facilities.

 The customers (e.g Sirius Cybernetics Corp) query this server with
 the serial number (or other provided unique identifier) of a device,
 and retrieve the associated certificate. It is expected that
 operators will receive the unique identifier (serial number) of
 devices when they purchase them, and will download and store / cache
 the certificate. This means that there is not a hard requirement on
 the uptime / reachability of the certificate publication server.

https://datatracker.ietf.org/doc/html/rfc4122

Kumari & Doyle Expires December 14, 2019 [Page 5]

Internet-Draft template June 2019

 +------------+
 +------+ |Certificate |
 |Device| |Publication |
 +------+ | Server |
 +------------+
 +----------------+ +--------------+
+---------+				
	Initial			
	boot?			
+----+----+				
+------v-----+				
	Generate			
	Self-signed			
	Certificate			
+------------+				
			+-------+	
+-------	---	-->	Receive	
		+---+---+		
		+---v---+		
			Publish	
		+-------+		
 +----------------+ +--------------+

 Initial certificate generation and publication.

4. Operator Role / Responsibilities

4.1. Administrative

 When purchasing a new device, the accounting department will need to
 get the unique device identifier (likely serial number) of the new
 device and communicate it to the operations group.

4.2. Technical

 The operator will contact the vendor's publication server, and
 download the certificate (by providing the unique device identifier
 of the device). The operator SHOULD fetch the certificate using a
 secure transport (e.g HTTPS). The operator will then encrypt the
 initial configuration to the key in the certifcate, and place it on
 their TFTP server. See Appendix B for examples.

Kumari & Doyle Expires December 14, 2019 [Page 6]

Internet-Draft template June 2019

 +------------+
 +--------+ |Certificate |
 |Operator| |Publication |
 +--------+ | Server |
 +------------+
 +----------------+ +----------------+
+-----------+		+-----------+				
	Fetch					
	Device	<------>	Certificate			
	Certificate					
+-----+-----+		+-----------+				
+-----v------+						
	Encrypt					
	Device					
	Config					
+-----+------+						
+-----v------+						
	Publish					
	TFTP					
	Server					
+------------+						
 +----------------+ +----------------+

 Fetching the certificate, encrypting the configuration, publishing
 the encrypted configuration.

4.3. Initial Customer Boot

 When the device is first booted by the customer (and on subsequent
 boots), if the device has no valid configuration, it will use
 existing auto-install type functionality - it performs DHCP Discovery
 until it gets a DHCP offer including DHCP option 66 or 150, contact
 the server listed in these DHCP options and download its config file.

 After retrieving the config file, the device will examine the file
 and determine if it seems to be a valid config, and if so, proceeds
 as it normally would. Note that this is existing functionality (for
 example, Cisco devices fetch the config file named by the Bootfile-
 Name DHCP option (67)).

 If the file appears be "garbage", the device will attempt to decrypt
 the configuration file using its private key. If it is able to
 decrypt and validate the file it will install the configuration, and
 start using it. The exact method that the device uses to determine

Kumari & Doyle Expires December 14, 2019 [Page 7]

Internet-Draft template June 2019

 if a config file is "valid" is implementation specific, but a normal
 config file looks significantly different to an encrypted blob.

 Note that the device only needs DHCP and to be able to download the
 config file; after the initial power-on in the factory it never need
 to access the Internet or vendor or certifcate publication server -
 it (and only it) has the private key and so has the ability to
 decrypt the config file.

Kumari & Doyle Expires December 14, 2019 [Page 8]

Internet-Draft template June 2019

 +--------+ +--------------+
 | Device | |Config server |
 +--------+ | (e.g TFTP) |
 +--------------+
 +---------------------------+ +------------------+
+-----------+						
	DHCP					
+-----+-----+						
+-----v------+		+-----------+				
					Encrypted	
	Fetch config	<------------------>	config			
					file	
+-----+------+		+-----------+				
X						
/ \						
/ \ Y +--------+						
	Sane?	---->	Install,			
\ /	Boot					
\ / +--------+						
V						
	N					
+-----v------+						
	Decrypt with					
	private key					
+-----+------+						
	+--------+					
		Install,				
+------->	Boot					
+--------+						
 +---------------------------+ +------------------+

 Device boot, fetch and install config file

5. Additional Considerations

5.1. Key storage

 Ideally, the keypair would be stored in a TPM on something which is
 identified as the "router" - for example, the chassis / backplane.
 This is so that a keypair is bound to what humans think of as the

Kumari & Doyle Expires December 14, 2019 [Page 9]

Internet-Draft template June 2019

 "device", and not, for example (redundant) routing engines. Devices
 which implement IEEE 802.1AR could choose to use the IDevID for this
 purpose.

5.2. Key replacement

 It is anticipated that some operator may want to replace the (vendor
 provided) keys after installing the device. There are two options
 when implementing this - a vendor could allow the operator's key to
 completely replace the initial device generated key (which means
 that, if the device is ever sold, the new owner couldn't use this
 technique to install the device), or the device could prefer the
 operators installed key. This is an implementation decision left to
 the vendor.

5.3. Device reinstall

 Increasingly, operations is moving towards an automated model of
 device management, whereby portions (or the entire) configuration is
 programmatically generated. This means that operators may want to
 generate an entire configuration after the device has been initially
 installed and ask the device to load and use this new configuration.
 It is expected (but not defined in this document, as it is vendor
 specific) that vendors will allow the operator to copy a new,
 encrypted config (or part of a config) onto a device and then request
 that the device decrypt and install it (e.g: 'load replace <filename>
 encrypted)). The operator could also choose to reset the device to
 factory defaults, and allow the device to act as though it were the
 initial boot (see Section 4.3).

6. IANA Considerations

 This document makes no requests of the IANA.

7. Security Considerations

 This mechanism is intended to replace either expensive (traveling
 employees) or insecure mechanisms of installing newly deployed
 devices such as: unencrypted config files which can be downloaded by
 connecting to unprotected ports in datacenters, mailing initial
 config files on flash drives, or emailing config files and asking a
 third-party to copy and paste it over a serial terminal. It does not
 protect against devices with malicious firmware, nor theft and reuse
 of devices.

 An attacker (e.g a malicious datacenter employee) who has physical
 access to the device before it is connected to the network the
 attacker may be able to extract the device private key (especially if

Kumari & Doyle Expires December 14, 2019 [Page 10]

Internet-Draft template June 2019

 it isn't stored in a TPM), pretend to be the device when connecting
 to the network, and download and extract the (encrypted) config file.

 This mechanism does not protect against a malicious vendor - while
 the keypair should be generated on the device, and the private key
 should be securely stored, the mechanism cannot detect or protect
 against a vendor who claims to do this, but instead generates the
 keypair off device and keeps a copy of the private key. It is
 largely understood in the operator community that a malicious vendor
 or attacker with physical access to the device is largely a "Game
 Over" situation.

 Even when using a secure bootstrapping mechanism, security conscious
 operators may wish to bootstrapping devices with a minimal / less
 sensitive config, and then replace this with a more complete one
 after install.

8. Acknowledgements

 The authors wish to thank everyone who contributed, including Benoit
 Claise, Sam Ribeiro, Michael Richardson, Sean Turner and Kent Watsen.
 Joe Clarke provided significant comments and review.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [I-D.ietf-sidr-iana-objects]
 Manderson, T., Vegoda, L., and S. Kent, "RPKI Objects
 issued by IANA", draft-ietf-sidr-iana-objects-03 (work in
 progress), May 2011.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC8572] Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
 Touch Provisioning (SZTP)", RFC 8572,
 DOI 10.17487/RFC8572, April 2019,
 <https://www.rfc-editor.org/info/rfc8572>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-sidr-iana-objects-03
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc8572
https://www.rfc-editor.org/info/rfc8572

Kumari & Doyle Expires December 14, 2019 [Page 11]

Internet-Draft template June 2019

Appendix A. Changes / Author Notes.

 [RFC Editor: Please remove this section before publication]

 From -00 to -01

 o Nothing changed in the template!

 From -01 to -03:

 o See github commit log (AKA, we forgot to update this!)

 o Added Colin Doyle.

 From -03 to -04:

 Addressed a number of comments received before / at IETF104 (Prague).
 These include:

 o Pointer to https://datatracker.ietf.org/doc/draft-ietf-netconf-
zerotouch -- included reference to (now) RFC8572 (KW)

 o Suggested that 802.1AR IDevID (or similar) could be used. Stress
 that this is designed for simplicity (MR)

 o Added text to explain that any unique device identifier can be
 used, not just serial number - serial number is simple and easy,
 but anything which is unique (and can be communicated to the
 customer) will work (BF).

 o Lots of clarifications from Joe Clarke.

 o Make it clear it should first try use the config, and if it
 doesn't work, then try decrypt and use it.

 o The CA part was confusing people - the certificate is simply a
 wrapper for the key, and the Subject just an index, and so removed
 that.

 o Added a bunch of ASCII diagrams

Appendix B. Demo / proof of concept

 This section contains a rough demo / proof of concept of the system.
 It is only intended for illustration; presumably things like
 algorithms, key lengths, format / containers will provide much fodder
 for discussion.

https://datatracker.ietf.org/doc/draft-ietf-netconf-zerotouch
https://datatracker.ietf.org/doc/draft-ietf-netconf-zerotouch
https://datatracker.ietf.org/doc/html/rfc8572

Kumari & Doyle Expires December 14, 2019 [Page 12]

Internet-Draft template June 2019

 It uses OpenSSL from the command line, in production something more
 automated would be used. In this example, the unique identifier is
 the serial number of the router, SN19842256.

B.1. Step 1: Generating the certificate.

 This step is performed by the router. It generates a key, then a
 csr, and then a self signed certificate.

B.1.1. Step 1.1: Generate the private key.

 $ openssl genrsa -out key.pem 2048
 Generating RSA private key, 2048 bit long modulus
 ...
 ...
 +++
 +++
 e is 65537 (0x10001)

B.1.2. Step 1.2: Generate the certificate signing request.

 $ openssl req -new -key key.pem -out SN19842256.csr
 Country Name (2 letter code) [AU]:.
 State or Province Name (full name) [Some-State]:.
 Locality Name (eg, city) []:.
 Organization Name (eg, company) [Internet Widgits Pty Ltd]:.
 Organizational Unit Name (eg, section) []:.
 Common Name (e.g. server FQDN or YOUR name) []:SN19842256
 Email Address []:.

 Please enter the following 'extra' attributes
 to be sent with your certificate request
 A challenge password []:
 An optional company name []:.

B.1.3. Step 1.3: Generate the (self signed) certificate itself.

 $ openssl req -x509 -days 36500 -key key.pem -in SN19842256.csr -out
 SN19842256.crt

 The router then sends the key to the vendor's keyserver for
 publication (not shown).

Kumari & Doyle Expires December 14, 2019 [Page 13]

Internet-Draft template June 2019

B.2. Step 2: Generating the encrypted config.

 The operator now wants to deploy the new router.

 They generate the initial config (using whatever magic tool generates
 router configs!), fetch the router's certificate and encrypt the
 config file to that key. This is done by the operator.

B.2.1. Step 2.1: Fetch the certificate.

 $ wget http://keyserv.example.net/certificates/SN19842256.crt

B.2.2. Step 2.2: Encrypt the config file.

 I'm using S/MIME because it is simple to demonstrate. This is almost
 definitely not the best way to do this.

 $ openssl smime -encrypt -aes-256-cbc -in SN19842256.cfg\
 -out SN19842256.enc -outform PEM SN19842256.crt
 $ more SN19842256.enc
 -----BEGIN PKCS7-----
 MIICigYJKoZIhvcNAQcDoIICezCCAncCAQAxggE+MIIBOgIBADAiMBUxEzARBgNV
 BAMMClNOMTk4NDIyNTYCCQDJVuBlaTOb1DANBgkqhkiG9w0BAQEFAASCAQBABvM3
 ...
 LZoq08jqlWhZZWhTKs4XPGHUdmnZRYIP8KXyEtHt
 -----END PKCS7-----

B.2.3. Step 2.3: Copy config to the config server.

 $ scp SN19842256.enc config.example.com:/tftpboot

B.3. Step 3: Decrypting and using the config.

 When the router connects to the operator's network it will detect
 that does not have a valid configuration file, and will start the
 "autoboot" process. This is a well documented process, but the high
 level overview is that it will use DHCP to obtain an IP address and
 config server. It will then use TFTP to download a configuration
 file, based upon its serial number (this document modifies the
 solution to fetch an encrypted config file (ending in .enc)). It
 will then then decrypt the config file, and install it.

B.3.1. Step 3.1: Fetch encrypted config file from config server.

 $ tftp 192.0.2.1 -c get SN19842256.enc

Kumari & Doyle Expires December 14, 2019 [Page 14]

Internet-Draft template June 2019

B.3.2. Step 3.2: Decrypt and use the config.

 $ openssl smime -decrypt -in SN19842256.enc -inform pkcs7\
 -out config.cfg -inkey key.pem

 If an attacker does not have the correct key, they will not be able
 to decrypt the config:

 $ openssl smime -decrypt -in SN19842256.enc -inform pkcs7\
 -out config.cfg -inkey wrongkey.pem
 Error decrypting PKCS#7 structure
 140352450692760:error:06065064:digital envelope
 routines:EVP_DecryptFinal_ex:bad decrypt:evp_enc.c:592:
 $ echo $?
 4

Authors' Addresses

 Warren Kumari
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 US

 Email: warren@kumari.net

 Colin Doyle
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: cdoyle@juniper.net

Kumari & Doyle Expires December 14, 2019 [Page 15]

