
Workgroup: Network Working Group

Internet-Draft: draft-wood-key-consistency-03

Published: 17 August 2022

Intended Status: Informational

Expires: 18 February 2023

Authors: A. Davidson

Brave Software

M. Finkel

The Tor Project

M. Thomson

Mozilla

C. A. Wood

Cloudflare

Key Consistency and Discovery

Abstract

This document describes the key consistency and correctness

requirements of protocols such as Privacy Pass, Oblivious DoH, and

Oblivious HTTP for user privacy. It discusses several mechanisms and

proposals for enabling user privacy in varying threat models. In

concludes with discussion of open problems in this area.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://chris-

wood.github.io/key-consistency/draft-wood-key-consistency.html.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-wood-key-consistency/.

Source for this draft and an issue tracker can be found at https://

github.com/chris-wood/key-consistency.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 February 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://chris-wood.github.io/key-consistency/draft-wood-key-consistency.html
https://chris-wood.github.io/key-consistency/draft-wood-key-consistency.html
https://datatracker.ietf.org/doc/draft-wood-key-consistency/
https://datatracker.ietf.org/doc/draft-wood-key-consistency/
https://github.com/chris-wood/key-consistency
https://github.com/chris-wood/key-consistency
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements

2. Terminology

3. Core Requirements

4. Consistency and Correctness at Key Acquisition

4.1. Direct Discovery

4.2. Trusted Proxy Discovery

4.3. Shared Proxy with Key Confirmation

4.4. Multi-Proxy Discovery

4.5. Database Discovery

5. Minimum Validity Periods

6. Separate Consistency Verification

6.1. Independent Verification

6.2. Key-Based Encryption

7. Future Work

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

Several proposed privacy-enhancing protocols such as Privacy Pass

[PRIVACY-PASS], Oblivious DoH [ODOH], and Oblivious HTTP [OHTTP]

require clients to obtain and use a public key for execution. For

example, Privacy Pass public keys are used by clients for validating

privately issued tokens for anonymous session resumption. Oblivious

DoH and HTTP both use public keys to encrypt messages to a

particular server.

¶

¶

¶

https://trustee.ietf.org/license-info

Key Consistency and Correctness System (KCCS):

Reliant System:

User privacy in these systems depends on users receiving a key that

many, if not all, other users receive. If a user were to receive a

public key that was specific to them, or restricted to a small set

of users, then use of that public key could be used to learn

targeted information about the user. Users also need to receive the

correct public key.

In this document, we elaborate on these core requirements, and

survey various system designs that might be used to satisfy them.

The purpose of this document is to highlight challenges in building

and deploying solutions to this problem.

1.1. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Terminology

This document defines the following terms:

A mechanism for

providing clients with a consistent view of cryptographic key

material within a period of time.

A system that embeds one or more key consistency

and correctness systems.

The KCCS's consistency model is dependent on the implementation and

reliant system's threat model.

3. Core Requirements

Privacy-focused protocols which rely on widely shared public keys

typically require keys be consistent and correct. Informally, key

consistency is the requirement that all users who communicate with

an entity share the same view of the key associated with that

entity; key correctness is that the key's secret information is

controlled by the intended entity and is not known to be available

to an external attacker.

Some protocols depend on large sets of users with consistent keys

for privacy reasons. Specifically, all users with a consistent key

represent an anonymity set wherein each user of the key in that set

is indistinguishable from the rest. An attacker that can actively

cause inconsistent views of keys can therefore compromise user

privacy.

¶

¶

¶

¶

¶

¶

¶

¶

¶

An attacker that can cause a user to use an incorrect key will

likely compromise the entire protocol, not just privacy.

Reliant systems must also consider agility when trying to satisfy

these requirements. A naive solution to ensuring consistent and

correct keys is to only use a single, fixed key pair for the

entirety of the system. Users can then embed this key into software

or elsewhere as needed, without any additional mechanics or controls

to ensure that other users have a different key. However, this

solution clearly is not viable in practice. If the corresponding key

is compromised, the system fails. Rotation must therefore be

supported, and in doing so, users need some mechanism to ensure that

newly rotated keys are consistent and correct.

Operationally, servers rotating keys may likely need to accommodate

distributed system state-synchronization issues without sacrificing

availability. Some systems and protocols may choose to prioritize

strong consistency over availability, but this document assumes that

availability is preferred to total consistency.

4. Consistency and Correctness at Key Acquisition

There are a variety of ways in which reliant systems may build key

consistency and correct systems (KCCS), ranging in operational

complexity to ease-of-implementation. In this section, we survey a

number of possible solutions. The viability of each varies depending

on the applicable threat model, external dependencies, and overall

reliant system's requirements.

We do not include the fixed public key model from Section 3, as this

is likely not a viable solution for systems and protocols in

practice. In all scenarios, the server corresponding to the desired

key is considered malicious.

4.1. Direct Discovery

In this model, users would directly query servers for their

corresponding public key, as shown below.

Client Server

Figure 1: Direct Discovery Example

¶

¶

¶

¶

¶

¶

¶

The properties of this solution depend on external mechanisms in

place to ensure consistency or correctness. Absent any such

mechanisms, servers can produce unique keys for users without

detection. External mechanisms to ensure consistency here might

include, though are not limited to:

Presenting a signed assertion from a trusted entity that the key

is correct.

Presenting proof that the key is present in some tamper-proof

log, similar to Certificate Transparency ([RFC6962]) logs.

User communication or gossip ensuring that all users have a

shared view of the key.

The precise external mechanism used here depends largely on the

threat model. If there is a trusted external log for keys, this may

be a viable solution.

4.2. Trusted Proxy Discovery

In this model, there exists a trusted proxy that fetches keys from

servers on behalf of multiple users, as shown below.

Client

Client Proxy Server

x
x

Client

Figure 2: Single Proxy Discovery Example

If this proxy is trusted, then all users which request a key from

this server are assured they have a consistent view of the server

¶

*

¶

*

¶

*

¶

¶

¶

¶

key. However, if this proxy is not trusted, operational risks may

arise:

The proxy can collude with the server to give per-user keys to

clients.

The proxy can give all users a key owned by the proxy, and either

collude with the server to use this key or retroactively use this

key to compromise user privacy when users later make use of the

key.

Mitigating these risks can be done in a variety of ways. For

example, clients may demand tamper-proof proof evidence that the key

is consistent and correct for the server, using techniques described

in Section 4.1. Clients may gossip amongst themselves to determine

if they are being served different keys. Alternatively, the clients

may attempt to confirm the key provided by the proxy, as described

in Section 4.3.

4.3. Shared Proxy with Key Confirmation

Clients that retrieve keys through a single proxy can directly

confirm the correctness of this key provided by the proxy by

"checking" with the server. One variant of this checking mechanism

is described in [DOUBLECHECK]. Briefly, clients connect directly to

the server through some proxy (so as to hide their identity) and ask

for the key. If this key does not match that provided by the shared

proxy, the clients conclude that the key is malicious. This is shown

in Figure 3.

¶

*

¶

*

¶

¶

¶

Client

Shared
Client Proxy Server

x
x

Client

Figure 3: Shared Proxy with Confirmation Discovery Example

4.4. Multi-Proxy Discovery

In this model, users leverage multiple, non-colluding proxies to

fetch keys from servers, as shown below.

Proxy

Client Proxy Server

x
x

Proxy

Figure 4: Multi-Proxy Discovery Example

¶

¶

¶

These proxies are ideally spread across multiple vantage points.

Examples of proxies include anonymous systems such as Tor. Tor

proxies are general purpose and operate at a lower layer, on

arbitrary communication flows, and therefore they are oblivious to

clients fetching keys. A large set of untrusted proxies that are

aware of key fetch requests (Section 4.2) may be used in a similar

way. Depending on how clients fetch such keys from servers, it may

become more difficult for servers to uniquely target individual

users with unique keys without detection. This is especially true as

the number of users of these anonymity networks increases. However,

beyond Tor, there does not exist a special-purpose anonymity network

for this purpose.

Note that connecting to Tor proxies may not be a viable option

(indeed, could even be dangerous) for clients operating in managed

networks which scrutinize and/or ban Tor traffic.

4.5. Database Discovery

In this model, servers publish keys in an external database and

clients fetch keys from the database, as shown below.

Client

Client Database Server

x
x

Client

Figure 5: Database Discovery Example

The database is expected to have a table that asserts mappings

between server names and keys. Examples of such databases are as

follows:

An append-only, audited table similar to that of Certificate

Transparency [RFC6962]. The log is operated and audited in such a

¶

¶

¶

¶

¶

*

way that the contents of the log are consistent for all users.

Any reliant system which depends on this type of KCCS requires

the log be audited or users have some other mechanism for

checking their view of the log state (gossiping). However, this

type of system does not ensure proactive security against

malicious servers unless log participants actively check log

proofs. This requirement may impede deployment in practice.

Experience with Certificate Transparency shows that most

implementations have chosen not to check

SignedCertificateTimestamps before using (that is, accepting as

valid) a corresponding TLS certificate.

A consensus-based table whose assertions are created by a

coalition of entities that periodically agree on the correct

binding of server names and key material. In this model the

agreement is achieved via a consensus protocol, but the specific

consensus protocol is dependent on the implementation.

For privacy, users should either download the entire database and

query it locally, or remotely query the database using privacy-

preserving queries (e.g., a private information retrieval (PIR)

protocol). In the case where the database is downloaded locally, it

should be considered stale and re-fetched periodically. The

frequency of such updates can likely be infrequent in practice, as

frequent key updates or rotations may affect privacy; see Section 5

for details. Downloading the entire database works best if there are

a small number of entries, as it does not otherwise impose bandwidth

costs on each client that may be impractical.

5. Minimum Validity Periods

In addition to ensuring that there is one key at any time, or a

limited number keys, any system needs to ensure that a server cannot

rotate its keys too often in order to divide clients into smaller

groups based on when keys are acquired. Such considerations are

already highlighted within the Privacy Pass ecosystem, more

discussion can be found at [PRIVACY-PASS-ARCH]. Setting a minimum

validity period limits the ability of a server to rotate keys, but

also limits the rate of key rotation.

6. Separate Consistency Verification

The other schemes described here all attempt to directly limit the

number of keys that a client might accept. However, by changing how

keys are used, clients can impose costs on servers that might

discourage key diversity.

Protocols that have distinctly separate processes for acquiring and

using keys might benefit from moving consistency checks to the usage

¶

*

¶

¶

¶

¶

part of the protocol. Correctness might be guaranteed through a

relatively simple process, such obtaining keys directly from a

server. A separate correctness check is then applied before keys are

used.

6.1. Independent Verification

Anonymous queries to verify key consistency can be used prior to use

of keys. A request for the current key (or limited set of keys) will

reveal if the key that was acquired is different than the original.

If the key that was originally obtained is not included, the client

can abort any use of the key.

It is important that any validation process not carry any

information that might tie it to the original key discovery process

or that the system providing verification be trusted. A proxy (see

Section 4.2) might be sufficient for providing anonymity, though

more robust anonymity protections (see Section 4.4) could provide

stronger guarantees. Querying a database (see Section 4.5) might

provide independent verification if that database can be trusted not

to provide answers that change based on client identity.

6.2. Key-Based Encryption

Key-based encryption has a client encrypt the information that it

sends to a server, such as a token or signed object generated with

the server keys. This encryption uses a key derived from the key

configuration, specifically not including any form of key identifier

along with the encrypted information. If key derivation for the

encryption uses a pre-image resistant function (like HKDF), the

server can only decrypt the information if it knows the key

configuration. As there is no information the server can use to

identify which key was used, it is forced to perform trial

decryption if it wants to use multiple keys.

These costs are only linear in terms of the number of active keys.

This doesn't prevent the use of multiple keys; it only makes their

use incrementally more expensive. Adding a nonce with sufficient

entropy might be used to force key derivation for every message.

Using a time- or memory-hard key derivation function such as

[ARGON2] can then be used to increase the cost of trial decryption.

Encrypting this way could provide better latency properties than a

separate check.

7. Future Work

The model in Section 4.4 seems to be the most lightweight and easy-

to-deploy mechanism for ensuring key consistency and correctness.

However, it remains unclear if there exists such an anonymity

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC6962]

[RFC8174]

[ARGON2]

[DOUBLECHECK]

network that can scale to the widespread adoption of and

requirements of protocols like Privacy Pass, Oblivious DoH, or

Oblivious HTTP. Also, using such a network carries its own set of

risks for clients (as described in Section 4.4), so in some cases it

might be impractical. Existing infrastructure based on technologies

like Certificate Transparency or Key Transparency may work, but

there is currently no general purpose system for transparency of

opaque keys (or other application data).

8. Security Considerations

This document discusses several models that systems might use to

implement public key discovery while ensuring key consistency and

correctness. It does not make any recommendations for such models as

the best model depends on differing operational requirements and

threat models.

9. References

9.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Laurie, B., Langley, A., and E. Kasper, "Certificate

Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,

<https://www.rfc-editor.org/rfc/rfc6962>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

9.2. Informative References

Biryukov, A., Dinu, D., Khovratovich, D., and S.

Josefsson, "Argon2 Memory-Hard Function for Password

Hashing and Proof-of-Work Applications", Work in

Progress, Internet-Draft, draft-irtf-cfrg-argon2-13, 11

March 2021, <https://datatracker.ietf.org/doc/html/draft-

irtf-cfrg-argon2-13>.

Schwartz, B. M., "Key Consistency for Oblivious HTTP

by Double-Checking", Work in Progress, Internet-Draft,

draft-schwartz-ohai-consistency-doublecheck-02, 1 July

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6962
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-13
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-13

[ODOH]

[OHTTP]

[PRIVACY-PASS]

[PRIVACY-PASS-ARCH]

2022, <https://datatracker.ietf.org/doc/html/draft-

schwartz-ohai-consistency-doublecheck-02>.

Kinnear, E., McManus, P., Pauly, T., Verma, T., and C. A.

Wood, "Oblivious DNS over HTTPS", Work in Progress,

Internet-Draft, draft-pauly-dprive-oblivious-doh-11, 17

February 2022, <https://datatracker.ietf.org/doc/html/

draft-pauly-dprive-oblivious-doh-11>.

Thomson, M. and C. A. Wood, "Oblivious HTTP", Work in

Progress, Internet-Draft, draft-ietf-ohai-ohttp-03, 8

August 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-ohai-ohttp-03>.

Celi, S., Davidson, A., Faz-Hernandez, A., Valdez,

S., and C. A. Wood, "Privacy Pass Issuance Protocol",

Work in Progress, Internet-Draft, draft-ietf-privacypass-

protocol-06, 6 July 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-privacypass-protocol-06>.

Davidson, A., Iyengar, J., and C. A. Wood,

"Privacy Pass Architectural Framework", Work in Progress,

Internet-Draft, draft-ietf-privacypass-architecture-06, 5

August 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-privacypass-architecture-06>.

Authors' Addresses

Alex Davidson

Brave Software

Email: alex.davidson92@gmail.com

Matthew Finkel

The Tor Project

Email: sysrqb@torproject.org

Martin Thomson

Mozilla

Email: mt@lowentropy.net

Christopher A. Wood

Cloudflare

101 Townsend St

San Francisco,

United States of America

Email: caw@heapingbits.net

https://datatracker.ietf.org/doc/html/draft-schwartz-ohai-consistency-doublecheck-02
https://datatracker.ietf.org/doc/html/draft-schwartz-ohai-consistency-doublecheck-02
https://datatracker.ietf.org/doc/html/draft-pauly-dprive-oblivious-doh-11
https://datatracker.ietf.org/doc/html/draft-pauly-dprive-oblivious-doh-11
https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-03
https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-03
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-06
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-06
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-06
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-06
mailto:alex.davidson92@gmail.com
mailto:sysrqb@torproject.org
mailto:mt@lowentropy.net
mailto:caw@heapingbits.net

	Key Consistency and Discovery
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements

	2. Terminology
	3. Core Requirements
	4. Consistency and Correctness at Key Acquisition
	4.1. Direct Discovery
	4.2. Trusted Proxy Discovery
	4.3. Shared Proxy with Key Confirmation
	4.4. Multi-Proxy Discovery
	4.5. Database Discovery

	5. Minimum Validity Periods
	6. Separate Consistency Verification
	6.1. Independent Verification
	6.2. Key-Based Encryption

	7. Future Work
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

