
INTERNET-DRAFT Doug Wood
<draft-wood-ldapext-float-00.txt> Tivoli Systems Inc
December, 1999
Expires: June 2000

Directory string representation for floating point values

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited. It is filed as <draft-
ietf-ldapext-float-00.txt >, and expires on June, 2000.

 Please send comments to the authors.

1. Abstract

 This draft defines a way that floating point values may be
 represented as directory (ASCII) strings such that standard ordering
 rules can be used to sort the strings into the correct collating
 sequence for their numeric value. The representation is intended
 for use in X.500 like directories, and has been developed to support
 mapping of the DMTF Common Information Model.

2. Introduction

 X.500 directories provide for use definable syntaxes, matching and
 ordering rules. This provides for the definition of schema
 supporting any type and structure of data. The definition of the
 LDAP protocol [RFC 2251] has encouraged the creation new generation
 of directories that support the X.500 structure, but donÆt support
 some of X.500Æs more heavy weight feature. Among the unsupported
 feature are user definable syntaxes. This restricts schema designers
 to syntaxes provided by the directory vendor. These typical do not
 include a syntax for floating point values.

https://datatracker.ietf.org/doc/html/draft-wood-ldapext-float-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ietf-ldapext-float-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ldapext-float-00.txt
https://datatracker.ietf.org/doc/html/rfc2251

 This draft defines a an ASCII format for floating point values that

Expires June 2000 [Page 1]

 allow them to be stored in attributes with Directory String syntax.
 And allows the standard case insensitive ordering rule to sort them
 in the correct collating sequence for their numeric value. In
 addition, attributes are defined which can be used for values stored
 in the format described below, or as superiors for user defined
 attributes. The attributes are provided both as a convenience, and
 as a method to document the storage format used.

 The format is defined specifically to support mapping the DMTF
 Common Information Model to directory schema, but also has general
 applicability.

3. String format

 Because string comparison is positional, it is necessary to define a
 fix format for representing the mantissa, and the exponent. Because
 the collating sequence for string comparison is left to right, the
 most significant portion of the representation must be on the left.
 There are four separate cases that must be handled.

 o Negative mantissa and positive exponent
 o Negative mantissa and negative exponent
 o Positive mantissa and negative exponent
 o Positive mantissa, and positive exponent

 The above list is ordered by the desired collating sequence from
 smallest value to largest value. A single representation does not
 provide the correct collating sequence for all cases. Therefor it
 is necessary to sort by case, and then to sort within each case. To
 accomplish this, the cases are number from 1 to 5 as follows:

 1. Negative mantissa and positive exponent
 2. Negative mantissa and negative exponent
 3. Zero
 4. Positive mantissa and negative exponent
 5. Positive mantissa, and positive exponent

 For symmetry, zero is treated as its own case instead of a special
 sub-case of case 4.

 A 64 bit float has a range of 1.7976931348623158e+308 to
 2.2250738585072014e-308[1]. To represent this as a string, three
 digits are required for the exponent, and 17 for the mantissa not
 including the decimal point. The directory representation is fixed
 format, zero padded, blank separated, with the most significant
 fields on the left. The first character in the string is the case
 number. For readability, it is followed by a blank. Next is a 3
 digit exponent, again followed by a blank. Next are a single digit,
 a decimal point, and 16 digits of decimal.

Expires June 2000 [Page 2]

 +-+-+---+-+-+-+----------------+
 | | |Exp| | | |16 digits |
 +-+-+---+-+-+-+----------------+
 |c| |nnn| |n|.|nnnnnnnnnnnnnnnn|
 +-+-+---+-+-+-+----------------+

 The way each of the fields is interpreted varies with the case.
 The cases are examined in reverse order so the simplest may be
 examined first.

3.1 Positive mantissa and positive exponent (case 5)

 This is relatively straightforward. The exponent field has the
 exponent value expressed as a 3-digit integer string. It is zero
 padded to the left if necessary. The mantissa field as a seventeen-
 digit decimal string with exactly 1 digit to the left of the decimal
 point for a total of 18 characters. It is zero padded to the right
 if necessary.

 Notes:
 - The first digit is a 5 to indicate the case
 - There is exactly one digit to the left of the decimal place. It
 is always non zero.
 - Positions 2 through 4 have the exponent. It is right justified,
 and zero padded to the left if it is less than three digits
 - Spaces are added to aid human readability
 - No signs are required for the exponent or the mantissa because
 they are expressed in the case number

3.2 Positive mantissa and negative exponent (case 4)

 When the exponent is negative, larger whole number values for the
 exponent produce smaller actual values. For this case, a string
 comparison of the numeric representation of the exponent yields the
 reverse of the desired collating sequence. To flip the collating
 sequence, the value of the exponent is added to 999, and the result
 stored as the exponent. No sign is stored. The sign of both the
 exponent and mantissa are indicated by the case character.

3.3 Zero (case 3)

 The case number is sufficient to insure the correct collating
 sequence. To insure equality comparisons work correctly, all
 remaining digits are zero.

3.4 Negative mantissa and negative exponent (case 2)

 When both the exponent and the mantissa are negative, the collating
 order for the exponent is correct. A larger exponent yields a
 number that is closer to zero and therefor larger. However, the
 collating sequence for the mantissa is reversed. To flip the
 collating sequence for the mantissa it is added to 10, and the

 result stored.

Expires June 2000 [Page 3]

3.5 Negative mantissa and positive exponent (case 1)

 When both the exponent and the mantissa are negative, the collating
 sequence is flipped for both of them. This is achieved by adding
 the exponent to 999, and the mantissa to 10.

4. Examples

 +----------+--------------------------+
 | Value | Representation |
 +----------+--------------------------+
 | 3.25e5 | 5 005 3.2500000000000000 |
 +----------+--------------------------+
 | 8.4e-5 | 4 994 8.4000000000000000 |
 +----------+--------------------------+
 | 8.4e-7 | 4 992 8.4000000000000000 |
 +----------+--------------------------+
 | 7.23e-7 | 4 992 7.2300000000000000 |
 +----------+--------------------------+
 | 0.0e0 | 3 000 0.0000000000000000 |
 +----------+--------------------------+
 | -4.25e-4 | 2 004 5.7500000000000000 |
 +----------+--------------------------+
 | -6.35e-4 | 2 004 3.6500000000000000 |
 +----------+--------------------------+
 | -6.35e-3 | 2 003 3.6500000000000000 |
 +----------+--------------------------+
 | -4.0e104 | 1 895 6.0000000000000000 |
 +----------+--------------------------+
 | -4.0e105 | 1 894 6.0000000000000000 |
 +----------+--------------------------+
 | -6.0e105 | 1 894 4.0000000000000000 |
 +----------+--------------------------+

5. 32 bit vs. 64 bit values

 Both 32 and 64 bit floating point values are in common usage. To
 allow comparisons between the two, both are stored in the 64-bit
 format described above. This implies a greater degree of precision
 than is actually available for 32-bit values. The directory mapping
 described below provides implicit documentation of the actual
 precision of a value.

6. Directory mapping

 The intent of the mapping is to simulate a new syntax. The
 advantage of this approach is it may be utilized without any changes
 to existing directory servers. To foster that illusion, and to aid
 in documentation, two new attributes are defined. cimFloat32, and
 cimFloat64. All floating-point attributes are derived from one of

 these. They are defined as:

Expires June 2000 [Page 4]

 cimFloat32
 {
 ; Need OID assigned
 NAME æcimFloat32Æ
 DESC '32 bit float encoded as sortable float format'
 EQUALITY caseIgnoreeMatch
 ORDERING caseIgnoreOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

 cimFloat64
 (
 ; Need OID assigned
 NAME æcimFloat64Æ
 DESC 'Æ64 bit float encoded as sortable float formatÆ
 EQUALITY caseIgnoreeMatch
 ORDERING caseIgnoreOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
)

7. References

 [1] From sys/limits.h on AIX 4.3

8. Acknowledgement

 This work is a product of the DMTF LDAP Mapping Working Group and
 has benefited from many comments and discussions during this groups
 meetings.

9. Authors' Addresses

 Doug Wood
 Tivoli Systems
 9025 North River Rd.
 Indianapolis, IN 46240-7622
 Dawood@Tivoli.com

 Expires June 2000

Expires June 2000 [Page 5]

