
Network Working Group L. Wood
Internet-Draft Surrey alumni
Intended status: Experimental W. Eddy
Expires: May 23, 2017 MTI Systems
 C. Smith
 Vallona
 W. Ivancic
 Syzygy
 C. Jackson
 SSTL
 November 19, 2016

Saratoga: A Scalable Data Transfer Protocol
draft-wood-tsvwg-saratoga-20

Abstract

 This document specifies the Saratoga transfer protocol. Saratoga was
 originally developed to transfer remote-sensing imagery efficiently
 from a low-Earth-orbiting satellite constellation, but is useful in
 many other scenarios, including ad-hoc peer-to-peer communications,
 large-scale scientific sensing, and grid computing. Saratoga is a
 simple, lightweight, content dissemination protocol that builds on
 UDP, and optionally uses UDP-Lite. Saratoga is intended for use when
 moving files or streaming data between peers which may have
 permanent, sporadic or intermittent connectivity, and is capable of
 transferring very large amounts of data reliably under adverse
 conditions. The Saratoga protocol is designed to cope with highly
 asymmetric link or path capacity between peers, and can support
 fully-unidirectional data transfer if required. Saratoga can also
 cope with very large files for exascale computing. In scenarios with
 dedicated links, Saratoga focuses on high link utilization to make
 the most of limited connectivity times, while standard congestion
 control mechanisms can be implemented for operation over shared
 links. Loss recovery is implemented via a simple negative-ack ARQ
 mechanism. The protocol specified in this document is considered to
 be appropriate for experimental use on private IP networks.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Wood, et al. Expires May 23, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Saratoga November 2016

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 23, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

 This document may not be modified, and derivative works of it may not
 be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

Table of Contents

1. Background and Introduction 3
2. Overview of Saratoga File Transfer 6
3. Optional Parts of Saratoga 11
3.1. Optional but useful functions in Saratoga 11
3.2. Optional congestion control 12
3.3. Optional functionality requiring other protocols 12

4. Packet Types . 13
4.1. BEACON . 16
4.2. REQUEST . 21
4.3. METADATA . 25
4.4. DATA . 30
4.5. STATUS . 34

5. The Directory Entry . 41
6. Behaviour of a Saratoga Peer 45
6.1. Saratoga Sessions . 45
6.2. Beacons . 48
6.3. Upper-Layer Interface 49
6.4. Inactivity Timer . 49
6.5. Streams and wrapping 50
6.6. Completing file delivery and ending the session 50

7. Implementation Development 51
8. Security Considerations 51
9. IANA Considerations . 52

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Wood, et al. Expires May 23, 2017 [Page 2]

Internet-Draft Saratoga November 2016

10. Acknowledgements . 52
11. A Note on Naming . 52
12. References . 53
12.1. Normative References 53
12.2. Informative References 53

Appendix A. Timestamp/Nonce field considerations 55
 Authors' Addresses . 56

1. Background and Introduction

 Saratoga is a file transfer and content delivery protocol capable of
 efficiently sending both small (kilobyte) and extremely large
 (yottabyte) files, as well as streaming continuous content. Saratoga
 was originally designed for the purpose of large file transfer from
 small low-Earth-orbiting satellites. It has been used in daily
 operations since 2004 to move mission imaging data files of the order
 of several hundred megabytes each from the Disaster Monitoring
 Constellation (DMC) remote-sensing satellites to ground stations.

 The DMC satellites, built at the University of Surrey by Surrey
 Satellite Technology Ltd (SSTL), all use IP for payload
 communications and delivery of Earth imagery. At the time of this
 writing, in April 2015, nine DMC satellites have been launched into
 orbit since 2002, four of those are currently operational in orbit,
 and three more are under construction. The DMC satellites use
 Saratoga to provide Earth imagery under the aegis of the
 International Charter on Space and Major Disasters.

 An orbital pass giving a period of visibility and connectivity
 between a satellite and ground station offers an 8-12 minute time
 window in which to transfer imagery files, using a minimum of an 8.1
 Mbps downlink and a 9.6 kbps uplink. Newer operational DMC
 satellites can use faster downlinks, capable of 20, 40, 80, 105 or
 210 Mbps [Brenchley12]. Planned DMC satellites are expected to use
 downlinks at up to 320 Mbps, without significant increases in uplink
 rates. SSTL's TechDemoSat-1 satellite, launched in July 2014 and
 also carrying Sarotoga, uses a 400 Mbps downlink [Brenchley12]. This
 high degree of link asymmetry, with the need to fully utilize the
 available downlink capacity to move the volume of data required
 within the limited time available, motivates much of Saratoga's
 design.

 Further details on how these DMC satellites use IP to communicate
 with the ground and the terrestrial Internet are discussed elsewhere
 [Hogie05][Wood07a]. Saratoga has also been implemented for use in
 high-speed private ground networks supporting radio astronomy sensors
 [Wood11].

Wood, et al. Expires May 23, 2017 [Page 3]

Internet-Draft Saratoga November 2016

 Store-and-forward delivery relies on reliable hop-by-hop transfers of
 files, removing the need for the final receiver to talk to the
 original sender across long delays and allowing for the possibility
 that an end-to-end path may never exist between sender and receiver
 at any given time. Breaking an end-to-end path into multiple hops
 allows data to be transferred as quickly as possible across each
 link; congestion on a longer Internet path is then not detrimental to
 the transfer rate on a space downlink. Use of store-and-forward hop-
 by-hop delivery is typical of scenarios in space exploration for both
 near-Earth and deep-space missions, and useful for other scenarios,
 such as underwater networking, ad-hoc sensor networks, and some
 message-ferrying relay scenarios, where efficient delivery must not
 be constrained by the limitations of a bottleneck in the overall end-
 to-end path. Saratoga is intended to be useful for relaying data in
 these scenarios.

 Saratoga contains a Selective Negative Acknowledgement (SNACK)
 'holestofill' mechanism to provide reliable retransmission of data.
 This is intended to correct losses of corrupted link-layer frames due
 to channel noise over a space link. Packet losses in the DMC are due
 to corruption introducing non-recoverable errors in the frame. The
 DMC design uses point-to-point links and scheduling of applications
 in order, so that the link is dedicated to one application transfer
 at a time, meaning that packet loss cannot be due to congestion when
 applications compete for link capacity simultaneously. In other
 wireless environments that may be shared by many nodes and
 applications, allocation of channel resources to nodes becomes a MAC-
 layer function. Forward Error Coding (FEC) to get the most reliable
 transmission through a channel is best left near the physical layer
 so that it can be tailored for the channel. Use of FEC complements
 Saratoga's transport-level negative-acknowledgement approach that
 provides a reliable ARQ mechanism.

 Saratoga is scalable in that it is capable of efficiently
 transferring small or large files, by choosing a width of file offset
 descriptor appropriate for the filesize, and advertising accepted
 offset descriptor sizes. 16-bit, 32-bit, 64-bit and 128-bit
 descriptors can be selected, for maximum file sizes of 64KiB-1 (<64
 Kilobytes of disk space), 4GiB-1 (<4 Gigabytes), 16EiB-1 (<16
 Exabytes) and 256 EiEiB-1 (<256 Exa-exabytes) respectively.

 Earth imaging files currently transferred by Saratoga are mostly up
 to a few gigabytes in size. Some implementations do transfer more
 than 4 GiB in size, and so require offset descriptors larger than 32
 bits. We believe that supporting a 128-bit descriptor can satisfy
 many future Big Data needs, but we expect current implementations to
 only support up to 32-bit or 64-bit descriptors, depending on their
 application needs. The 16-bit descriptor is useful for small

Wood, et al. Expires May 23, 2017 [Page 4]

Internet-Draft Saratoga November 2016

 messages, including messages from 8-bit devices, and is always
 supported. The 128-bit descriptor can be used for moving very large
 files stored on a 128-bit filesystem, such as on OpenSolaris ZFS.

 As a UDP-based protocol, Saratoga can be used with either IPv4 or
 IPv6. Compatibility between Saratoga and the wide variety of links
 that can already carry IP traffic is assured.

 High link utilization is important during periods of limited
 connectivity. Given that Saratoga was originally developed for
 scheduled peer-to-peer communications over dedicated links in private
 networks, where each application has the entire link for the duration
 of its transfer, many Saratoga implementations deliberately lack any
 form of congestion control and send at line rate to maximise
 throughput and link utilisation in their limited, carefully
 controlled, environments. In accordance with UDP Guidelines
 [RFC5405] for protocols able to traverse the public Internet, newer
 implementations may perform TCP-Friendly Rate Control (TFRC)
 [RFC5348] or other congestion control mechanisms. This is described
 further in [I-D.wood-tsvwg-saratoga-congestion-control].

 Saratoga was originally implemented as outlined in [Jackson04], but
 the specification given here differs substantially, as we have added
 a number of capabilities while cleaning up the initial Saratoga
 specification. The original Saratoga code uses a version number of
 0, while code that implements this version of the protocol advertises
 a version number of 1. Further discussion of the history and
 development of Saratoga is given in [Wood07b].

 This document contains an overview of the transfer process and
 sessions using Saratoga in Section 2, followed by a formal definition
 of the packet types used by Saratoga in Section 4, and the details of
 the various protocol mechanisms in Section 6.

 Here, Saratoga session types are labelled with underscores around
 lowercase names (such as a "_get_" session), while Saratoga packet
 types are labelled in all capitals (such as a "REQUEST" packet) in
 order to distinguish between the two.

 The remainder of this specification uses 'file' as a shorthand for
 'binary object', which may be a file, or other type of data. This
 specification uses 'file' when also discussing streaming of data of
 indeterminate length. Saratoga uses unsigned integers in its fields,
 and does not use signed types.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119. [RFC2119]

https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc5348
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wood, et al. Expires May 23, 2017 [Page 5]

Internet-Draft Saratoga November 2016

2. Overview of Saratoga File Transfer

 Saratoga is a peer-to-peer protocol in the sense that multiple files
 may be transferred in both directions simultaneously between two
 communicating Saratoga peers, and there is not intended to be a
 strict client-to-server relationship.

 Saratoga nodes can act as simple file servers. Saratoga supports
 several types of operations on files including "pull" downloads,
 "push" uploads, directory listing, and deletion requests. Each
 operation is handled as a distinct "session" between the peers.

 Saratoga nodes MAY advertise their presence, capabilities, and
 desires by sending BEACON packets. These BEACONs are sent to either
 a reserved, unforwardable, multicast address when using IPv4, or a
 link-local all-Saratoga-peers multicast address when using IPv6. A
 BEACON might also be unicast to another known node as a sort of
 "keepalive". Saratoga nodes may dynamically discover other Saratoga
 nodes, either through listening for BEACONs, through pre-
 configuration, via some other trigger from a user, lower-layer
 protocol, or another process. The BEACON is useful in many
 situations, such as ad-hoc networking, as a simple, explicit,
 confirmation that another node is present; a BEACON is not required
 in order to begin a Saratoga session.. BEACONs have been used by the
 DMC satellites to indicate to ground stations that a link has become
 functional, a solid-state data recorder is online, and the software
 is ready to transfer any requested files.

 A Saratoga session begins with either a _get_, _put_, _getdir_, or
 delete session REQUEST packet corresponding to a desired download,
 upload, directory listing, or deletion operation. _put_ sessions MAY
 instead begin directly with METADATA and DATA, without an initial
 REQUEST/OKAY STATUS exchange; these rarer cases are known as 'blind
 puts'. The most common envisioned session is the _get_, which begins
 with a single Saratoga REQUEST packet sent from the peer wishing to
 receive the file, to the peer who currently has the file. If the
 session is rejected, then a brief STATUS packet that conveys
 rejection is generated. If the file-serving peer accepts the
 session, an OKAY STATUS can be optional; the peer can immediately
 generate and send a more useful descriptive METADATA packet, along
 with some number of DATA packets constituting the requested file.

 These DATA packets are finished by (and can intermittently include) a
 DATA packet with a flag bit set that demands the file-receiver send a
 reception report in the form of a STATUS packet. This DATA-driven
 cycle is shown in Figure 1. The STATUS packet can include
 'holestofill' Selective Negative Acknowledgement (SNACK) information
 listing spans of octets within the file that have not yet been

Wood, et al. Expires May 23, 2017 [Page 6]

Internet-Draft Saratoga November 2016

 received, as well as whether or not the METADATA packet was received,
 or an error code terminating the transfer session. Once the
 information in this STATUS packet is received, the file-sender can
 begin a cycle of selective retransmissions of missing DATA packets,
 until it sees a STATUS packet that acknowledges total reception of
 all file data.

 AT SENDER AT RECEIVER
 +---------+
 | START |
 +---------+
 | STATUS is processed when it arrives.
 ----->|<------------------------------\
 / | |
 | +---------+ |
 | | DATA |<-------------------- |
 | +---------+ \ |
	\ repeat until STATUS	
	\ request or until end	
	\ of DATA /	

+---------+ +---------+		
	DATA*	-------------------->
+---------+ STATUS requested +---------+ can include error code		
	regularly from receiver	
 \ / while sending DATA packets
 ------ * request flag set

 Figure 1: STATUS and DATA cycle

 In the example scenario in Figure 2, a _get_ request is granted. The
 reliable file delivery experiences loss of a single DATA packet due
 to channel-induced errors.

Wood, et al. Expires May 23, 2017 [Page 7]

Internet-Draft Saratoga November 2016

 File-Receiver File-Sender

 GET REQUEST --------------------->

 (indicating error/reject) <---- STATUS

 or

 <------- METADATA
 <---------------------- DATA #1
 STATUS -----------------> (voluntarily sent at start)
 (lost) <------ DATA #2
 <---------------------- DATA #3 (bit set
 requesting STATUS)
 STATUS ----------------->
 (indicating that range in DATA #2 was lost)
 <----------------------- DATA #2 (bit set
 requesting STATUS)
 STATUS ----------------->
 (complete file and METADATA received)

 Figure 2: Example _get_ session sequence

 A _put_ is similar to _get_, although once the OKAY STATUS is
 received, DATA is sent from the peer that originated the _put_
 request. A less common 'blind _put_' does not require an REQUEST and
 OKAY STATUS to be exchanged before sending DATA packets, and is
 efficient for long-delay or unidirectional links.

 A _getdir_ request proceeds similarly, though the DATA transfer
 contains a directory record with one or more directory entries,
 described later, rather than a given file's bytes. _getdir_ is the
 only request to also apply to directories, where one or more
 directory entries for individual files is received.

 The STATUS and DATA packets are allowed to be sent at any time within
 the scope of a session, in order for the file-sending node to
 optimize buffer management and transmission order. For example, if
 the file-receiver already has the first part of a file from a
 previous disrupted transfer, it may send a STATUS at the beginning of
 the session indicating that it has the first part of the file, and so
 only needs the last part of the file. Thus, efficient recovery from
 interrupted sessions between peers becomes possible, similar to
 ranged FTP and HTTP requests. (Note that METADATA with a checksum is
 useful to verify that the parts are of the same file and that the
 file is reassembled correctly.)

Wood, et al. Expires May 23, 2017 [Page 8]

Internet-Draft Saratoga November 2016

 The less common Saratoga 'blind _put_' session is initiated by the
 file-sender sending an optional METADATA packet followed by immediate
 DATA packets, without requiring a REQUEST or waiting for a STATUS
 response. This can be considered an "optimistic" mode of protocol
 operation, as it assumes the implicit session request will be
 granted. If the sender of a PUT request sees a STATUS packet
 indicating that the request was declined, it MUST stop sending any
 DATA packets within that session immediately. Since this type of
 put is open-loop for some period of time, it should not be used in
 scenarios where congestion is a valid concern; in these cases, the
 file-sender should wait on its METADATA to be acknowledged by a
 STATUS before sending DATA packets within the session.

 Figure 3 illustrates the sequence of packets in an example _put_
 session, beginning directly with METADATA and DATA, where the second
 DATA packet is lost. The METADATA SHOULD be sent at the beginning of
 the transfer, but MAY be sent (or resent) at any time. Other than
 the way that it is initiated, the mechanics of data delivery of a
 put session are similar to a _get_ session.

 File-Sender File-Receiver

 REQUEST ----------------->
 <------------------------ STATUS
 METADATA ---------------->
 DATA #1 ---------------->
 (transfer accepted) <---------- STATUS
 DATA #2 ---> (lost)
 DATA #3 (bit set ------------>
 requesting STATUS)
 (DATA #2 lost) <---------- STATUS
 DATA #2 (bit set ------------>
 requesting STATUS)
 (transfer complete) <---------- STATUS

 Figure 3: Example PUT session sequence

 In large-distance scenarios such as for deep space, the large
 propagation delays and round-trip times involved discourage use of
 ping-pong packet exchanges (such as TCP's SYN/ACK) for starting
 sessions, and unidirectional transfers via optimistic 'blind _put_s'
 are desirable. Blind _puts_, skipping the initial REQUEST/STATUS
 exchanvge, are the the only mode of transfer suitable for
 unidirectional links. Senders sending on unidirectional links SHOULD
 send a copy of the METADATA in advance of DATA packets, and MAY
 resend METADATA at intervals.

Wood, et al. Expires May 23, 2017 [Page 9]

Internet-Draft Saratoga November 2016

 The _delete_ sessions are simple single packet requests that trigger
 a STATUS packet with a status code that indicates whether the file
 was deleted or not. If the file is not able to be deleted for some
 reason, this reason can be conveyed in the Status field of the STATUS
 packet.

 A _get_ REQUEST packet that does not specify a filename (i.e. the
 request contains a zero-length File Path field) is specially defined
 to be a request for any chosen file that the peer wishes to send it.
 This 'blind _get_' allows a Saratoga peer to request any files that
 the other Saratoga peer has ready for it, without prior knowledge of
 the directory listing, and without requiring the ability to examine
 files or decode remote file names/paths for meaningful information
 such as final destination.

 If a file is larger than Saratoga can be expected to transfer during
 a time-limited contact, there are at least two feasible options:

 (1) The application can use proactive fragmentation to create
 multiple smaller-sized files. Saratoga can transfer some number of
 these smaller files fully during a contact.

 (2) To avoid file fragmentation, a Saratoga file-receiver can retain
 a partially-transferred file and request transfer of the unreceived
 bytes during a later contact. This uses a STATUS packet to make
 clear how much of the file has been successfully received and where
 transfer should be resumed from, and relies on use of METADATA to
 identify the file. On resumption of a transfer, the new METADATA
 (including file length, file timestamps, and possibly a file
 checksum) MUST match that of the previous METADATA in order to re-
 establish the transfer. Otherwise, the file-receiver MUST assume
 that the file has changed and purge the DATA payload received during
 previous contacts.

 Like the BEACON packets, a _put_ or a response to a _get_ MAY be sent
 to the dedicated IPv4 Saratoga multicast address (allocated to
 224.0.0.108) or the dedicated IPv6 link-local multicast address
 (allocated to FF02:0:0:0:0:0:0:6C) for multiple file-receivers on the
 link to hear. This is at the discretion of the file-sender, if it
 believes that there is interest from multiple receivers. In-progress
 DATA transfers MAY also be moved seamlessly from unicast to multicast
 if the file-sender learns during a transfer, from receipt of further
 unicast _get_ REQUEST packets, that multiple nodes are interested in
 the file. The associated METADATA packet is multicast when this
 transition takes place, and is then repeated periodically while the
 DATA stream is being sent, to inform newly-arrived listeners about
 the file being multicast. Acknowledgements MUST NOT be demanded by
 multicast DATA packets, to prevent ack implosion at the file-sender,

Wood, et al. Expires May 23, 2017 [Page 10]

Internet-Draft Saratoga November 2016

 and instead status SNACK information is aggregated and sent
 voluntarily by all file-receivers. File-receivers respond to
 multicast DATA with multicast STATUS packets. File-receivers SHOULD
 introduce a short random delay before sending a multicast STATUS
 packet, to prevent ack implosion after a channel-induced loss, and
 MUST listen for STATUS packets from others, to avoid duplicating fill
 requests. The file-sender SHOULD repeat any initial unicast portion
 of the transfer as multicast last of all, and may repeat and cycle
 through multicast of the file several times while file-receivers
 express interest via STATUS or _get_ packets. Once in multicast and
 with METADATA being repeated periodically, new file-receivers do not
 need to send individual REQUEST packets. If a transfer has been
 started using UDP-Lite and new receivers indicate UDP-only
 capability, multicast transfers MUST switch to using UDP to
 accommodate them.

3. Optional Parts of Saratoga

 Implementing support for some parts of Saratoga is optional. These
 parts are grouped into three sections, namely useful capabilities in
 Saratoga that are likely to be supported by implementations,
 congestion control that is needed in shared networks and across the
 public Internet, and functionality requiring other protocols that is
 less likely to be supported.

3.1. Optional but useful functions in Saratoga

 These are useful capabilities in Saratoga that implementations SHOULD
 support, but may not, depending on scenarios:

 - sending and parsing BEACONs.

 - sending METADATA. However, sending and receiving METADATA is
 considered extremely useful, is strongly recommended, and SHOULD be
 done. A METADATA that is received MUST be parsed.

 - streaming data, including real-time streaming of content of unknown
 length. This streaming can be unreliable (without resend requests)
 or reliable (with resend requests). Session protocols such as http
 expect reliable streaming. Although Saratoga data delivery is
 inherently one-way, where a stream of DATA packets elicits a stream
 of STATUS packets, bidirectional duplex communication can be
 established by using two Saratoga transfers flowing in opposite
 directions.

 - multicast DATA transfers, if judged useful for the environment in
 which Saratoga is deployed, when multiple receivers are participating
 and are receiving the same file or stream.

Wood, et al. Expires May 23, 2017 [Page 11]

Internet-Draft Saratoga November 2016

 - sending and parsing STATUS messages, which are expected for
 bidirectional communication, but cannot be sent on and are not
 required for sending over unidirectional links.

 - sending and responding to packet timestamps in DATA and STATUS
 packets. These timestamps are useful for streaming and for giving a
 file-sender an indication of path latency for rate control. There is
 no need for a file-receiver to understand the format used for these
 timestamps for it to be able to receive them from and reflect them
 back to the file-sender.

 - support for descriptor sizes greater than 16 bits, for handling
 small files, is optional, as is support for descriptor sizes greater
 than 32 bits, and support for descriptor sizes greater than 64 bits.
 If a descriptor size is implemented, all sizes below that size MUST
 be implemented.

3.2. Optional congestion control

 Saratoga can be implemented to perform congestion control at the
 sender, based on feedback from acknowledgement STATUS packets
 [I-D.wood-tsvwg-saratoga-congestion-control], or have the sender
 configured to use simple open-loop rate control to only use a fixed
 amount of link capacity. Congestion control is expected to be
 undesirable for many of Saratoga's use cases and expected
 environmental conditions in private networks, where sending as
 quickly as possible or simple rate control at a fixed output speed
 are considered useful.

 In accordance with the UDP Guidelines [RFC5405], congestion control
 MUST be supported if Saratoga is being used across the public
 Internet, and SHOULD be supported in environments where links are
 shared by traffic flows. Congestion control may not be supported
 across private, single-flow links engineered for performance:
 Saratoga's primary use case.

3.3. Optional functionality requiring other protocols

 The functionality listed here is useful in rare cases, but requires
 use of other, optional, protocols. This functionality MAY be
 supported by Saratoga implementations:

 - transfers permitting some errors in content delivered, using UDP-
 Lite [RFC3828]. These can be useful for decreasing delivery time
 over unreliable channels, especially for unidirectional links, or in
 decreasing computational overhead for the UDP Lite checksum. To be
 really usefuly, error tolerance requires that lower-layer frames

https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/rfc3828

Wood, et al. Expires May 23, 2017 [Page 12]

Internet-Draft Saratoga November 2016

 permit delivery of unreliable data, while header information is still
 checked to assure that e.g. destination information is reliable.

 If a file contains separate parts that require reliable transmission
 without errors or that can tolerate errors in delivered content,
 proactive fragmentation can be used to split the file into separate
 reliable and unreliable files that can be transferred separately,
 using UDP or UDP-Lite.

 If parts of a file require reliability but the rest can be sent by
 unreliable transfer, the file-sender can use its knowledge of the
 internal file structure and vary DATA packet size so that the
 reliable parts always start after the offset field and are covered by
 the UDP-Lite checksum.

 A file that permits unreliable delivery can be transferred onwards
 using UDP. If the current sender does not understand the internal
 file format to be able to decide what parts must be protected with
 payload checksum coverage, the current sender or receiver does not
 support UDP-Lite, or the current protocol stack only implements
 error-free frame delivery below the UDP layer, then the file MAY be
 delivered using UDP.

4. Packet Types

 Saratoga is defined for use with UDP over either IPv4 or IPv6
 [RFC0768]. UDP checksums, which are mandatory with IPv6, MUST be
 used with IPv4. Within either version of IP datagram, a Saratoga
 packet appears as a typical UDP header followed by an octet
 indicating how the remainder of the packet is to be interpreted:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | UDP source port | UDP destination port |
 +-+
 | UDP length | UDP checksum |
 +-+
 |Vers |Pckt Type| other Saratoga fields ... //
 +-+//

 Saratoga data transfers can also be carried out using UDP-Lite
 [RFC3828]. If Saratoga can be carried over UDP-Lite, the
 implementation MUST also support UDP. All packet types except DATA
 MUST be sent using UDP with checksums turned on. For reliable
 transfers, DATA packets are sent using UDP with checksums turned on.
 For files where unreliable transfer has been indicated as desired and
 possible, the sender MAY send DATA packets unreliably over UDP-Lite,

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc3828

Wood, et al. Expires May 23, 2017 [Page 13]

Internet-Draft Saratoga November 2016

 where UDP-Lite protects only the Saratoga headers and parts of the
 file that must be transmitted reliably.

 The three-bit Saratoga version field ("Ver") identifies the version
 of the Saratoga protocol that the packet conforms to. The value 001
 MUST be used in this field for implementations conforming to the
 specification in this document, which specifies version 1 of
 Saratoga. The value 000 was used in earlier implementations, prior
 to the formal specification and public submission of the protocol
 design, and is incompatible with version 001 in many respects.

 The five-bit Saratoga "Packet Type" field indicates how the remainder
 of the packet is intended to be decoded and processed:

 +---+----------+--+
 | # | Type | Use |
 +---+----------+--+
0	BEACON	Beacon packet indicating peer status.
1	REQUEST	Commands peer to start a transfer.
2	METADATA	Carries file transfer metadata.
3	DATA	Carries octets of file data.
4	STATUS	responds to REQUEST or DATA. Can signal list of
		unreceived data to sender during a transfer.
 +---+----------+--+

 Several of these packet types include a Flags field, for which only
 some of the bits have defined meanings and usages in this document.
 Other, undefined, bits may be reserved for future use. Following the
 principle of being conservative in what you send and liberal in what
 you accept, a packet sender MUST set any undefined bits to zero, and
 a packet recipient MUST NOT rely on these undefined bits being zero
 on reception.

 The specific formats for the different types of packets are given in
 this section. Some packet types contain file offset descriptor
 fields, which contain unsigned integers. The lengths of the offset
 descriptors are fixed within a transfer, but vary between file
 transfers. The size is set for each particular transfer, depending
 on the choice of offset descriptor width made in the METADATA packet,
 which in turn depends on the size of file being transferred.

 In this document, all of the packet structure figures illustrating a
 packet format assume 32-bit lengths for these offset descriptor
 fields, and indicate the transfer-dependent length of the fields by
 using a "(descriptor)" designation within the [field] in all packet
 diagrams. That is:

Wood, et al. Expires May 23, 2017 [Page 14]

Internet-Draft Saratoga November 2016

 The example 32-bit descriptors shown in all diagrams here

 +-+
 [(descriptor)]
 +-+

 are suitable for files of up to 4GiB - 1 octets in length, and may be
 replaced in a file transfer by descriptors using a different length,
 depending on the size of file to be transferred:

 16-bit descriptor for short files of up to 64KiB - 1 octets in size
 (MUST be supported)

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 [(descriptor)]
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 64-bit descriptor for longer files of up to 16EiB - 1 octets in size
 (optional)

 +-+
 [(descriptor) /
 +-+
 / (descriptor, continued)]
 +-+

 128-bit descriptor for very long files of up to 256 EiEiB - 1 octets
 in size (optional)

 +-+
 [(descriptor) /
 +-+
 / (descriptor, continued) /
 +-+
 / (descriptor, continued) /
 +-+
 / (descriptor, continued)]
 +-+

 Descriptors are used for the descriptor size less one octet, e.g.
 16-bit for files up to 64KB - 1 octets in size, before switching to
 the larger descriptor, e.g. using the 32-bit descriptor for a 64KB
 file and larger.

 For offset descriptors and types of content being transferred, the
 related flag bits in BEACON and REQUEST indicate capabilities, while
 in METADATA and DATA those flag bits are used slightly differently,
 to indicate the content being transferred.

Wood, et al. Expires May 23, 2017 [Page 15]

Internet-Draft Saratoga November 2016

 Saratoga packets are intended to fit within link MTUs to avoid the
 inefficiencies and overheads of lower-layer fragmentation. A
 Saratoga implementation does not itself perform any form of MTU
 discovery, but is assumed to be configured with knowledge of usable
 maximum IP MTUs for the link interfaces it uses.

4.1. BEACON

 BEACON packets may be multicast periodically by nodes willing to act
 as Saratoga peers, or unicast to individual peers to indicate
 properties for that peer. Some implementations have sent BEACONS
 every 100 milliseconds, but this rate is arbitrary, and should be
 chosen to be appropriate for the environment and implementation.

 The main purpose for sending BEACONs is to announce the presence of
 the node to potential peers (e.g. satellites, ground stations) to
 provide automatic service discovery, and also to confirm the activity
 or presence of the peer.

 The Endpoint Identifier (EID) in the BEACON serves to uniquely
 identify the Saratoga peer. Whenever the Saratoga peer begins using
 a new IP address, it SHOULD issue a BEACON on it and repeat the
 BEACON periodically, to enable listeners to associate the IP address
 with the EID and the peer.

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1| Type | Flags |
 +-+
 [[Available free space (optional)]]
 +-+
 | Endpoint identifier... //
 +-+//

 where

Wood, et al. Expires May 23, 2017 [Page 16]

Internet-Draft Saratoga November 2016

 +------------+--+
 | Field | Description |
 +------------+--+
Type	0
Flags	convey whether or not the peer is ready to
	send/receive, what the maximum supported file size
	range and descriptor is, and whether and how free
	space is indicated.
Available	This optional field can be used to indicate the
free space	current free space available for storage.
Endpoint	This MUST be used to uniquely identify the sending
identifier	Saratoga peer, or the administrative node that the
	BEACON-sender is associated with.
 +------------+--+

 The Flags field is used to provide some additional information about
 the peer. The first two octets of the Flags field is currently in
 use. The later octet is reserved for future use, and MUST be set to
 zero.

 The BEACON flags field, expanding a line of flag bits with
 descriptions of each flag, is as follows:

 BEACON Flags

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0|1| => Version Field: Saratoga version 1
 | |0|0|0|0|0| => Type field: BEACON Frame designation
 | |X|X| => Descriptor size
 | |O| => Reserved for future functionality
 | |X| => Supports streaming?
 | |X|X| => Sending files
 | |X|X| => Receiving files
 | |X| => Supports UDP Lite?
 | |X| => Includes free space size?
 | |X|X| => Freespace Descriptor
 +-+

 The two highest-order bits (bits 8 and 9 above) indicate the maximum
 supported file size parameters that the peer's Saratoga
 implementation permits. Other Saratoga packet types contain
 variable-length fields that convey file sizes or offsets into a file
 -- the file offset descriptors. These descriptors may be 16-bit,
 32-bit, 64-bit, or 128-bit in length, depending on the size of the
 file being transferred and/or the integer types supported by the
 sending peer.

Wood, et al. Expires May 23, 2017 [Page 17]

Internet-Draft Saratoga November 2016

 The indicated bounds for the possible values of these bits are
 summarized below:

 +-------+-------+-------------------------+-------------------+
 | Bit 8 | Bit 9 | Supported Field Sizes | Maximum File Size |
 +-------+-------+-------------------------+-------------------+
 | 0 | 0 | 16 bits | 2^16 - 1 octets. |
 | 0 | 1 | 16 or 32 bits | 2^32 - 1 octets. |
 | 1 | 0 | 16, 32, or 64 bits | 2^64 - 1 octets. |
 | 1 | 1 | 16, 32, 64, or 128 bits | 2^128 - 1 octets. |
 +-------+-------+-------------------------+-------------------+

 If a Saratoga peer advertises it is capable of receiving a certain
 size of file, then it MUST also be capable of receiving files sent
 using smaller descriptor values. This avoids overhead on small
 files, while increasing interoperability between peers.

 It is likely when sending unbounded streams that a larger offset
 descriptor field size will be preferred to minimise problems with
 offset sequence numbers wrapping. Protecting against sequence number
 wrapping is discussed in the STATUS section.

 +-----+-------+--------------------------+
 | Bit | Value | Meaning |
 +-----+-------+--------------------------+
 | 10 | 0 | Reserved for future use. |
 +-----+-------+--------------------------+

 Bit 10 is reserved for possible future use, and its use is not
 specified here. This bit MUST be set to zero by implementations
 conforming to this specification.

 +-----+-------+--------------------------------------+
 | Bit | Value | Meaning |
 +-----+-------+--------------------------------------+
 | 11 | 0 | not capable of supporting streaming. |
 | 11 | 1 | capable of supporting streaming. |
 +-----+-------+--------------------------------------+

 Bit 11 is used to indicate whether the sender is capable of sending
 and receiving continuous streams.

Wood, et al. Expires May 23, 2017 [Page 18]

Internet-Draft Saratoga November 2016

 +--------+--------+--+
 | Bit 12 | Bit 13 | Capability and willingness to send files |
 +--------+--------+--+
0	0	cannot send files at all.
0	1	invalid.
1	0	capable of sending, but not willing right now.
1	1	capable of and willing to send files.
 +--------+--------+--+

 +-------+-------+---+
 | Bit | Bit | Capability and willingness to receive files |
 | 14 | 15 | |
 +-------+-------+---+
0	0	cannot receive files at all.
0	1	invalid.
1	0	capable of receiving, but unwilling. Will reject
		METADATA or DATA packets.
1	1	capable of and willing to receive files.
 +-------+-------+---+

 Also in the Flags field, bits 12 and 14 act as capability bits, while
 bits 13 and 15 augment those flags with bits indicating current
 willingness to use the capability.

 Bits 12 and 13 deal with sending, while bits 14 and 15 deal with
 receiving. If bit 12 is set, then the peer has the capability to
 send files. If bit 14 is set, then the peer has the capability to
 receive files. Bits 13 and 15 indicate willingness to send and
 receive files, respectively.

 A peer that is able to act as a file-sender MUST set the capability
 bit 12 in all BEACONs that it sends, regardless of whether it is
 willing to send any particular files to a particular peer at a
 particular time. Bit 13 indicates the current presence of data to
 send and a willingness to send it in general, in order to augment the
 capability advertised by bit 12.

 If bit 14 is set, then the peer is capable of acting as a receiver,
 although it still might not currently be ready or willing to receive
 files (for instance, it may be low on free storage). This bit MUST
 be set in any BEACON packets sent by nodes capable of acting as file-
 receivers. Bit 15 augments this by expresses a current general
 willingness to receive and accept files.

Wood, et al. Expires May 23, 2017 [Page 19]

Internet-Draft Saratoga November 2016

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
 | 16 | 0 | supports DATA transfers over UDP only. |
 | 16 | 1 | supports DATA transfers over both UDP and UDP-Lite. |
 +-----+-------+---+

 Bit 16 is used to indicate whether the sender is capable of sending
 and receiving unreliable transfers via UDP-Lite.

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
17	0	available free space is not advertised in this
		BEACON.
17	1	available free space is advertised in this BEACON.
 +-----+-------+---+

 Bit 17 is used to indicate whether the sender includes an optional
 field in this BEACON packet that tells how much free space is
 available. If bit 17 is set, then bits 18 and 19 are used to
 indicate the size in bits of the optional free-space-size field. If
 bit 17 is not set, then bits 18 and 19 are zero.

 +--------+--------+--------------------------+
 | Bit 18 | Bit 19 | Size of free space field |
 +--------+--------+--------------------------+
 | 0 | 0 | 16 bits. |
 | 0 | 1 | 32 bits. |
 | 1 | 0 | 64 bits. |
 | 1 | 1 | 128 bits. |
 +--------+--------+--------------------------+

 The free space field size can vary as indicated by a varying-size
 field indicated in bits 18 and 19 of the flags field. Unlike other
 offset descriptor use where the value in the descriptor indicates a
 byte or octet position for retransmission, or gives a file size in
 bytes, this particular field indicates the available free space in
 KIBIBYTES (KiB, multiples of 1024 octets), rather than octets.
 Available free space is rounded down to the nearest KiB, so
 advertising zero means that less than 1KiB is free and available.
 Advertising the maximum size possible in the field means that more
 free space than that is available. While this field is intended to
 be scalable, it is expected that 32 bits (up to 4TiB) will be most
 common in use.

 A BEACON unicast to an individual peer MAY choose to indicate the
 free space available for use by that particular peer, and MAY

Wood, et al. Expires May 23, 2017 [Page 20]

Internet-Draft Saratoga November 2016

 indicate capabilities only available to that particular peer,
 overriding or supplementing the properties advertised to all local
 peers by multicast BEACONs.

 Any type of host identifier can be used in the endpoint identifier
 field, as long as it is a reasonably unique string within the range
 of operational deployment. This identifier MUST be encoded in UTF-8
 in the packet. This field encompasses the remainder of the packet.
 No terminating null byte is included.

4.2. REQUEST

 A REQUEST packet is an explicit command to perform either a _put_,
 get, _getdir_, or _delete_ session.

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1| Type | Flags | Request Type |
 +-+
 | Session Id |
 +-+
 | variable-length File Path ... /
 +-+
 / /
 +-+
 / | null byte | /
 +-+
 / variable-length Authentication Field (optional) |
 +-+

 where

 +---------+---+
 | Field | Description |
 +---------+---+
Type	1
Flags	provide additional information about the requested
	file/operation; see table below for definition.
Request	identifies the type of request being made; see table
Type	further below for request values.
Id	uniquely identifies the session between two peers.
File	the path of the requested file/directory following the
Path	rules described below.
 +---------+---+

Wood, et al. Expires May 23, 2017 [Page 21]

Internet-Draft Saratoga November 2016

 The Id that is used during sessions serves to uniquely associate a
 given packet with a particular sessions. This enables multiple
 simultaneous data transfer or request/status sessions between two
 peers, with each peer deciding how to multiplex and prioritise the
 parallel flows it sends. The Id for a session is selected by the
 initiator so as to not conflict with any other in-progress or recent
 sessions with the same host. This Id should be unique and generated
 using properties of the file, which will remain constant across a
 host reboot. The 3-tuple of both host identifiers and a carefully-
 generated session Id field can be used to uniquely index a particular
 session's state.

 The REQUEST flags field, expanding a line of flag bits with
 descriptions of each flag, is as follows:

 REQUEST Flags

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0|1| => Version field: Saratoga version 1
 | |0|0|0|0|1| => Type field: REQUEST Frame designation
 | |X|X| => Descriptor size
 | |O| => Reserved for future use.
 | |X| => Supports streaming?
 | |X| => Supports UDP Lite?
 | Request Type field <= |X|X|X|X|X|X|X|X|
 +-+

 In the Flags field, the bits labelled 8 and 9 in the figure above
 indicate the maximum supported file length fields that the peer can
 handle, and are interpreted exactly as the bits 8 and 9 in the BEACON
 packet described above. Bits 12 and 13, and 14 and 15, indicate
 capability and willingness to send and receive files, as described
 above. Making a _get_ request would require that the requester is
 capable and willing to receive files. The remaining defined
 individual bits are as summarised as follows:

Wood, et al. Expires May 23, 2017 [Page 22]

Internet-Draft Saratoga November 2016

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
10	0	Reserved for future use.
11	0	The requester cannot receive streams.
11	1	The requester is also able to receive streams.
16	0	The requester is able to receive DATA over UDP
		only.
16	1	The requester is also able to receive DATA over
		UDP-Lite.
 +-----+-------+---+

 The Request Type field is an octet that contains a value indicated
 the type of request being made. Possible values are:

 +-------+---+
 | Value | Meaning |
 +-------+---+
0	No action is to be taken; similar to a BEACON.
1	A _get_ session is requested. The File Path field holds
	the name of the file to be sent.
2	A _put_ session is requested. The File Path field
	suggests the name of the file that will be delivered only
	after an OK STATUS is received from the file receiver.
3	A _get_ session is requested, and once received
	successfully, the original copy should be deleted. The
	File Path field holds the name of the file to be sent.
	(This get+delete is known as a 'take'.)
4	A _put_ session is requested, and once sent successfully,
	the original copy will be deleted. The File Path field
	holds the name of the file to be sent. (This put+delete
	is known as a 'give'.)
5	A _delete_ session is requested, and the File Path field
	specifies the name of the file to be deleted.
6	A _getdir_ session is requested. The File Path field
	holds the name of the directory or file on which the
	directory record is created.
 +-------+---+

 The File Path portion of a _get_ packet is a null-terminated UTF-8
 encoded string [RFC3629] that represents the path and base file name
 on the file-sender of the file (or directory) that the file-receiver
 wishes to perform the _get_, _getdir_, or _delete_ operation on.
 Implementations SHOULD only send as many octets of File Path as are
 needed for carrying this string, although some implementations MAY
 choose to send a fixed-size File Path field in all REQUEST packets
 that is filled with null octets after the last UTF-8 encoded octet of
 the path. A maximum of 1024 octets for this field, and for the File

https://datatracker.ietf.org/doc/html/rfc3629

Wood, et al. Expires May 23, 2017 [Page 23]

Internet-Draft Saratoga November 2016

 Path fields in other Saratoga packet types, is used to limit the
 total packet size to within a single IPv6 minimum MTU (minus some
 padding for network layer headers), and thus avoid the need for
 fragmentation. The 1024-octet maximum applies after UTF-8 encoding
 and null termination.

 As in the standard Internet File Transfer Protocol (FTP) [RFC0959],
 for path separators, Saratoga allows the local naming convention on
 the peers to be used. There are security implications to processing
 these strings without some intelligent filtering and checking on the
 filesystem items they refer to. See also the Security Considerations
 section later within this document.

 If the File Path field is empty, i.e. is a null-terminated zero-
 length string one octet long, then this indicates that the file-
 receiver is ready to receive any file that the file-sender would like
 to send it, rather than requesting a particular file. This allows
 the file-sender to determine the order and selection of files that it
 would like to forward to the receiver in more of a "push" manner. Of
 course, file retrieval could also follow a "pull" manner, with the
 file-receiving host requesting specific files from the file-sender.
 This may be desirable at times if the file-receiver is low on storage
 space, or other resources. The file-receiver could also use the
 Saratoga _getdir_ session results in order to select small files, or
 make other optimizations, such as using its local knowledge of
 contact times to pick files of a size likely to be able to be
 delivered completely. File transfer through pushing sender-selected
 files implements delivery prioritization decisions made solely at the
 Saratoga file-sending node. File transfer through pulling specific
 receiver-selected files implements prioritization involving more
 participation from the Saratoga file-receiver. This is how Saratoga
 implements Quality of Service (QoS).

 The null-terminated File Path string MAY be followed by an optional
 Authentication Field that can be used to validate the REQUEST packet.
 Any value in the Authentication Field is the result of a computation
 of packet contents that SHOULD include, at a minimum, source and
 destination IP addresses and port numbers and packet length in a
 'pseudo-header', as well as the content of all Saratoga fields from
 Version to File Path, excluding the predictable null-termination
 octet. This Authentication Field can be used to allow the REQUEST
 receiver to discriminate between other peers, and permit and deny
 various REQUEST actions as appropriate. The format of this field is
 unspecified for local use.

 Combined get+delete (take) and put+delete (give) requests should only
 have the delete carried out once the deleting peer is certain that
 the file-receiver has a good copy of the file. This may require the

https://datatracker.ietf.org/doc/html/rfc0959

Wood, et al. Expires May 23, 2017 [Page 24]

Internet-Draft Saratoga November 2016

 file receiver to verify checksums before sending a final STATUS
 message acknowledging successful delivery of the final DATA segment,
 or aborting the transfer if the checksum fails. If the transfer
 fails and an error STATUS is sent for any reason, the file should not
 be deleted.

 REQUEST packets may be sent multicast, to learn about all listening
 nodes. A multicast _get_ request for a file that elicits multiple
 METADATA or DATA responses should be followed by unicast STATUS
 packets with status errors cancelling all but one of the proposed
 transfers. File timestamps in the Directory Entry can be used to
 select the most recent version of an offered file, and the host to
 fetch it from.

 If the receiver already has the file at the expected file path and is
 requesting an update to that file, REQUEST can be sent after a
 METADATA advertising that file, to allow the sender to determine
 whether a replacement for the file should be sent.

 Delete requests are ignored for files currently being transferred.

4.3. METADATA

 METADATA packets are sent as part of a data transfer session (_get_,
 getdir, and _put_). A METADATA packet says how large the file is
 and what its name is, as well as what size of file offset descriptor
 is chosen for the session. METADATA packets are optional, but SHOULD
 be sent. A METADATA packet that is received MUST be parsed. A
 METADATA packet is normally sent at the start of a DATA transfer, but
 can be repeated throughout the transfer. Sending METADATA at the
 start if using checksums allows for incremental checksum calculation
 by the receiver, and is a good idea.

Wood, et al. Expires May 23, 2017 [Page 25]

Internet-Draft Saratoga November 2016

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1| Type | Flags |Sumleng|Sumtype|
 +-+
 | Session Id |
 +-+
 | /
 / /
 / example error-detection checksum (128-bit MD5 shown) /
 / /
 / |
 +-+
 | /
 / single Directory Entry describing file /
 / (variable length) /
 / //
 +-//

 where

 +-----------+---+
 | Field | Description |
 +-----------+---+
Type	2
Flags	indicate additional boolean metadata about a file.
Sumleng	indicates the length of a checksum, as a multiple of
	32 bits.
Sumtype	indicates whether a checksum is present after the Id,
	and what type it is.
Id	identifies the session that this packet describes.
Checksum	an example included checksum covering file contents.
Directory	describes file system information about the file,
Entry	including file length, file timestamps, etc.; the
	format is specified in Section 5.
 +-----------+---+

 The first octet of the Flags field is currently specified for use.
 The later two octets are reserved for future use, and MUST be set to
 zero.

 The METADATA flags field is as follows, expanding a line of flag bits
 with explanations of each field:

Wood, et al. Expires May 23, 2017 [Page 26]

Internet-Draft Saratoga November 2016

 METADATA Flags

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0|1| => Version Field: Saratoga version 1
 | |0|0|0|1|0| => Type field: METADATA Frame designation
 | |X|X| => Descriptor
 | |X|X| => File/stream/dir record
 | |X| => Transfer in progress?
 | |X| => UDP Lite permitted?
 | Checksum length in no. of 32-bit words <=|X|X|X|X|
 | Error detection checksum type <=|X|X|X|X|
 +-+

 In the Flags field, the bits labelled 8 and 9 in the figure above
 indicate the exact size of the offset descriptor fields used in this
 particular packet and are interpreted exactly as the bits 8 and 9 in
 the BEACON packet described above. The value of these bits
 determines the size of the File Length field in the current packet,
 as well as indicating the size of the offset fields used in DATA and
 STATUS packets within the session that will follow this packet.

 +-------+-------+---+
 | Bit | Bit | Type of transfer |
 | 10 | 11 | |
 +-------+-------+---+
0	0	a file is being sent.
0	1	the file being sent should be interpreted as a
		Directory Record.
1	0	Reserved for future use.
1	1	an indefinite-length stream is being sent.
 +-------+-------+---+

 Also inside the Flags field, bits 10 and 11 indicate what is being
 transferred - a file, special directory record file that contains one
 or more directory entries, or stream. The value 01 indicates that
 the METADATA and DATA packets are being generated in response to a
 getdir REQUEST, and that the assembled DATA contents should be
 interpreted as a Directory Record containing directory entries, as
 defined in Section 5.

Wood, et al. Expires May 23, 2017 [Page 27]

Internet-Draft Saratoga November 2016

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
12	0	This transfer is in progress.
12	1	This transfer is no longer in progress, and has
		been terminated.
 +-----+-------+---+

 Bit 12 indicates whether the transfer is in progress, or has been
 terminated by the sender. It is normally set to 1 only when METADATA
 is resent to indicate that a stream transfer has been ended.

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
13	0	This file's content MUST be delivered reliably
		without errors using UDP.
13	1	This file's content MAY be delivered unreliably, or
		partly unreliably, where errors are tolerated,
		using UDP-Lite.
 +-----+-------+---+

 Bit 13 indicates whether the file must be sent reliably or can be
 sent at least partly unreliably, using UDP-Lite. This flag SHOULD
 only be set if the originator of the file knows that at least some of
 the file content is suitable for sending unreliably and is robust to
 errors. This flag reflects a property of the file itself. This flag
 may still be set if the immediate file-receiver is only capable of
 UDP delivery, on the assumption that this preference will be
 preserved for later transfers where UDP-Lite transfers may be taken
 advantage of by senders with knowledge of the internal file
 structure. The file-sender may know that the receiver is capable of
 handling UDP-Lite, either from a _get_ REQUEST, from exchange of
 BEACONs, or a-priori.

 The high four bits of the Flags field, bits 28-31, are used to
 indicate if an optional error-detection checksum has been included in
 the METADATA for the file to be transferred. Here, bits 0000
 indicate that no checksum is present, with the implicit assumption
 that the application will do its own end-to-end check. Other values
 indicate the type of checksum to use. The choice of checksum depends
 on the available computing power and the length of the file to be
 checksummed. Longer files require stronger checksums to ensure
 error-free delivery. The checksum of the file to be transferred is
 carried as shown, with a fixed-length field before the varying-length
 File Length and File Name information fields.

 Assigned values for the checksum type field are:

Wood, et al. Expires May 23, 2017 [Page 28]

Internet-Draft Saratoga November 2016

 +-----------+---+
 | Value | Use |
 | (0-15) | |
 +-----------+---+
0	No checksum is provided.
1	32-bit CRC32 checksum, suitable for small files.
2	128-bit MD5 checksum, suitable for larger files.
3	160-bit SHA-1 checksum, suitable for larger files but
	slower to process than MD5.
 +-----------+---+

 The length of an optional checksum cannot be inferred from the
 checksum type field, particularly for unknown checksum types. The
 next-highest four bits of the 32-bit word holding the Flags, bits
 24-27, indicate the length of the checksum bit field, as a multiple
 of 32 bits.

 +----------------------+-------------------------------------+
 | Example Value (0-15) | Use |
 +----------------------+-------------------------------------+
 | 0 | No checksum is provided. |
 | 1 | 32-bit checksum field, e.g. CRC32. |
 | 4 | 128-bit checksum field, e.g. MD5. |
 | 5 | 160-bit checksum field, e.g. SHA-1. |
 +----------------------+-------------------------------------+

 For a 32-bit CRC, the length field holds 1 and the type field holds
 1. For MD5, the length field holds 4 and the type field holds 2.
 For SHA-1, the length field holds 5 and the type field holds 3.

 It is expected that higher values will be allocated to new and
 stronger checksums able to better protect larger files. These
 checksums can be expected to be longer, with larger checksum length
 fields.

 A checksum SHOULD be included for files being transferred. The
 checksum SHOULD be as strong as possible. Streaming of an
 indefinite-length stream MUST set the checksum type field to zero.

 It is expected that a minimum of the MD5 checksum will be used,
 unless the Saratoga implementation is used exclusively for small
 transfers at the low end of the 16-bit file descriptor range, such as
 on low-performing hardware, where the weaker CRC-32c checksum can
 suffice.

 The CRC32 checksum is computed as described for the CRC-32c algorithm
 given in [RFC3309].

https://datatracker.ietf.org/doc/html/rfc3309

Wood, et al. Expires May 23, 2017 [Page 29]

Internet-Draft Saratoga November 2016

 The MD5 Sum field is generated via the MD5 algorithm [RFC1321],
 computed over the entire contents of the file being transferred. The
 file-receiver can compute the MD5 result over the reassembled
 Saratoga DATA packet contents, and compare this to the METADATA's MD5
 Sum field in order to gain confidence that there were no undetected
 protocol errors or UDP checksum weaknesses encountered during the
 transfer. Although MD5 is known to be less than optimal for security
 uses, it remains excellent for non-security use in error detection
 (as is done here in Saratoga), and has better performance
 implications than cryptographically-stronger alternatives given the
 limited available processing of many use cases [RFC6151]. MD5 use
 here has similar properties to an Ethernet frame CRC for error
 detection.

 Checksums may be privately keyed for local use, to allow transmission
 of authenticated or encrypted files delivered in DATA packets. This
 has limitations, discussed further in Section 8 at end.

 Use of the checksum to ensure that a file has been correctly relayed
 to the receiving node is important. A provided checksum MUST be
 checked against the received data file. If checksum verification
 fails, either due to corruption or due to the receiving node not
 having the right key for a keyed checksum), the file MUST be
 discarded. If the file is to be relayed onwards later to another
 Saratoga peer, the metadata, including the checksum, MUST be retained
 with the file and SHOULD be retransmitted onwards unchanged with the
 file for end-to-end coverage. If it is necessary to recompute the
 checksum or encrypted data for the new peer, either because a
 different key is in use or the existing checksum algorithm is not
 supported, the new checksum MUST be computed before the old checksum
 is verified, to ensure overlapping checksum coverage and detect
 errors introduced in file storage.

 METADATA can be used as an indication to update copies of files. If
 the METADATA is in response to a _get_ REQUEST including a file
 record, and the record information for the held file matches what the
 requester already has, as has been indicated by a previously-received
 METADATA advertisement from the requester, then only the METADATA is
 sent repeating this information and verifying that the file is up to
 date. If the record information does not match and a newer file can
 be supplied, the METADATA begins a transfer with following DATA
 packets to update the file.

4.4. DATA

 A series of DATA packets form the main part of a data transfer
 session (_get_, _put_, or _getdir_). The payloads constitute the
 actual file data being transferred.

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc6151

Wood, et al. Expires May 23, 2017 [Page 30]

Internet-Draft Saratoga November 2016

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1| Type | Flags |
 +-+
 | Session Id |
 +-+
 | /
 / Timestamp/nonce information (optional) /
 / /
 / |
 +-+
 [Offset (descriptor)]
 +-+
 | Payload data... //
 +-//

 where

 +-----------------+---+
 | Field | Description |
 +-----------------+---+
Type	3
Flags	are described below.
Id	identifies the session to which this packet
	belongs.
Timestamp/nonce	is an optional 128-bit field providing timing
	or identification information unique to this
	packet. See Appendix A for details.
Offset	the offset in octets to the location where the
	first byte of this packet's payload is to be
	written.
 +-----------------+---+

 The DATA packet has a minimum size of ten octets, using sixteen-bit
 descriptors and no timestamps.

 DATA packets are normally checked by the UDP checksum to prevent
 errors in either the header or the payload content. However, for
 transfers that can tolerate content errors, DATA packets MAY be sent
 using UDP-Lite. If UDP-Lite is used, the file-sender must know that
 the file-receiver is capable of handling UDP-Lite, and the file
 contents to be transferred should be resilient to errors. The UDP-
 Lite checksum MUST protect the Saratoga headers, up to and including
 the offset descriptor, and MAY protect more of each packet's payload,

Wood, et al. Expires May 23, 2017 [Page 31]

Internet-Draft Saratoga November 2016

 depending on the file-sender's knowledge of the internal structure of
 the file and the file's reliability requirements.

 The DATA flags field is as follows, expanding a line of flag bits
 with explanations of each field:

 DATA Flags

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0|1| => Version Field: Saratoga version 1
 | |0|0|0|1|1| => Type field: DATA Frame designation
 | |X|X| => Descriptor
 | |X|X| => File/stream/dir record
 | |X| => Includes timestamp?
 | |X| => STATUS requested
 | |X| => End of Data (EOD) set
 +-+

 +-------+-------+--+
 | Bit 8 | Bit 9 | Type of transfer |
 +-------+-------+--+
0	0	16-bit descriptors are in use in this transfer.
0	1	32-bit descriptors are in use in this transfer.
1	0	64-bit descriptors are in use in this transfer.
1	1	128-bit descriptors are in use in this transfer.
 +-------+-------+--+

 Flag bits 8 and 9 are set to indicate the size of the offset
 descriptor as described for BEACON and METADATA packets, so that each
 DATA packet is self-describing. This allows the DATA packet to be
 used to construct a file even when an initial METADATA is lost and
 must be resent. The flag values for bits 8 and 9 MUST be the same as
 indicated in any expected METADATA packet.

 +-------+-------+---+
 | Bit | Bit | Type of transfer |
 | 10 | 11 | |
 +-------+-------+---+
0	0	a file is being sent.
0	1	the file being sent should be interpreted as a
		directory record.
1	0	Reserved for future use.
1	1	an indefinite-length stream is being sent.
 +-------+-------+---+

Wood, et al. Expires May 23, 2017 [Page 32]

Internet-Draft Saratoga November 2016

 Also inside the Flags field, bits 10 and 11 indicate what is being
 transferred - a file, special file that contains a Directory Records,
 or stream. The value 01 indicates that the METADATA and DATA packets
 are being generated in response to a _getdir_ REQUEST, and that the
 assembled DATA contents should be interpreted as a Directory Record
 containing directory entries, as defined in Section 5. The flag
 values for bits 10 and 11 MUST be the same as indicated in the
 initial METADATA packet.

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
12	0	This packet does not include an optional
		timestamp/nonce field.
12	1	This packet includes an optional timestamp/nonce
		field.
 +-----+-------+---+

 Flag bit 12 indicates that an optional packet timestamp/nonce is
 carried in the packet before the offset field. This packet
 timestamp/nonce field is always sixteen octets (128 bits) long.
 Timestamps can be useful to the sender even when the receiver does
 not understand them, as the receiver can simply echo any provided
 timestamps back, as specified for STATUS packets, to allow the sender
 to monitor flow conditions. Packet timestamps are particularly
 useful when streaming. Packet timestamps are discussed further in

Appendix A.

 +-----+-------+-------------------------------+
 | Bit | Value | Meaning |
 +-----+-------+-------------------------------+
 | 15 | 0 | No response is requested. |
 | 15 | 1 | A STATUS packet is requested. |
 +-----+-------+-------------------------------+

 Within the Flags field, if bit 15 of the packet is set, the file-
 receiver is expected to immediately generate a STATUS packet to
 provide the file-sender with up-to-date information regarding the
 status of the file transfer. This flag is set carefully and rarely.
 This flag may be set periodically, but infrequently. Asymmetric
 links with constrained backchannels can only carry a limited amount
 of STATUS packets before ack congestion becomes a problem. This flag
 SHOULD NOT be set if an unreliable stream is being transferred, or if
 multicast is in use. This flag SHOULD be set periodically for
 reliable file transfers, or reliable streaming. The file-receiver
 MUST respond to the flag by generating a STATUS packet, unless it
 knows that doing so will lead to local congestion, in which case it
 may choose to send a later voluntary STATUS message. Voluntary

Wood, et al. Expires May 23, 2017 [Page 33]

Internet-Draft Saratoga November 2016

 STATUS packets MAY be sent if a request for one has not been made
 within an appropriate time.

 +-----+-------+----------------------------------+
 | Bit | Value | Meaning |
 +-----+-------+----------------------------------+
 | 16 | 0 | Normal use. |
 | 16 | 1 | The EOD End of Data flag is set. |
 +-----+-------+----------------------------------+

 The End of Data flag is set in DATA packets carrying the last byte of
 a transfer. This is particularly useful for streams and for the rare
 Saratoga implementations that do not send or receive METADATA.

 Immediately following the DATA header is the payload, which consumes
 the remainder of the packet and whose length is implicitly defined by
 the end of the packet. The payload octets are directly formed from
 the continuous octets starting at the specified Offset in the file
 being transferred. No special coding is performed. A zero-octet
 payload length is allowable, and a single DATA packet indicating zero
 payload, consisting only of a header with the EOD flag set, may be
 useful to simply elicit a STATUS response from the receiver.

 The length of the Offset fields used within all DATA packets for a
 given session MUST be consistent with the length indicated by bits 8
 and 9 of any accompanying METADATA packet. If the METADATA packet
 has not yet been received, a file-receiver that supports METADATA
 MUST indicate that it has not been received via a STATUS packet, and
 MAY choose to enqueue received DATA packets for later processing
 after the METADATA arrives.

4.5. STATUS

 The STATUS packet type is the single acknowledgement method that is
 used for feedback from a Saratoga receiver to a Saratoga sender to
 indicate session progress, both as a response to a REQUEST, and as a
 response to a DATA packet when demanded or volunteered.

 When responding to a DATA packet, the STATUS packet MAY, as needed,
 include selective acknowledgement (SNACK) 'hole' information to
 enable transmission (usually re-transmission) of specific sets of
 octets within the current session (called "holes"). This
 'holestofill' information can be used to clean up losses (or indicate
 no losses) at the end of, or during, a session, or to efficiently
 resume a transfer that was interrupted in a previous session.

Wood, et al. Expires May 23, 2017 [Page 34]

Internet-Draft Saratoga November 2016

 Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1| Type | Flags | Status |
 +-+
 | Session Id |
 +-+
 | /
 / Timestamp/nonce information (optional) /
 / /
 / |
 +-+
 [Progress Indicator (descriptor)]
 +-+
 [In-Response-To (descriptor)]
 +-+
 | (possibly, several Hole fields) /
 / ... /
 +-+

 where

Wood, et al. Expires May 23, 2017 [Page 35]

Internet-Draft Saratoga November 2016

 +----------------+--+
 | Field | Description |
 +----------------+--+
Type	4
Flags	are defined below.
Id	identifies the session that this packet belongs
	to.
Status	a value of 00 indicates the transfer is
	sucessfully proceeding. All other values are
	errors terminating the transfer, explained
	below.
Zero-Pad	an octet fixed at 00 to allow later fields to be
	conveniently aligned for processing.
Timestamp	an optional fixed 128-bit field, that is only
(optional)	present and used to return a packet timestamp if
	the timestamp flag is set. If the STATUS packet
	is voluntary and the voluntary flag is set, this
	should repeat the timestamp of the DATA packet
	containing the highest offset seen. If the
	STATUS packet is in response to a mandatory
	request, this will repeat the timestamp of the
	requesting DATA packet. The file-sender may use
	these timestamps to estimate latency. Packet
	timestamps are particularly useful when
	streaming. There are special considerations for
	streaming, discussed further below, to protect
	against the ambiguity of wrapped offset
	descriptor sequence numbers. Packet timestamps
	are discussed further in Appendix A.
Progress	the offset of the lowest-numbered octet of the
Indicator	file not yet received, and expected.
(descriptor)	
In-Response-To	the offset of the octet following the DATA
(descriptor)	packet that generated this STATUS packet, or the
	offset of the next expected octet following the
	highest DATA packet seen if this STATUS is
	generated voluntarily and the voluntary flag is
	set.
Holes	indications of offset ranges of missing data,
	defined below.
 +----------------+--+

 The STATUS packet has a minimum size of twelve octets, using sixteen-
 bit descriptors, a progress indicator but no Hole fields, and no
 timestamps. The progress indicator is always zero when responding to
 requests that may initiate a transfer.

Wood, et al. Expires May 23, 2017 [Page 36]

Internet-Draft Saratoga November 2016

 The Id field is needed to associate the STATUS packet with the
 session that it refers to.

 The Progress Indicator and In-Response-To fields mark the 'left edge'
 and 'right edge' of the incomplete working area where holes are being
 filled in. If there are no holes, these fields will hold the same
 value. At the start of a transfer, both fields begin by expecting
 octet zero. When a transfer has completed successfully, these fields
 will contain the length of the file.

 The STATUS flags field is as follows, expanding a line of flag bits
 with explanations of each field:

 STATUS Flags

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0|1| => Version Field: Saratoga version 1
 | |0|0|1|0|0| => Type field: STATUS Frame designation
 | |X|X| => Descriptor
 | |X| => Timestamp included?
 | |X| => METADATA received?
 | |X| => Hole information complete?
 | |X| => Voluntary STATUS message?
 | Status code <= |X|X|X|X|X|X|X|X|
 +-+

 Flags bits 8 and 9 are set to indicate the size of the offset
 descriptor as described for BEACON and METADATA packets, so that each
 STATUS packet is self-describing. The flag values here MUST be the
 same as indicated in the initial METADATA and DATA packets.

 Other bits in the Flags field are defined as:

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
 | 12 | 0 | This packet does not include a timestamp field. |
 | 12 | 1 | This packet includes an optional timestamp field. |
 +-----+-------+---+

 Flag bit 12 indicates that an optional sixteen-byte packet timestamp/
 nonce field is carried in the packet before the Progress Indicator
 descriptor, as discussed for the DATA packet format. Packet
 timestamps are discussed further in Appendix A.

Wood, et al. Expires May 23, 2017 [Page 37]

Internet-Draft Saratoga November 2016

 +-----+-------+--+
 | Bit | Value | Meaning |
 +-----+-------+--+
 | 13 | 0 | file's METADATA has been received or is ignored. |
 | 13 | 1 | file's METADATA has not been received. |
 +-----+-------+--+

 If bit 13 of a STATUS packet has been set to indicate that the
 METADATA has not yet been received, then any METADATA SHOULD be
 resent. This flag should normally be clear.

 A receiver SHOULD tolerate lost METADATA that is later resent, but
 MAY insist on receiving METADATA at the start of a transfer. This is
 done by responding to early DATA packets with a voluntary STATUS
 packet that sets this flag bit, reports a status error code 10, sets
 the Progress Indicator field to zero, and does not include
 HOLESTOFILL information.

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
14	0	this packet contains the complete current set of
		holes at the file-receiver.
14	1	this packet contains incomplete hole-state; holes
		shown in this packet should supplement other
		incomplete hole-state known to the file-sender.
 +-----+-------+---+

 Bit 14 of a 'holestofill' STATUS packet is only set when there are
 too many holes to fit within a single STATUS packet due to MTU
 limitations. This causes the hole list to be spread out over
 multiple STATUS packets, each of which conveys distinct sets of
 holes. This could occur, for instance, in a large file _put_
 scenario with a long-delay feedback loop and poor physical layer
 conditions. These multiple STATUS packets will share In-Response-To
 information. When losses are light and/or hole reporting and repair
 is relatively frequent, all holes should easily fit within a single
 STATUS packet, and this flag will be clear. Bit 14 should normally
 be clear.

 In some rare cases of high loss, there may be too many holes in the
 received data to convey within a single STATUS's size, which is
 limited by the link MTU size. In this case, multiple STATUS packets
 may be generated, and Flags bit 14 should be set on each STATUS
 packet accordingly, to indicate that each packet holds incomplete
 results. The complete group of STATUS packets, each containing
 incomplete information, will share common In-Response-To information
 to distinguish them from any earlier groups.

Wood, et al. Expires May 23, 2017 [Page 38]

Internet-Draft Saratoga November 2016

 +-----+-------+---+
 | Bit | Value | Meaning |
 +-----+-------+---+
 | 15 | 0 | This STATUS was requested by the file-sender. |
 | 15 | 1 | This STATUS is sent voluntarily. |
 +-----+-------+---+

 Flag bit 15 indicates whether the STATUS is sent voluntarily or due
 to a request by the sender. It affects content of the In-Response-To
 timestamp and descriptor fields.

 In the case of a transfer proceeding normally, immediately following
 the STATUS packet header shown above, is a set of "Hole" definitions
 indicating any lost packets. Each Hole definition is a pair of
 unsigned integers. For a 32-bit offset descriptor, each Hole
 definition consists of two four-octet unsigned integers:

 Hole Definition Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 [offset to start of hole (descriptor)]
 +-+
 [offset to end of hole (descriptor)]
 +-+

 The start of the hole means the offset of the first unreceived byte
 in that hole. The end of the hole means the last unreceived byte in
 that hole.

 For 16-bit descriptors, each Hole definition holds two two-octet
 unsigned integers, while Hole definitions for 64- and 128-bit
 descriptors require two eight- and two sixteen-octet unsigned
 integers respectively.

 Holes MUST be listed in order, lowest values first.

 Since each Hole definition takes up eight octets when 32-bit offset
 lengths are used, we expect that well over 100 such definitions can
 fit in a single STATUS packet, given the IPv6 minimum MTU. (There
 may be cases where there is a very constrained backchannel compared
 to the forward channel streaming DATA packets. For these cases,
 implementations might deliberately request large holes that span a
 number of smaller holes and intermediate areas where DATA has already
 been received, so that previously-received DATA is deliberately
 resent. This aggregation of separate holes keeps the backchannel
 STATUS packet size down to avoid backchannel congestion.)

Wood, et al. Expires May 23, 2017 [Page 39]

Internet-Draft Saratoga November 2016

 A 'voluntary' STATUS can be sent at the start of each session. This
 indicates that the receiver is ready to receive the file, or
 indicates an error or rejection code, described below. A STATUS
 indicating a successfully established transfer has a Progress
 Indicator of zero and an In-Response-To field of zero.

 On receiving a STATUS packet, the sender SHOULD prioritize sending
 the necessary data to fill those holes, in order to advance the
 Progress Indicator at the receiver.

4.5.1. Errors and aborting sessions

 In the case of an error causing a session to be aborted, the Status
 field holds a code that can be used to explain the cause of the error
 to the other peer. A zero value indicates that there have been no
 significant errors (this is called a "success STATUS" within this
 document), while any non-zero value means the session should be
 aborted (this is called a "failure STATUS").

Wood, et al. Expires May 23, 2017 [Page 40]

Internet-Draft Saratoga November 2016

 +----------------+--+
 | Error Code | Meaning |
 | Status Value | |
 +----------------+--+
0x00	Success, No Errors.
0x01	Unspecified Error.
0x02	Unable to send file due to resource constraints.
0x03	Unable to receive file due to resource
	constraints.
0x04	File not found.
0x05	Access Denied.
0x06	Unknown Id field for session.
0x07	Did not delete file.
0x08	File length is longer than receiver can support.
0x09	File offset descriptors do not match expected
	use or file length.
0x0A	Unsupported Saratoga packet type received.
0x0B	Unsupported Request Type received.
0x0C	REQUEST is now terminated due to an internal
	timeout.
0x0D	DATA flag bits describing transfer have changed
	unexpectedly.
0x0E	Receiver is no longer interested in receiving
	this file.
0x0F	File is in use.
0x10	METADATA required before transfer can be
	accepted.
0x11	A STATUS error message has been received
	unexpectedly, so REQUEST is terminated.
 +----------------+--+

 The recipient of a failure STATUS MUST NOT try to process the
 Progress Indicator, In-Response-To, or Hole offsets, because, in some
 types of error conditions, the packet's sender may not have any way
 of setting them to the right length for the session.

5. The Directory Entry

 Directory Entries have two uses within Saratoga:

 1. Within a METADATA packet, a Directory Entry is used to give
 information about the file being transferred, in order to
 facilitate proper reassembly of the file and to help the file-
 receiver understand how recently the file may have been created
 or modified.

 2. When a peer requests a directory record via a _getdir_ REQUEST,
 the other peer generates a file containing a series of one or

Wood, et al. Expires May 23, 2017 [Page 41]

Internet-Draft Saratoga November 2016

 more concatenated Directory Entry records, and transfers this
 file as it would transfer the response to a normal _get_ REQUEST,
 sending the records together within DATA packets. This file may
 be either temporary or within-memory and not actually a part of
 the host's file system itself.

 Directory Entry Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |1| Properties [Size (descriptor)]
 +-+
 | Mtime file modification time (using year 2000 epoch) |
 +-+
 | Ctime file creation time (using year 2000 epoch) |
 +-+
 | /
 + /
 / /
 / File Path (max 1024 octets,variable length) /
 / ... //
 +-//

 where

Wood, et al. Expires May 23, 2017 [Page 42]

Internet-Draft Saratoga November 2016

 +------------+--+
 | field | description |
 +------------+--+
Properties	if set, bit 7 of this field indicates that the entry
	corresponds to a directory. Bit 6, if set, indicates
	that the file is "special". A special file may not
	be directly transferable as it corresponds to a
	symbolic link, a named pipe, a device node, or some
	other "special" filesystem object. A file-sender
	may simply choose not to include these types of
	files in the results of a _getdir_ request. Bits 8
	and 9 are flags that indicate the width of the
	following descriptor field that gives file size.
Size	the size of each file or directory in octets. This
	is a descriptor, varying as needed in each entry for
	the size of the file. For convenience in the figure,
	it is shown here as a 16-bit descriptor for a small
	file.
Mtime	a timestamp showing when the file or directory was
	modified.
Ctime	a timestamp of the last status change for this file
	or directory.
File Path	contains the file's name relative within the
	requested path of the _getdir_ session, a maximum of
	1024-octet UTF-8 string, which is null-terminated to
	indicate its end. The File Path may contain
	additional null padding in the null termination to
	allow Directory Entries to each be allocated a fixed
	amount of space or to place an integer number of
	Directory Entries in each DATA packet for debugging
	purposes.
 +------------+--+

 The first bit of the Directory Entry is always 1, to indicate the
 start of the record and the end of any padding from previous
 Directory Entries.

 +-------+-------+---------------------+
 | Bit 6 | Bit 7 | Properties conveyed |
 +-------+-------+---------------------+
 | 0 | 0 | normal file. |
 | 0 | 1 | normal directory. |
 | 1 | 0 | special file. |
 | 1 | 1 | special directory. |
 +-------+-------+---------------------+

 Streams listed in a directory should be marked as special. If a
 stream is being transferred, its size is unknown -- otherwise it

Wood, et al. Expires May 23, 2017 [Page 43]

Internet-Draft Saratoga November 2016

 would be a file. The size property of a Directory Entry for a stream
 is therefore expected to be zero.

 +-------+-------+---+
 | Bit 8 | Bit 9 | Properties conveyed |
 +-------+-------+---+
 | 0 | 0 | File size is indicated in a 16-bit descriptor. |
 | 0 | 1 | File size is indicated in a 32-bit descriptor. |
 | 1 | 0 | File size is indicated in a 64-bit descriptor. |
 | 1 | 1 | File size is indicated in a 128-bit descriptor. |
 +-------+-------+---+

 Flag bits 8 and 9 of Properties are descriptor size flags, with
 similar meaning as before, describing the size of the File Size
 descriptor that follows the Properties field. When a single
 Directory Entry appears in the METADATA packet, these flags SHOULD
 match flag bits 8 and 9 in the METADATA header. (A smaller
 descriptor size may be indicated in the Directory Entry when doing
 test transfers of small files using large descriptors.)

 +--------+---------------------------------------+
 | Bit 10 | Properties conveyed |
 +--------+---------------------------------------+
 | 0 | Set to zero. Reserved for future use. |
 +--------+---------------------------------------+

 +------+--+
 | Bit | Use |
 | 13 | |
 +------+--+
0	This file's content MUST be delivered reliably without
	errors using UDP.
1	This file's content MAY be delivered unreliably, or partly
	unreliably, where errors are tolerated, using UDP-Lite.
 +------+--+

 Bit 13 indicates whether the file must be sent reliably or can be
 sent at least partly unreliably, using UDP-Lite. This matches
 METADATA flag use.

 Undefined or unused flag bits of the Properties field default to
 zero. Bit 0 is always 1, to indicate the start of a Directory Entry.
 In general, bits 1-7 of Properties are for matters related to the
 sender's filesystem, while bits 8-15 are for matters related to
 transport over Saratoga.

 It may be reasonable that files are visible in Directory Entries only
 when they can be transferred to the requester - this may depend on

Wood, et al. Expires May 23, 2017 [Page 44]

Internet-Draft Saratoga November 2016

 e.g. having appropriate access permissions or being able to handle
 large filesizes. But requesters only capable of handling small files
 MUST be able to skip through large descriptors for large file sizes.
 Directory sizes are not calculated or sent, and a Size of 0 is given
 instead for directories, which are considered zero-length files.

 The "epoch" format used in file creation and modification timestamps
 in directory entries indicates the unsigned number of seconds since
 the start of January 1, 2000 in UTC. The times MUST include all leap
 seconds. Using unsigned 32-bit values means that these time fields
 will not wrap until after the year 2136.

 Converting from unix CTime/MTime holding a time past January 1, 2000
 but with the traditional 1970 epoch means subtracting the fixed value
 of 946 684 822 seconds, which includes the 22 leap seconds that were
 added to UTC between 1 January 1970 and 1 January 2000. A unix time
 before 2000 is rounded to January 1, 2000.

 A file-receiver should preserve the timestamp information received in
 the METADATA for its own copy of the file, to allow newer versions of
 files to propagate and supercede older versions.

6. Behaviour of a Saratoga Peer

 This section describes some details of Saratoga implementations and
 uses the RFC 2119 standards language to describe which portions are
 needed for interoperability.

6.1. Saratoga Sessions

 Following are descriptions of the packet exchanges between two peers
 for each type of session. Exchanges rely on use of the Id field to
 match responses to requests, as described earlier in Section 4.2.

6.1.1. The _get_ Session

 1. A peer (the file-receiver) sends a REQUEST packet to its peer
 (the file-sender). The Flags bits are set to indicate that this
 is not a _delete_ request, nor does the File Path indicate a
 directory. Each _get_ session corresponds to a single file, and
 fetching multiple files requires sending multiple REQUEST packets
 and using multiple different Session Ids so that responses can be
 differentiated and matched to REQUESTs based on the Id field. If
 a specific file is being requested, then its name is filled into
 the File Path field, otherwise it is left null and the file-
 sender will send a file of its choice.

https://datatracker.ietf.org/doc/html/rfc2119

Wood, et al. Expires May 23, 2017 [Page 45]

Internet-Draft Saratoga November 2016

 2. If the _get_ request is rejected, then a STATUS packet containing
 an error code in the Status field is sent and the session is
 terminated. This STATUS packet MUST be sent to reject and
 terminate the session. The error code MAY make use of the
 "Unspecified Error" value for security reasons. Some REQUESTs
 might also be rejected for specifying files that are too large to
 have their lengths encoded within the maximum integer field width
 advertised by bits 8 and 9 of the REQUEST.

 3. If the _get_ request is accepted, then a STATUS packet MAY be
 sent with an error code of 00 and an In-Response-To field of
 zero, to indicate acceptance. Sending other packets (METADATA or
 DATA) also indicates acceptance. The file-sender SHOULD generate
 and send a METADATA packet. A METADATA packet that is received
 MUST be parsed. The sender MUST send the contents of the file or
 stream as a series of DATA packets. In the absence of STATUS
 packets being requested from the receiver, if the file-sender
 believes it has finished sending the file and is not on a
 unidirectional link, it MUST send the last DATA packet with the
 Flags bit set requesting a STATUS response from the file-
 receiver. The last DATA packet MUST always have its End of Data
 (EOD) bit set. This can be followed by empty DATA packets with
 the Flags bits set with EOD and requesting a STATUS until either
 a STATUS packet is received, or the inactivity timer expires.
 All of the DATA packets MUST use field widths for the file offset
 descriptor fields that match what the Flags of the METADATA
 packet specified. Some arbitrarily selected DATA packets may
 have the Flags bit set that requests a STATUS packet. The file-
 receiver MAY voluntarily send STATUS packets at other times,
 where the In-Response-To field MUST set to zero. The file-
 receiver SHOULD voluntarily send a STATUS packet in response to
 the first DATA packet.

 4. As the file-receiver takes in the DATA packets, it writes them
 into the file locally. The file-receiver keeps track of missing
 data in a hole list. Periodically the file sender will set the
 ack flag bit in a DATA packet and request a STATUS packet from
 the file-receiver. The STATUS packet can include a copy of this
 hole list if there are holes. File-receivers MUST send a STATUS
 packet immediately in response to receiving a DATA packet with
 the Flags bit set requesting a STATUS.

 5. If the file-sender receives a STATUS packet with a non-zero
 number of holes, it re-fetches the file data at the specified
 offsets and re-transmits it. If the METADATA packet has not been
 received, this is indicated by a bit in the STATUS packet, and
 the METADATA packet can be retransmitted. The file-sender MUST

Wood, et al. Expires May 23, 2017 [Page 46]

Internet-Draft Saratoga November 2016

 retransmit data from any holes reported by the file-receiver
 before proceeding further with new DATA packets.

 6. When the file-receiver has fully received the file data and any
 METADATA packet, then it sends a STATUS packet indicating that
 the session is complete, and it terminates the session locally,
 although it MUST persist in responding to any further DATA
 packets received from the file-sender with 'completed' STATUSes,
 as described in Section 4.5, for some reasonable amount of time.
 Starting a timer on sending a completed STATUS and resetting it
 whenever a received DATA/sent 'completed' STATUS session takes
 place, then removing all session state on timer expiry, is one
 approach to this.

 Given that there may be a high degree of asymmetry in link bandwidth
 between the file-sender and file-receiver, the STATUS packets should
 be carefully generated so as to not congest the feedback path. This
 means that both a file-sender should be cautious in setting the DATA
 Flags bit requesting STATUSes, and also that a file-receiver should
 be cautious in gratuitously generating STATUS packets of its own
 volition. When sending on known unidirectional links, a file-sender
 cannot reasonably expect to receive STATUS packets, so should never
 request them.

6.1.2. The _getdir_ Session

 A _getdir_ session to obtain a Directory Record proceeds through the
 same states as the _get_ session. Rather than transferring the
 contents of a file from the file-receiver to the file-sender, a set
 of records representing the contents of a directory are transferred
 as a file. These records can be parsed and dealt with by the file-
 receiver as desired. There is no requirement that a Saratoga peer
 send the full contents of a directory listing; a peer may filter the
 results to only those entries that are actually accessible to the
 requesting peer.

 Any file system entries that would normally be contained in the
 directory records, but that have sizes greater than the receiver has
 indicated that it can support in its BEACON, MUST be filtered out.

6.1.3. The _delete_ Session

 1. A peer sends a REQUEST packet with the bit set indicating that it
 is a deletion request and the path to be deleted is filled into
 the File Path field. The File Path MUST be filled in for
 delete sessions, unlike for _get_ sessions.

Wood, et al. Expires May 23, 2017 [Page 47]

Internet-Draft Saratoga November 2016

 2. The other peer replies with a feedback STATUS packet whose Id
 matches the Id field of the _delete_ REQUEST. This STATUS has a
 Status code that indicates that the file is not currently present
 on the filesystem (indicated by the 00 Status field in a success
 STATUS), or whether some error occurred (indicated by the non-
 zero Status field in a failure STATUS). This STATUS packet MUST
 have no Holes and 16-bit width zero-valued Progress Indicator and
 In-Response-To fields.

 If a request is received to delete a file that is already deleted, a
 STATUS with Status code 00 and other fields as described above is
 sent back in acknowledgement. This response indicates that the
 indicated file is not present, not the exact action sequence that led
 to a not-present file. This idempotent behaviour ensures that loss
 of STATUS acknowledgements and repeated _delete_ requests are handled
 properly.

6.1.4. The _put_ Session

 A _put_ session proceeds as a _get_ does, except the file-sender and
 file-receiver roles are exchanged between peers. In a _put_ a PUT
 REQUEST is sent.

 However, in a 'blind _put_', no REQUEST packet is ever sent. The
 file-sending end senses that the session is in progress when it
 receives METADATA or DATA packets for which it has no knowledge of
 the Id field.

 If the file-receiver decides that it will store and handle the _put_
 request (at least provisionally), then it MUST send a voluntary (ie,
 not requested) success STATUS packet to the file-sender. Otherwise,
 it sends a failure STATUS packet. After sending a failure STATUS
 packet, it may ignore future packets with the same Id field from the
 file-sender, but it should, at a low rate, periodically regenerate
 the failure STATUS packet if the flow of packets does not stop.

6.2. Beacons

 Sending BEACON packets is not required in any of the sessions
 discussed in this specification, but optional BEACONs can provide
 useful information in many situations. If a node periodically
 generates BEACON packets, then it should do so at a low rate which
 does not significantly affect in-progress data transfers.

 A node that supports multiple versions of Saratoga (e.g. version 1
 from this specification along with the older version 0), MAY send
 multiple BEACON packets showing different version numbers. The
 version number in a single BEACON should not be used to infer the

Wood, et al. Expires May 23, 2017 [Page 48]

Internet-Draft Saratoga November 2016

 larger set of protocol versions that a peer is compatible with.
 Similarly, a node capable of communicating via IPv4 and IPv6 MAY send
 separate BEACONs via both protocols, or MAY only send BEACONs on its
 preferred protocol.

 If a node receives BEACONs from a peer, then it SHOULD NOT attempt to
 start any _get_, _getdir_, or _delete_ sessions with that peer if bit
 14 is not set in the latest received BEACONs. Likewise, if received
 BEACONs from a peer do not have bit 15 set, then _put_ sessions
 SHOULD NOT be attempted to that peer. Unlike the capabilities bits
 which prevent certain types of sessions from being attempted, the
 willingness bits are advisory, and sessions MAY be attempted even if
 the node is not advertising a willingness, as long as it advertises a
 capability. This avoids waiting for a willingness indication across
 long-delay links.

6.3. Upper-Layer Interface

 No particular application interface functionality is required in
 implementations of this specification. The means and degree of
 access to Saratoga configuration settings, and session control that
 is offered to upper layers and applications, are completely
 implementation-dependent. In general, it is expected that upper
 layers (or users) can set timeout values for session requests and for
 inactivity periods during the session, on a per-peer or per-session
 basis, but in some implementations where the Saratoga code is
 restricted to run only over certain interfaces with well-understood
 operational latency bounds, then these timers MAY be hard-coded.

6.4. Inactivity Timer

 In order to determine the liveliness of a session, Saratoga nodes may
 implement an inactivity timer for each peer they are expecting to see
 packets from. For each packet received from a peer, its associated
 inactivity timer is reset. If no packets are received for some
 amount of time, and the inactivity timer expires, this serves as a
 signal to the node that it should abort (and optionally retry) any
 sessions that were in progress with the peer. Information from the
 link interface (i.e. link down) can override this timer for point-to-
 point links.

 The actual length of time that the inactivity timer runs for is a
 matter of both implementation and deployment situation. Relatively
 short timers (on the order of several round-trip times) allow nodes
 to quickly react to loss of contact, while longer timers allow for
 session robustness in the presence of transient link problems. This
 document deliberately does not specify a particular inactivity timer
 value nor any rules for setting the inactivity timer, because the

Wood, et al. Expires May 23, 2017 [Page 49]

Internet-Draft Saratoga November 2016

 protocol is intended to be used in both long- and short-delay
 regimes.

 Specifically, the inactivity timer is started on sending REQUEST or
 STATUS packets. When sending packets not expected to elicit
 responses (BEACON, METADATA, or DATA without acknowledgement
 requests), there is no point to starting the local inactivity timer.

 For normal file transfers, there are simple rules for handling
 expiration of the inactivity timer during a _get_ or _put_ session.
 Once the timer expires, the file-sender SHOULD terminate the session
 state and cease to send DATA or METADATA packets. The file-receiver
 SHOULD stop sending STATUS packets, and MAY choose to store the file
 in some cache location so that the transfer can be recovered. This
 is possible by waiting for an opportunity to re-attempt the session
 and immediately sending a STATUS that only lists the parts of the
 file not yet received if the session is granted. In any case, a
 partially-received file MUST NOT be handled in any way that would
 allow another application to think it is complete.

 The file-sender may implement more complex timers to allow rate-based
 pacing or simple congestion control using information provided in
 STATUS packets, but such possible timers and their effects are
 deliberately not specified here.

6.5. Streams and wrapping

 When sending an indefinite-length stream, the possibility of offset
 sequence numbers wrapping back to zero must be considered. This can
 be protected against by using large offsets, and by the stream
 receiver. The receiver MUST separate out holes before the offset
 wraps to zero from holes after the wrap, and send Hole definitions in
 different STATUS packets, with Flag 14 set to mark them as
 incomplete. Any Hole straddling a sequence wrap MUST be broken into
 two separate Holes, with the second Hole starting at zero. The
 timestamps in STATUS packets carrying any pre-wrap holes should be
 earlier than the timestamp in later packets, and should repeat the
 timestamp of the last DATA packet seen for that offset sequence
 before the following wrap to zero occurred. Receivers indicate that
 they no longer wish to receive streams by sending Status Code 0C.

6.6. Completing file delivery and ending the session

 The sender infers a completely-received transfer from the reported
 receiver window position. In the final STATUS packet sent by the
 receiver once the file to be transferred has been completely
 received, bit 14 MUST be 0 (indicating a complete set of holes in
 this packet), there MUST NOT be any holestofill offset pairs

Wood, et al. Expires May 23, 2017 [Page 50]

Internet-Draft Saratoga November 2016

 indicating holes, the In-Response-To and Progress Indicator fields
 contain the length of the file (i.e. point to the next octet after
 the file), and the voluntary flag MUST be set. This 'completed'
 STATUS may be repeated, depending on subsequent sender behaviour,
 while internal state about the transfer remains available to the
 receiver.

 Because METADATA not mandatory for implementations, the file receiver
 may not know the length of a file if METADATA is never sent. The
 sender MUST set the EOD End of Data flag in each DATA packet that
 sends the last byte of the file, and SHOULD request a STATUS
 acknowledgement when the EOD flag is set. If METADATA has been sent
 and the EOD comes earlier than a previously reported length of a
 file, an unspecified error 0x01, as described below, is returned in
 the STATUS message responding to that DATA packet and EOD flag. If a
 stream is being marked EOD, the receiver acknowledges this with a
 Success 0x00 code.

7. Implementation Development

 There is a mailing list for discussion of Saratoga and its
 implementations. Contact Lloyd Wood for details. Further
 information on the Saratoga protocol is at:

http://saratoga.sourceforge.net/

8. Security Considerations

 The design of Saratoga provides limited, deliberately lightweight,
 services for authentication of session requests, and for
 authentication or encryption of data files via keyed metadata
 checksums. This document does not specify privacy or access control
 for data files transferred. Privacy, access, authentication and
 encryption issues may be addressed within an implementation or
 deployment in several ways that do not affect the file transfer
 protocol itself. As examples, IPSec may be used to protect Saratoga
 implementations from forged packets, to provide privacy, or to
 authenticate the identity of a peer. Other implementation-specific
 or configuration-specific mechanisms and policies might also be
 employed for authentication and authorization of requests.
 Protection of file data and meta-data can also be provided by a
 higher-level file encryption facility. If IPsec is not required, use
 of encryption before the file is given to Saratoga is preferable.

 Basic security practices like not accepting paths with "..", not
 following symbolic links, and using a chroot() system call, among
 others, should also be considered within an implementation.

http://saratoga.sourceforge.net/

Wood, et al. Expires May 23, 2017 [Page 51]

Internet-Draft Saratoga November 2016

 Note that Saratoga is intended for single-hop transfers between
 peers. A METADATA checksum using a previously shared key can be used
 to decrypt or authenticate delivered DATA files. Saratoga can only
 provide payload encryption across a single Saratoga transfer, not
 end-to-end across concatenated separate hop-by-hop transfers through
 untrusted peers, as checksum verification of file integrity is
 required at each node. End-to-end data encryption, if required, MUST
 be implemented by the application using Saratoga.

9. IANA Considerations

 IANA has allocated port 7542 (tcp/udp) for use by Saratoga.

 saratoga 7542/tcp Saratoga Transfer Protocol
 saratoga 7542/udp Saratoga Transfer Protocol

 IANA has allocated a dedicated IPv4 all-hosts multicast address
 (224.0.0.108) and a dedicated IPv6 link-local multicast addresses
 (FF02:0:0:0:0:0:0:6c) for use by Saratoga.

10. Acknowledgements

 Developing and deploying the on-orbit IP-based infrastructure of the
 Disaster Monitoring Constellation, in which Saratoga has proven
 useful, has taken the efforts of hundreds of people over more than a
 decade. We thank them all.

 We thank James H. McKim as an early contributor to Saratoga
 implementations and specifications, while working for RSIS
 Information Systems at NASA Glenn. We regard Jim as an author of
 this document, but are prevented by the boilerplate five-author limit
 from naming him earlier.

 We thank Stewart Bryant, Dale Mellor, Cathryn Peoples, Kerrin Pine,
 Abu Zafar Shahriar and Dave Stewart for their review comments.

 Work on this specification at NASA's Glenn Research Center was funded
 by NASA's Earth Science Technology Office (ESTO).

11. A Note on Naming

 Saratoga is named for the USS Saratoga (CV-3), the aircraft carrier
 sunk at Bikini Atoll that is now a popular diving site.

Wood, et al. Expires May 23, 2017 [Page 52]

Internet-Draft Saratoga November 2016

12. References

12.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <http://www.rfc-editor.org/info/rfc768>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <http://www.rfc-editor.org/info/rfc1321>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3309] Stone, J., Stewart, R., and D. Otis, "Stream Control
 Transmission Protocol (SCTP) Checksum Change", RFC 3309,
 DOI 10.17487/RFC3309, September 2002,
 <http://www.rfc-editor.org/info/rfc3309>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

12.2. Informative References

 [Brenchley12]
 Brenchley, M., Garner, P., Cawthorne, A., Wisniewska, K.,
 and P. Davies, "Bridging the Abyss - Agile Data Downlink
 Solutions for the Disaster Monitoring Constellation",
 Small Satellites Systems and Services (4S)
 Symposium, European Space Agency, Portoroz, Slovenia, June
 2012.

 [Hogie05] Hogie, K., Criscuolo, E., and R. Parise, "Using Standard
 Internet Protocols and Applications in Space", Computer
 Networks, Special Issue on Interplanetary Internet, vol.
 47, no. 5, pp. 603-650, April 2005.

 [I-D.wood-tsvwg-saratoga-congestion-control]
 Wood, L., Eddy, W., and W. Ivancic, "Congestion control
 for the Saratoga protocol", draft-wood-tsvwg-saratoga-

congestion-control-08 (work in progress) , November 2015.

https://datatracker.ietf.org/doc/html/rfc768
http://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc1321
http://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3309
http://www.rfc-editor.org/info/rfc3309
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/draft-wood-tsvwg-saratoga-congestion-control-08
https://datatracker.ietf.org/doc/html/draft-wood-tsvwg-saratoga-congestion-control-08

Wood, et al. Expires May 23, 2017 [Page 53]

Internet-Draft Saratoga November 2016

 [Jackson04]
 Jackson, C., "Saratoga File Transfer Protocol", Surrey
 Satellite Technology Ltd internal technical document ,
 2004.

 [RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, DOI 10.17487/RFC0959, October 1985,
 <http://www.rfc-editor.org/info/rfc959>.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
 and G. Fairhurst, Ed., "The Lightweight User Datagram
 Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828, July
 2004, <http://www.rfc-editor.org/info/rfc3828>.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
 Friendly Rate Control (TFRC): Protocol Specification",

RFC 5348, DOI 10.17487/RFC5348, September 2008,
 <http://www.rfc-editor.org/info/rfc5348>.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405,
 DOI 10.17487/RFC5405, November 2008,
 <http://www.rfc-editor.org/info/rfc5405>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <http://www.rfc-editor.org/info/rfc6151>.

 [Wood07a] Wood, L., Ivancic, W., Hodgson, D., Miller, E., Conner,
 B., Lynch, S., Jackson, C., da Silva Curiel, A., Cooke,
 D., Shell, D., Walke, J., and D. Stewart, "Using Internet
 Nodes and Routers Onboard Satellites", International
 Journal of Satellite Communications and
 Networking, Special Issue on Space Networks, vol. 25, no.
 2, pp. 195-216, March/April 2007.

 [Wood07b] Wood, L., Eddy, W., Ivancic, W., Miller, E., McKim, J.,
 and C. Jackson, "Saratoga: a Delay-Tolerant Networking
 convergence layer with efficient link utilization",
 International Workshop on Satellite and Space
 Communications (IWSSC '07) Salzburg, September 2007.

 [Wood11] Wood, L., Smith, C., Eddy, W., Ivancic, W., and C.
 Jackson, "Taking Saratoga from space-based ground sensors
 to ground-based space sensors", IEEE Aerospace
 Conference Big Sky, Montana, March 2011.

https://datatracker.ietf.org/doc/html/rfc959
http://www.rfc-editor.org/info/rfc959
https://datatracker.ietf.org/doc/html/rfc3828
http://www.rfc-editor.org/info/rfc3828
https://datatracker.ietf.org/doc/html/rfc5348
http://www.rfc-editor.org/info/rfc5348
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5405
http://www.rfc-editor.org/info/rfc5405
https://datatracker.ietf.org/doc/html/rfc6151
http://www.rfc-editor.org/info/rfc6151

Wood, et al. Expires May 23, 2017 [Page 54]

Internet-Draft Saratoga November 2016

Appendix A. Timestamp/Nonce field considerations

 Timestamps are useful in DATA packets when the time that the packet
 or its payload was generated is of importance; this can be necessary
 when streaming sensor data recorded and packetized in real time. The
 format of the optional timestamp, whose presence is indicated by a
 flag bit, is implementation-dependent within the available fixed-
 length 128-bit field. How the contents of this timestamp field are
 used and interpreted depends on local needs and conventions and the
 local implementation.

 However, one simple suggested format for timestamps is to begin with
 a POSIX time_t representation of time, in network byte order. This
 is either a 32-bit or 64-bit signed integer representing the number
 of seconds since 1970. The remainder of this field can be used
 either for a representation of elapsed time within the current
 second, if that level of accuracy is required, or as a nonce field
 uniquely identifying the packet or including other information. Any
 locally-meaningful flags identifying a type of timestamp or timebase
 can be included before the end of the field. Unused parts of this
 field MUST be set to zero.

 There are many different representations of timestamps and timebases,
 and this draft is too short to cover them in detail. One suggested
 flag representation of different timestamp fields is to use the least
 significant bits at the end of the timestamp/nonce field as:

 +--------+--+
 | Status | Meaning |
 | Value | |
 +--------+--+
00	No flags set, local interpretation of field.
01	32-bit POSIX timestamp at start of field indicating
	whole seconds from epoch.
02	64-bit POSIX timestamp at start of field indicating
	whole seconds elapsed from epoch.
03	32-bit POSIX timestamp, as in 01, followed by 32-bit
	timestamp indicating fraction of the second elapsed.
04	64-bit POSIX timestamp, as in 02, followed by 32-bit
	timestamp indicating fraction of the second elapsed.
05	32-bit timestamp giving seconds elapsed since the 2000
	epoch, as in file timestamps. This option is likely only
	useful for very slow links.
 +--------+--+

 Other values may indicate specific epochs or timebases, as local
 requirements dictate. There are many ways to define and use time
 usefully.

Wood, et al. Expires May 23, 2017 [Page 55]

Internet-Draft Saratoga November 2016

 Echoing timestamps back to the file-sender is also useful for
 tracking flow conditions. This does not require the echoing receiver
 to understand the timestamp format or values in use. The use of
 timestamp values may assist in developing algorithms for flow control
 (including TCP-Friendly Rate Control
 [I-D.wood-tsvwg-saratoga-congestion-control]) or other purposes.
 Timestamp values provide a useful mechanism for Saratoga peers to
 measure path and round-trip latency.

Authors' Addresses

 Lloyd Wood
 University of Surrey alumni
 Sydney, New South Wales
 Australia

 Email: L.Wood@society.surrey.ac.uk

 Wesley M. Eddy
 MTI Systems
 MS 500-ASRC
 NASA Glenn Research Center
 21000 Brookpark Road
 Cleveland, OH 44135
 USA

 Phone: +1-216-433-6682
 Email: wes@mti-systems.com

 Charles Smith
 Vallona Networks
 7 Wattle Crescent
 Phegans Bay, New South Wales 2256
 Australia

 Phone: +61-404-05-8974
 Email: charlesetsmith@me.com

 Will Ivancic
 Syzygy Engineering LLC
 Westlake, OH 44145
 USA

 Phone: +1-440-835-8448
 Email: ivancic@syzygyengineering.com

Wood, et al. Expires May 23, 2017 [Page 56]

Internet-Draft Saratoga November 2016

 Chris Jackson
 Surrey Satellite Technology Ltd
 Tycho House
 Surrey Space Centre
 20 Stephenson Road
 Guildford, Surrey GU2 7YE
 United Kingdom

 Phone: +44-1483-803803
 Email: C.Jackson@sstl.co.uk

Wood, et al. Expires May 23, 2017 [Page 57]

