
HTTP                                                           A. Wright
Internet-Draft                                         December 05, 2019
Intended status: Experimental
Expires: June 7, 2020

Partial Uploads in HTTP
draft-wright-http-partial-upload-01

Abstract

   This document specifies a new media type intended for use in PATCH
   payloads that allows a resource to be uploaded in several segments,
   instead of a single large request.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 7, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Wright                    Expires June 7, 2020                  [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info


Internet-Draft           Partial Uploads in HTTP           December 2019

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
1.1.  Notational Conventions  . . . . . . . . . . . . . . . . .   2

2.  Modifying a content range with PATCH  . . . . . . . . . . . .   3
3.  Segmented upload with PATCH . . . . . . . . . . . . . . . . .   3
3.1.  Example . . . . . . . . . . . . . . . . . . . . . . . . .   4

4.  Registrations . . . . . . . . . . . . . . . . . . . . . . . .   5
4.1.  2__ (Sparse Resource) status code . . . . . . . . . . . .   5
4.2.  message/byterange media type  . . . . . . . . . . . . . .   6

5.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
5.1.  Unallocated ranges  . . . . . . . . . . . . . . . . . . .   6

6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
6.1.  Normative References  . . . . . . . . . . . . . . . . . .   6
6.2.  Informative References  . . . . . . . . . . . . . . . . .   7

   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .   7

1.  Introduction

   This introduces a mechanism that allows user agents to upload a
   document over several requests.  Similar solutions have been known as
   partial uploads, segmented uploading, or resumable uploads.

   HTTP is a stateless protocol, which implies that if a request is
   interrupted, there can be no way to resume it.  This is not normally
   an issue if there is an alternate way of arriving to the desired
   state from an incomplete state transition.  For example, if a
   download is interrupted, the user-agent may request just the missing
   parts in a Range request.  However, if an upload is interrupted, no
   method exists for the client to synchronize its state with the server
   and only upload the remaining data; the entire request must be
   canceled and retried.  This document standardizes a media type for
   PATCH and a new status code for uploading new resources over several
   segmented requests.

1.1.  Notational Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This document uses ABNF as defined in [RFC5234] and imports grammar
   rules from [RFC7230].

   For brevity, example HTTP requests or responses may add newlines or
   whitespace, or omit some headers necessary for message transfer.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230


Wright                    Expires June 7, 2020                  [Page 2]



Internet-Draft           Partial Uploads in HTTP           December 2019

2.  Modifying a content range with PATCH

   The PATCH method [RFC5789] allows a client to modify a resource in a
   specific way, as specified by the request payload.  This document
   formalizes the concept of using "multipart/byteranges" [RFC7233] as a
   patch file, allowing usage in PATCH; and introduces a simplified form
   "message/byterange" that only patches a single range.

   The "message/byterange" form may be used in a request as so:

   PATCH /uploads/foo HTTP/1.1
   Content-Type: message/byterange
   Content-Length: 283
   If-Match: "xyzzy"
   If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

   Content-Range: bytes 100-299/600
   Content-Type: text/plain
   Content-Length: 200

   [200 bytes...]

   This request asks to modify a 600-byte document, overwriting 200
   bytes of it, starting at a 100-byte offset.

3.  Segmented upload with PATCH

   As an alternative to using PUT to create a new resource, the contents
   of a resource may be uploaded in segments, each written across
   several PATCH requests.

   The first PATCH request creates the resource and uploads the first
   segment.  To ensure the resource does not exist, the request SHOULD
   include "If-None-Match: *".  The request payload is a "message/
   byterange" document containing the first segment of the resource to
   be uploaded, and the total length of the resource to be uploaded.
   Upon processing, the server returns "2__ Sparse Resource" indicating
   the document is error-free up to this point, but that more writes are
   necessary before the resource will be considered fully written.

   Additional segments are uploaded with the same format.

   When the final segment is uploaded, the server detects the resource
   is completely uploaded, and returns the final status code.

   If the client loses the state of the upload, or the connection is
   terminated, the user agent can re-synchronize by issuing a "HEAD"
   request for the resource to get the current uploaded length.  The

https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc7233


Wright                    Expires June 7, 2020                  [Page 3]



Internet-Draft           Partial Uploads in HTTP           December 2019

   response will typically be 200 (OK) or 2__ (Sparse Resource).  If
   2__, the user agent may resume uploading the document from that
   offset.

3.1.  Example

   A single PUT request that creates a new file can be split apart into
   multiple PATCH requests.  Here is an example that uploads a 600-byte
   document across three 200-byte segments.

   The first PATCH request creates the resource:

   PATCH /uploads/foo HTTP/1.1
   Content-Type: message/byterange
   Content-Length: 281
   If-None-Match: *

   Content-Range: bytes 0-199/600
   Content-Type: text/plain
   Content-Length: 200

   [200 bytes...]

   This request allocates a 600 byte document, and uploading the first
   200 bytes of it.  The server responds with 2__ (Sparse Resource),
   indicating that the resource has been allocated and all uploaded data
   is saved, but acknowledging the more data must still be uploaded by
   the client.

   Additional requests upload the remainder of the document:

   PATCH /uploads/foo HTTP/1.1
   Content-Type: message/byterange
   Content-Length: 283
   If-None-Match: *

   Content-Range: bytes 200-399/600
   Content-Type: text/plain
   Content-Length: 200

   [200 bytes...]

   This second request also returns 2__ (Sparse Resource), since there
   are still 200 bytes that are not written to.

   A third request uploads the final portion of the document:



Wright                    Expires June 7, 2020                  [Page 4]



Internet-Draft           Partial Uploads in HTTP           December 2019

   PATCH /uploads/foo HTTP/1.1
   Content-Type: message/byterange
   Content-Length: 283
   If-None-Match: *

   Content-Range: bytes 200-399/600
   Content-Type: text/plain
   Content-Length: 200

   [200 bytes...]

   Since the document is fully written to, the server responds with 200
   (OK), the same response as if the entire 600 bytes were written in a
   PUT request.

4.  Registrations

4.1.  2__ (Sparse Resource) status code

   The 2__ (Sparse Resource) status code indicates that while the
   request succeeded, the request target is not ready for use, and the
   server is awaiting more data to be written.

   In response to a GET request, representations returned with this
   status code might not be valid according to their media type, but
   could become valid once more data is appended.

   In response to a PATCH request, it means the operation succeeded, but
   more uploads are necessary before the server can do anything else
   with the resource.

   This is a 2xx class status because it indicates the request was
   filled as requested, and may safely be handled the same as a 200 (OK)
   response.  However, it is only expected to be seen by clients making
   partial uploads; clients not expecting this status MAY treat it as an
   error.

   Responses to a HEAD request MUST return the same end-to-end headers
   as a GET request.  Normally, HTTP allows HEAD responses to omit
   certain header fields related to the payload; however Content-Length
   and Content-Range are essential fields for synchronizing the state of
   partial uploads.  Hop-by-hop headers may still be omitted.

   Several alternate names for this status code can be considered,
   including: Incomplete Content, Partial Resource, or Incomplete
   Upload.



Wright                    Expires June 7, 2020                  [Page 5]



Internet-Draft           Partial Uploads in HTTP           December 2019

4.2.  message/byterange media type

   The "message/byterange" media type patches the defined byte range to
   some specified contents.  It is similar to the "multipart/byteranges"
   media type, except it omits the multipart separator, and so only
   allows a single range to be specified.

   It follows the syntax of HTTP message headers and body.  It MUST
   include the Content-Range header field.  If the message length is
   known by the sender, it SHOULD contain the Content-Length header
   field.  Unknown or nonapplicable header fields MUST be ignored.

   "header-field" and "message-body" are specified in [RFC7230].

   byterange-document = *( header-field CRLF )
                        CRLF
                        [ message-body ]

   A patch is applied to a document by changing the range of bytes to
   the contents of the patch message payload.  Servers MAY treat an
   invalid or nonexistent range as an error.

5.  Security Considerations

5.1.  Unallocated ranges

   Servers must consider what happens when clients make writes to a
   sparse file.

   Servers will normally only allow patch ranges to start inside or
   immediately after the end of the representation.  Servers supporting
   sparse writes MUST NOT disclose the contents of memory.  This may be
   done at file creation time, or left to the filesystem if it can
   guarantee this behavior.

6.  References

6.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234,
              DOI 10.17487/RFC5234, January 2008,
              <https://www.rfc-editor.org/info/rfc5234>.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234


Wright                    Expires June 7, 2020                  [Page 6]



Internet-Draft           Partial Uploads in HTTP           December 2019

   [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <https://www.rfc-editor.org/info/rfc7230>.

   [RFC7233]  Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
              "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
              <https://www.rfc-editor.org/info/rfc7233>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2.  Informative References

   [RFC5789]  Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, DOI 10.17487/RFC5789, March 2010,

              <https://www.rfc-editor.org/info/rfc5789>.

Author's Address

   Austin Wright

   Email: aaa@bzfx.net

https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7233
https://www.rfc-editor.org/info/rfc7233
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc5789
https://www.rfc-editor.org/info/rfc5789


Wright                    Expires June 7, 2020                  [Page 7]


