
httpauth J. Woodworth
Internet-Draft D. Ballew
Intended status: Experimental CenturyLink, Inc.
Expires: August 31, 2017 March 05, 2017

HTTP Authentication - |JSON| Scheme
draft-woodworth-json-http-auth-01

Abstract

 The |JSON| authentication scheme provides a mechanism for exchanging
 authentication challenges and credentials as objects in the form of
 JavaScript Object Notation (JSON). This scheme offers a secure
 mechanism of providing authenticated access to a set of protected
 HTTP resources which may be handled by scripting utility framework as
 in XMLHttpRequest calls (AJAX) or directly by the client's user
 agent. This chaining feature is unique to this scheme.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note that
 other groups may also distribute working documents as Internet-
 Drafts. The list of current Internet-Drafts is at

http://datatracker.ietf.org/drafts/current.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Woodworth, et al. Expires: August 31, 2017 [Page 1]

http://trustee.ietf.org/license-info

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Woodworth, et al. Expires: August 31, 2017 [Page 2]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

Table of Contents:

1. Introduction . 3
1.1. Background and Related Documents 3
1.2. Reserved Words . 3

2. The |JSON| HTTP-Authentication Scheme 4
2.1. JSON Based Payloads 4
2.2. Chained Authentication Cursor (CAC) 5
2.3. Extensible Authentication Indicators (EAI) 5
2.4. One-Time Password (OTP) Authentication Capability . . 5

3. |JSON| Authentication Scheme Types 6
3.1. The "password" |JSON| Authentication Type 6
3.2. The "challenge" |JSON| Authentication Type 8

 3.3. The Hybrid One-Off |JSON| Authentication Type
 Variant 12

4. Implementation Considerations 12
4.1 Nonce Generation . 13
4.2 User-Agent Scripted Authentication 14
5. Security Considerations 15
6. IANA Considerations . 15
7. Acknowledgments . 15
8. References . 16

8.1. Normative References 16
8.2. Informative References 16

1. Introduction

 The |JSON| authentication scheme offers a number of new concepts used
 to extend or enhance current HTTP-Authentication facilities.

 New concepts include; JSON Based Challenge/ Response Payloads,
 Chained Authentication Cursor (CAC), Extensible Authentication
 Indicators (EAI) and One-Time Password (OTP) Authentication Support.

1.1. Background and Related Documents

 This document assumes the reader is familiar with the basic HTTP and
 HTTP-Authentication concepts described in [RFC7230] and [RFC7235].

 The reader is also assumed to be familiar with the JSON data
 interchange format and associated terminology described in [RFC7159]
 as well as the Base64 encoding methods as described in [RFC4648].

1.2. Reserved Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc2119

Woodworth, et al. Expires: August 31, 2017 [Page 3]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

2. The |JSON| HTTP-Authentication Scheme

 The |JSON| scheme provides an extensible mechanism of providing
 primary HTTP authentication to a web-based application. This section
 will cover a number of new concepts intended to extend the
 flexibility and capabilities of existing HTTP authentication schemes.

 This scheme follows the methods defined in [RFC7235] to provide
 authentication challenge and response via the HTTP-Headers "WWW-
 Authenticate" and "Authorization" respectively. For the moment at
 least, this document hereby defines proxy authentication as out of
 scope.

2.1. JSON Based Payloads

 A primary motivation for this document is to offer the ability to
 leverage scripting capabilities within the client application. While
 this does fall outside the HTTP protocol itself, modern HTTP clients
 have advanced to a point where scripting and asynchronous calls to
 back-end web services have become quite common. These advancements
 offer an integration between the HTTP protocol and client side logic
 processing (i.e. scripting).

 One such advancement along this path is the ubiquity of JSON encoded
 objects. These objects can be quickly processed and passed over-the-
 wire to almost any programming language and are native to the default
 scripting engine of modern browsers.

 By leveraging the JSON format for passing challenges and responses
 back and forth a type of protocol-logic bridge can be easily
 established.

 This document defines a single JSON object containing zero or more
 elements where the set of elements is defined by its authentication
 "type" and whether it is a challenge or response. This document
 defines 3 types, "password", "challenge", and a hybrid one-off
 variant each described in detail in sections to follow. This object
 is Base64 encoded and assigned to the "data" auth-param as defined in

[RFC7235], Section 2.1. Additionally, while many examples show JSON
 object definitions in this document are shown in a "pretty" format to
 improve readability the over-the-wire encoding is expected to be in a
 condensed form (minimum whitespace) prior to Base64 encoding.

 Below is a simple example demonstrating the "password" type:

 WWW-Authenticate: |JSON| realm="Test Realm",
 data="eyAidHlwZSIgOiAicGFzc3dvcmQiIH0="

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235#section-2.1

Woodworth, et al. Expires: August 31, 2017 [Page 4]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

2.2. Chained Authentication Cursor (CAC)

 Beyond the utilization of the JSON format to exchange and validate
 authentication credentials, this document establishes the concept of
 a Chained Authentication Cursor (CAC).

 The logic used to implement CAC is simpler than the name may imply.
 In essence, the client's user-agent is currently aware of several
 authentication schemes, each with their own handler. For example, a
 handler is defined for the "Basic" scheme, another for the "Digest"
 scheme, etc. When a challenge is received from the server as a
 result of a "401 Unauthorized" response, a cursor is assigned and
 attached to this challenge. This cursor follows the challenge
 throughout its short life-cycle "Chained" in succession to each of
 the available user-agent authentication handlers in order to provide
 the client's response. Each handler may either accept or reject the
 authentication cursor based entirely upon the scheme passed to it.
 If the cursor is accepted, it MUST provide a response to be used for
 the follow-up request.

 Some handlers in the chain MAY be defined as Extensible
 Authentication Handlers (EAH) others as Native Authentication
 Handlers (NAH). EAHs are extensions to the built-in NAHs and are
 generally provided as either a client extension or scripted handler
 and can be used to provide custom or interim authentication
 solutions. Additional recommendations are provided in this document
 to avoid "Chicken and Egg" scenarios where EAHs are concerned.

2.3. Extensible Authentication Indicators (EAI)

 Schemes used by Extensible Authentication Handlers (EAH) MUST have
 their intent formally identified by an Extensible Authentication
 Indicator (EAI). The [US-ASCII] pipe character (|) is reserved for
 this purpose and if the HTTP-Authentication scheme is surrounded by
 this character (e.g. "|JSON|", "|Basic|", "|example|", "|pdmk|",
 "|random|", etc.) an EAH MUST be assumed. If no EAH are defined for
 an EAI indicated scheme, the indicators MUST be removed and the CAC
 passed to a handler for the new scheme as next in the chain. For
 example, if the scheme "|Basic|" is provided in the challenge and no
 EAH is defined for "|Basic|", then an attempt to pass the CAC to a
 "Basic" NAH MUST be attempted. This logic MUST be attempted for each
 EAH in the chain for the active CAC.

2.4. One-Time Password (OTP) Authentication Capability

 This document defines provisions for One-Time Password (OTP)
 Authentication. This concept, while simple to grasp, causes
 difficulty in a stateless protocol such as HTTP. Recommendations for

 overcoming such difficulties are provided in sections which follow.

Woodworth, et al. Expires: August 31, 2017 [Page 5]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

3. |JSON| Authentication Scheme Types

 The following three authentication types are explicitly defined by
 this document but others may exist under its umbrella so long as none
 of the defined requirements are violated.

 Additionally, the objects and internal elements defined are to be
 considered a super-set of those implemented and extension or
 "enrichment" is to be expected and are considered OPTIONAL. However,
 in order to ensure compatibility all objects and internal elements
 defined by a type and not defined as OPTIONAL MUST be implemented as
 defined.

3.1. The "password" |JSON| Authentication Type

 This is the simplest authentication type offered. This type is
 provided in order to offer scripted capability without a lot of
 knowledge in cryptography. Due to its clear-text nature it is highly
 recommended to only be used in an encrypted environment (i.e.
 SSL/TLS, etc.).

 The HTTP-Authentication challenge for this type includes the
 following elements (with definitions):

 type: REQUIRED

 The |JSON| Authentication Scheme type of "password"

 cookie: OPTIONAL

 This is the name of the HTTP-Cookie as defined by [RFC6265]
 which will be used by the server for continuing the session
 after initial HTTP based authentication has completed

 version: OPTIONAL

 The |JSON| Authentication Scheme version. This document
 defines this as 1.0 and version 1.0 MUST be assumed if no
 version is provided

 An example challenge for this type is simply:

 { "type" : "password" }

 The HTTP-Authentication challenge MUST be Base64 encoded and applied
 to the "WWW-Authenticate" HTTP-Header as defined by [RFC7235],
 Section 4.1.

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1

Woodworth, et al. Expires: August 31, 2017 [Page 6]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 The Base64-encoded header with associated realm appears as:

 WWW-Authenticate: |JSON| realm="Test Realm",
 data="eyAidHlwZSIgOiAicGFzc3dvcmQiIH0="

 The HTTP-Authentication response for this type includes the following
 elements (with definitions):

 type: REQUIRED

 The |JSON| Authentication Scheme type of "password"

 username: REQUIRED

 The user associated with this protected resource

 password: REQUIRED

 The password associated with this protected resource

 version: OPTIONAL

 The |JSON| Authentication Scheme version. This document
 defines this as 1.0 and version 1.0 MUST be assumed if no
 version is provided

 NOTE: Since no protection of credentials is offered by the "password"
 type, the need for other protections such as replay-prevention is
 unnecessary and therefore not offered as part of this type.

 For an example username of "MyUser" and password of "MyPassword" the
 JSON representation of the response would be:

 {
 "type" : "password"
 ,"username" : "MyUser"
 ,"password" : "MyPassword"
 }

 The Base64-encoded header with associated realm appears as:

 Authorization: |JSON| realm="Test Realm",
 data="eyAidHlwZSIgOiAicGFzc3dvcmQiLCAi
 dXNlcm5hbWUiIDogIk15VXNlciIsICJwYXNzd2
 9yZCIgOiAiTXlQYXNzd29yZCIgfQ=="

 NOTE: The "data" element has been expanded to multiple lines for
 readability purposes only

Woodworth, et al. Expires: August 31, 2017 [Page 7]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

3.2. The "challenge" |JSON| Authentication Type

 The challenge authentication type provides features to protect the
 credentials against replay-prevention and over-the-wire interception.

 The HTTP-Authentication challenge for this type includes the
 following elements (with definitions). More details are provided in
 the implementation considerations sections below.

 type: REQUIRED

 The |JSON| Authentication Scheme type of "challenge"

 algorithms: REQUIRED

 A comma separated list of accepted algorithms as defined by
 [FIPS-180-4] and [FIPS-202] in order of preference (OPTIONAL
 whitespace MUST be ignored during selection described below).

 NOTE: This list of algorithms represents all algorithms the
 server is capable of and willing to verify hashed passwords
 received by a client against. In other words, hashed passwords
 MUST either be known to the server or generated by the server
 by way of hashing known clear-text passwords for each provided
 algorithm

 NOTE: Use of the SHA-1 algorithm is highly discouraged at the
 time this document is being written and SHOULD NOT be used.

 nonce: REQUIRED

 A one-time-only value calculated by the server to be used in
 client calculations

 cookie: OPTIONAL

 This is the name of the HTTP-Cookie as defined by [RFC6265]
 which will be used by the server for continuing the session
 after initial HTTP based authentication has completed

 message: OPTIONAL

 A string value which MAY be presented to the user as additional
 information about the authentication challenge or previous
 attempt. An example would be "Unable to authenticate
 credentials at this time, please try again later."

 opaque: OPTIONAL

https://datatracker.ietf.org/doc/html/rfc6265

 A value calculated by the server to provide additional

Woodworth, et al. Expires: August 31, 2017 [Page 8]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 protection against tampering and session management

 path: OPTIONAL

 A value representing the protected resource path. The provided
 path does not need to be the literal path but can be a symbolic
 path or hash which can be used by the client and server to
 limit a set of resources beyond what has been provided by the
 realm

 version: OPTIONAL

 The |JSON| Authentication Scheme version. This document
 defines this as 1.0 and version 1.0 MUST be assumed if no
 version is provided

 window: OPTIONAL

 An integer value (in seconds) the challenge will be valid for.
 This value is informational and MAY be used by the client to
 determine why a previous authentication attempt failed
 (challenge is no longer valid)

 An example challenge for this type is:

 {
 "type" : "challenge"
 ,"algorithms" : "SHA-384,SHA-256,SHA-224"
 ,"nonce" : "1488442706.13154/
 339158aa-2504-44a4-bd7a-c86a85c4c7a8,
 320afaed21f1827383194b49c02008909cf28
 3ca2f3dca190c2ab958ea580a28"
 }
 NOTE: Elements in the object above have been expanded to multiple
 lines for readability purposes only

 The Base64-encoded header with associated realm appears as:

 WWW-Authenticate: |JSON| realm="Test Realm",
 data="eyJ0eXBlIjoiY2hhbGxlbmdlIiwiYWxnb3JpdG
 htcyI6IlNIQS0yNTYsU0hBLTEiLCJub25jZSI6
 IjE0ODg0NDI3MDYuMTMxNTQvMzM5MTU4YWEtMj
 UwNC00NGE0LWJkN2EtYzg2YTg1YzRjN2E4LDMy
 MGFmYWVkMjFmMTgyNzM4MzE5NGI0OWMwMjAwOD
 kwOWNmMjgzY2EyZjNkY2ExOTBjMmFiOTU4ZWE1
 ODBhMjgifQ=="

 The HTTP-Authentication response for this type includes the following
 elements (with definitions). More details are provided in the

 implementation considerations sections below.

Woodworth, et al. Expires: August 31, 2017 [Page 9]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 type: REQUIRED

 The |JSON| Authentication Scheme type of "challenge"

 username: REQUIRED

 The user associated with this protected resource

 algorithm: REQUIRED

 The algorithm selected from the challenge's algorithms element.
 If no compatible algorithm can be established, the client MUST
 fail and if applicable provide additional details to the user

 nonce: REQUIRED

 This value MUST match the nonce value provided by the server's
 challenge verbatim

 token: REQUIRED

 This value MUST be generated by the client according to the
 following rules:

 - A hash of the client provided password MUST be generated
 using the cryptographic algorithm specified as "algorithm"
 above.

 password_hash = ALGORITHM (password)

 - The following values (including quoted colon values ":")
 MUST be concatenated into a single string value. Optional
 values which are not defined MUST be replaced by an empty
 string. Any required field which is not defined MUST fail
 and if applicable provide additional details to the user

 pre_token = username + ":" + password_hash + ":" +
 nonce + ":" + opaque + ":" +
 algorithm + ":" + cnonce + ":" +
 message

 - A hash of the string provided in the previous step MUST be
 generated using the cryptographic algorithm specified as
 "algorithm" above.

 token = ALGORITHM (pre_token)

 NOTE: The output of the ALGORITHM function MUST be encoded as a
 lowercase hexadecimal value

Woodworth, et al. Expires: August 31, 2017 [Page 10]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 NOTE: Upon receipt of a client's response to a "challenge" type
 server challenge, the server MUST follow the identical process
 as above to generate the token on its side of the conversation
 for an identical match. All necessary elements are expected to
 be already known, derived by known data or received in the
 client's response. Nonce, Opaque and other verifiable elements
 MUST be verified prior to recreating the token in order to
 verify data against potential tampering

 cnonce: OPTIONAL

 A one-time-only value calculated by the client to be used for
 further limiting replay-attacks

 message: OPTIONAL

 A string value which MAY be presented to the server as
 additional information about the authentication response for
 logging and debugging purposes. An example would be "CoolAuth-
 Client/1.0"

 opaque: OPTIONAL

 This value MUST match the opaque value provided by the server's
 challenge verbatim. If no opaque value was provided by the
 server's challenge, the client MUST NOT provide one in the
 response

 version: OPTIONAL

 The |JSON| Authentication Scheme version. This document
 defines this as 1.0 and version 1.0 MUST be assumed if no
 version is provided

 For an example username of "MyUser", a password of "MyPassword" and
 the "SHA-256" hashing algorithm the JSON representation of the
 response would be:

 {
 "type" : "challenge"
 ,"algorithm" : "SHA-256"
 ,"username" : "MyUser"
 ,"nonce" : "1488442706.13154/
 339158aa-2504-44a4-bd7a-c86a85c4c7a8,
 320afaed21f1827383194b49c02008909cf28
 3ca2f3dca190c2ab958ea580a28"
 ,"token" : "03066bdf1244be4c458fd6ef46af52acceea2
 0d90ee979b10231018a52d92e66"
 }

 NOTE: Elements in the object above have been expanded to multiple

Woodworth, et al. Expires: August 31, 2017 [Page 11]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 lines for readability purposes only

 The Base64-encoded header with associated realm appears as:

 Authorization: |JSON| realm="Test Realm",
 data="eyJ0eXBlIjoiY2hhbGxlbmdlIiwiYWxnb3JpdG
 htIjoiU0hBLTI1NiIsInVzZXJuYW1lIjoiTXlV
 c2VyIiwibm9uY2UiOiIxNDg4NDQyNzA2LjEzMT
 U0LzMzOTE1OGFhLTI1MDQtNDRhNC1iZDdhLWM4
 NmE4NWM0YzdhOCwzMjBhZmFlZDIxZjE4MjczOD
 MxOTRiNDljMDIwMDg5MDljZjI4M2NhMmYzZGNh
 MTkwYzJhYjk1OGVhNTgwYTI4IiwidG9rZW4iOi
 IwMzA2NmJkZjEyNDRiZTRjNDU4ZmQ2ZWY0NmFm
 NTJhY2NlZWEyMGQ5MGVlOTc5YjEwMjMxMDE4YT
 UyZDkyZTY2In0="

 NOTE: The "data" element has been expanded to multiple lines for
 readability purposes only

3.3. The Hybrid One-Off |JSON| Authentication Type Variant

 This document defines a "One-Off" feature which informs the client's
 user agent the intent of the server's challenge is to fulfill a One-
 Time-Password (OTP) and client credentials MUST NOT be cached and
 reused for multiple responses.

 It must be noted this is a deviation from the standard client
 behavior in that caching and reusing credentials expected as OTP can
 have the side-effect of locking the account upon reuse of successful
 credentials. It is highly recommended a cookie authentication
 mechanism be used to continue a successfully authenticated session.
 More details are provided in the implementation considerations
 sections below.

 This feature is available for either the "password" or "challenge"
 types explained in the sections above and is enabled by setting the
 type to the type prepended by a single exclamation character (!).

 For an example username of "MyUser" and password of "MyPassword" the
 JSON representation of the response would be:

 {
 "type" : "!password"
 ,"username" : "MyUser"
 ,"password" : "MyPassword"
 }

4. Implementation Considerations

 This document provides the following recommendations to improve

Woodworth, et al. Expires: August 31, 2017 [Page 12]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 overall compatibility between implementations.

4.1 Nonce Generation

 The authors of this document highly recommended two factors when
 implementing the generation of nonce values.

 1) Time Component

 The two main goals for the nonce field is to; a) provide
 protection against replays of captured credential payloads; and
 b) make cryptographic analysis more difficult. A simple
 implementation to meet both of these goals is to provide a time
 component to the nonce string.

 The examples in this document use a hi-resolution "epoch" (or unix
 time) at the start of each nonce followed by a [US-ASCII] forward-
 slash character "/" and a generated portion.

 The string "1488442706.13154" from the examples above
 represents "Thu Mar 2 08:18:26 2017" referenced to the GMT
 timezone.

 Using a component like this greatly reduces the risk of nonce
 reuse and allows for a validity window to easily be established.
 Since this is generated at the server, no time synchronization
 needs to be performed with the client and when used for the
 response, can be directly compared with the same time source.

 2) Validation Component

 Since the nonce is used as a component of the client's response
 and the HTTP protocol is stateless, it is highly recommended the
 validity of the nonce be confirmed prior to authenticating the
 request. If, for example, a malicious user was to modify the
 nonce and use this modified nonce in the response, the security of
 the requested resource may be jeopardized.

 This document recommends adding a component which can be easily
 self-validated and offers protection against such tampering. This
 can be done by using a secret known only to the server (or set of
 servers).

 The examples in this document use a Universally Unique Identifier
 UUID generator to provide a bit of uniqueness beyond simply the
 time component discussed above. Most UUID implementations
 leverage a source of entropy to nearly eliminate the risk of
 collisions and this along with the time component should make this
 safe within a reasonable validation window.

Woodworth, et al. Expires: August 31, 2017 [Page 13]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 The UUID is combined with the time component, optional opaque
 value and secret key to form the full nonce string using the
 following pattern:

 time_component + ":" + uuid_component + ":" +
 opaque + ":" + secret

 The examples in this document use the following values for this:

 time_component = "1488442706.13154"

 uuid_component = "339158aa-2504-44a4-bd7a-c86a85c4c7a8"

 opaque = ""

 secret = "MyKey"

 This equates to the string:

 1488442706.13154:339158aa-2504-44a4-bd7a-c86a85c4c7a8::MyKey

 The SHA-256 output of this is:

 320afaed21f1827383194b49c02008909cf283ca2f3dca19
 0c2ab958ea580a28

 NOTE: The above example has been expanded to multiple lines for
 readability purposes only

 The final string for this nonce is:

 1488442706.13154/339158aa-2504-44a4-bd7a-c86a85c4c7a8,
 320afaed21f1827383194b49c02008909cf283ca2f3dca190c2ab
 958ea580a28

 NOTE: The above example has been expanded to multiple lines for
 readability purposes only

4.2 User-Agent Scripted Authentication

 A highlighted feature of this document is its ability to pass
 authentication to a scripting facility within the client. This
 section provides recommendations for implementing this feature.

 1) Chicken and Egg avoidance:

 A complication to tying scripts to authentication is the
 scripts must be loaded prior to the authentication challenge in
 order for this to work. One way to avoid this is to provide

 the authentication handler in a script above other scripts in

Woodworth, et al. Expires: August 31, 2017 [Page 14]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 the main document. The main document will need to be able to
 load without initial authentication for this to work. This
 solution will not work where Asynchronous Module Definition
 (AMD) is deployed.

 Another solution would be to use an authentication entry-point
 page which would be in an unauthenticated "zone" of the
 application and once successfully authenticated redirect to the
 authenticated "zone" leveraging cookies for the transition.

 2) Where do the Scripted Handlers Live?

 Assuming this document has found a large adoption, it is
 recommended the user agent hosts this as a function of the root
 of in its HTML DOM tree (e.g. "window.AuthHandler();").

 This function could provide:

 a) A test for the existence of an EAH handler for a
 particular scheme

 b) Invoke an EAH handler for a particular

 c) Install an EAH handler for a particular scheme

 Until interest for such an adoption, we recommended this to be
 where developers host their EAHs and invoke such EAHs where
 appropriate.

5. Security Considerations

 This document provides methods for transmitting credentials (or the
 implicit knowledge of these credentials) from an HTTP client agent
 (e.g. "browser") to an HTTP server. Methods have been provided in
 some instances to protect the actual credentials from tampering
 between this connection but steps must be taken on each side to
 protect the credential collection and validation points. Any weak
 point in a security system makes that system in its entirety just as
 weak.

6. IANA Considerations

 IANA is requested to update their http-authschemes registry
 <http://www.iana.org/assignments/http-authschemes> to include the
 "|JSON|" and "|*|" schemes where "|*|" represents any valid token
 surrounded by [US-ASCII] pipe characters "|" (e.g. "|pdmk|").

7. Acknowledgments

http://www.iana.org/assignments/http-authschemes

 This document leans heavily on on the work of others, specifically

Woodworth, et al. Expires: August 31, 2017 [Page 15]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 those responsible for the RFCs listed below. The authors of this
 document wish to thank each author involved to help get us here. The
 authors also extend a special thanks to Kathleen Moriarty, for
 encouraging us to finish this draft.

8. References

8.1. Normative References

 [US-ASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [FIPS-180-4] National Institute of Standards and Technology (NIST),
 United States of America, "Secure Hash Standard (SHS)",
 FIPS PUB 180-4, August 2015 , <http://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.180-4.pdf>.

 [FIPS-202] National Institute of Standards and Technology (NIST),
 United States of America, "SHA-3 Standard:
 Permutation-Based Hash and Extendable-Output Functions",
 FIPS PUB 202, August 2015 , <http://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.202.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4648] S. Josefsson, SJD, "The Base16, Base32, and Base64
 Data Encodings", RFC 4648, October 2006.

 [RFC6265] A. Barth, "HTTP State Management Mechanism", RFC 6265,
 April 2011.

 [RFC7159] T. Bray, "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7230] R. Fielding, J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230,
 June 2014.

 [RFC7235] R. Fielding, J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

8.2. Informative References

Authors' Addresses

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235

Woodworth, et al. Expires: August 31, 2017 [Page 16]

Internet-Draft HTTP Authentication - |JSON| Scheme March 2017

 John Woodworth
 4250 North Fairfax Drive
 Arlington, VA 22203
 USA

 EMail: John.Woodworth@CenturyLink.com

 Dean Ballew
 2355 Dulles Corner Boulevard Suite 200 300
 Herndon, VA 20171
 USA

 EMail: Dean.Ballew@CenturyLink.com

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Woodworth, et al. Expires: August 31, 2017 [Page 17]

