
Workgroup: HTTP APIs

Internet-Draft:

draft-wright-http-patch-byterange-01

Published: 23 January 2023

Intended Status: Experimental

Expires: 27 July 2023

Authors: A. Wright

Byte Range PATCH

Abstract

This document specifies a media type for PATCH payloads that

overwrites a specific byte range, to allow random access writes, or

allow a resource to be uploaded in several segments.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 July 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

1.1. Notational Conventions

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

2. Modifying a content range with PATCH

2.1. The multipart/byteranges media type

2.2. The message/byterange media type

2.3. The message/byterange+bhttp media type

2.4. Appending

2.5. Splicing

2.6. Overwriting

2.7. Range units

3. Segmented document creation with PATCH

3.1. Example

4. Registrations

4.1. message/byterange media type

4.2. message/byterange+bhttp media type

5. Caveats

5.1. Indeterminate Length Uploads

5.2. Sparse Documents

5.3. Recovering from interrupted PUT

6. Security Considerations

6.1. Unallocated ranges

7. References

7.1. Normative References

7.2. Informative References

Author's Address

1. Introduction

Filesystem interfaces typically provide some way to write at a

specific position in a file. While HTTP supports reading byte range

offsets using the Range header (Section 14 of [RFC9110]), this

technique cannot generally be used in PUT, because the server may

ignore the Content-Range header while executing the write, causing

data corruption. However, by using a method and media type that the

server must understand, writes to byte ranges with Content-Range

semantics becomes possible.

This media type is intended for use in a wide variety of

applications where overwriting specific parts of the file is

desired. This includes idempotently writing data to a stream,

appending data to a file, overwriting specific byte ranges, or

writing to multiple regions in a single operation (for example,

appending audio to a recording in progress while updating metadata

at the beginning of the file).

It is particularly designed to recover from interrupted uploads.

Since HTTP is stateless, clients can recover from an interrupted

connection by making a request that completes the partial state

change. For downloads, the Range header allows a client to download

only the unknown data. However, if an upload is interrupted, no

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-14

mechanism exists to upload only the remaining data; the entire

request must be retried.

Byte range patches may be used to "fill in these gaps."

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses ABNF as defined in [RFC5234] and imports grammar

rules from [RFC9112].

For brevity, example HTTP requests or responses may add newlines or

whitespace, or omit some headers necessary for message transfer.

The term "byte" is used in the [RFC9110] sense to mean "octet."

Ranges are zero-indexed and inclusive. For example, "bytes 0-0"

means the first byte of the document, and "bytes 1-2" is a range

with two bytes, starting one byte into the document. Ranges of zero

bytes are described by an address offset rather than a range. For

example, "at byte 15".

2. Modifying a content range with PATCH

Although the Content-Range field cannot be used in the request

headers without risking data corruption, it may be used in

conjunction with the PATCH method [RFC5789] as part of a media type

whose semantics writes a subset of a document, at a particular byte

offset. This document re-uses the "multipart/byteranges" media type,

and defines the "message/byterange" media type, for this purpose.

A byte range patch lists one or more parts. Each part specifies two

essential components:

Part fields: a list of HTTP fields that specify metadata,

including the range being written to, the length of the body,

and information about the target document that cannot be listed

in the PATCH headers, e.g. Content-Type (where it would

describe the patch itself, rather than the document being

updated).

A part body: the actual data to write to the indicated

location.

Each part MUST indicate a single contiguous range to be written to.

Servers MUST reject byte range patches that don't contain a known

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

range with a 422 or 400 error. (This would mean the client may be

using a yet-undefined mechanism to specify the target range.)

The Content-Range field is used to specify the range to write to for

each part:

The unsatisfied-range form (e.g. bytes */1000) is not meaningful, it

MUST be treated as a syntax error.

The client MAY indicate the anticipated final size of the document

by providing the complete-length form, for example bytes 0-11/12.

This value does not affect the success of the write, however the

server MAY use it for other purposes, especially for preallocating

an optimal amount of space, and deciding when an upload in multiple

parts has finished.

If the client does not know or care about the final length of the

document, it MAY use * in place of complete-length. For example,

bytes 0-11/*. Most random access writes will follow this form.

Other "Content-" fields in the patch document have the same meaning

as if used in PUT request with the complete document (patch

applied).

Servers SHOULD NOT accept requests that write beyond, and not

adjacent to, the end of the resource. This would create a sparse

file, where some bytes are undefined. For example, writing at byte

601 of a resource where bytes 0-599 are defined; this would leave

byte 600 undefined. Servers that accept sparse writes MUST NOT

disclose contents of existing storage.

The expected length of the write can be computed from the part

fields. If the actual length of the part body mismatches the

expected length, this MUST be treated the same as a network

interruption at the shorter length, but expecting the longer length.

This may involve rolling back the entire request, or saving as many

bytes as possible. The client can then recover the same way it would

recover from a network error.

2.1. The multipart/byteranges media type

The following is a request with a "multipart/byteranges" body to

write two ranges in a document:

¶

¶

¶

¶

¶

¶

¶

¶

¶

The syntax for multipart messages is defined in [RFC2046],

Section 5.1.1. While the body cannot contain the boundary, servers

MAY use the Content-Length field to skip to the boundary

(potentially ignoring a boundary in the body, which would be an

error by the client).

The body of each range MUST be exactly as long as indicated by the

Content-Range, unless indicated otherwise by a Content-Length

header.

The multipart/byteranges type may be used for operations where

multiple regions must be updated at the same time; clients may have

an expectation that if there's an interruption, all of the parts

will be rolled back.

2.2. The message/byterange media type

When making a request with a single byte range, there is no need for

a multipart boundary marker. This document defines a new media type

"message/byterange" with the same semantics as a single byte range

in a multipart/byteranges message, but with a simplified syntax.

The "message/byterange" form may be used in a request as so:

PATCH /uploads/foo HTTP/1.1

Content-Type: multipart/byteranges; boundary=THIS_STRING_SEPARATES

Content-Length: 206

If-Match: "xyzzy"

If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

--THIS_STRING_SEPARATES

Content-Range: bytes 2-6/25

Content-Type: text/plain

23456

--THIS_STRING_SEPARATES

Content-Range: bytes 17-21/25

Content-Type: text/plain

78901

--THIS_STRING_SEPARATES--

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2046#section-5.1.1

This represents a request to modify a 600-byte document, overwriting

200 bytes of it, starting at a 100-byte offset.

The syntax is defined in Section 4.1.

2.3. The message/byterange+bhttp media type

The "message/byterange+bhttp" has the same semantics as "message/

byterange" but follows a binary format similar "message/bhttp"

[RFC9292], and may be more suitable for some clients and servers, as

all variable length strings are tagged with their length.

2.4. Appending

An append is when the range being replaced starts inside or at the

end of the target document, but extends beyond the end, increasing

the document length. For example, writing to bytes 10-19 of a 15

byte document, resulting in a 20 byte document.

Aside from the fact the document size increases, it may be handled

the same as an overwrite (below).

2.5. Splicing

A splice is when the range being replaced is a different length than

the replacement, shifting the position of the bytes that come after.

For example, deleting bytes 0-9 in a 20 byte document, resulting in

a 10 byte document. Or prepending 10 bytes to a 20 byte document,

resulting in a 30 byte document.

This can be an expensive operation that servers are not expected to

support. Servers that do not support splicing will emit an error to

clients as they attempt to process the request as an overwrite

operation (see below).

As a special case, the "Content-Range" field may omit the "-" and

last-pos to indicate insertion that does not overwrite any bytes:

PATCH /uploads/foo HTTP/1.1

Content-Type: message/byterange

Content-Length: 272

If-Match: "xyzzy"

If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

Content-Range: bytes 100-299/600

Content-Type: text/plain

[200 bytes...]

¶

¶

¶

¶

¶

¶

¶

¶

¶

Content-Range =/ range-unit SP first-pos "/" (complete-length / "*")¶

Splicing operations MUST include a Content-Length field, to indicate

the expected length of the part body.

Clients intending to perform a splice MUST include a Content-Length

field, so a server can compute if a patch will be a splice or not

before.

This whole section may need to be removed, and re-introduced using a

new field, maybe called "Content-Range-Target" since "Content-Range"

was never intended to do anything resembling splicing.

2.6. Overwriting

An overwrite only changes existing bytes, and so does not change the

length of the document.

Overwriting operations MAY include a Content-Length field. If

provided in overwriting operations, it MUST exactly match the length

of the range specified in the Content-Range field. Servers that do

not support splicing MUST error when the Content-Length mismatches

the length of the range.

2.7. Range units

Currently, the only defined range unit is "bytes", however this may

be other, yet-to-be-defined values.

In the case of "bytes", the bytes that are read are exactly the same

as the bytes that are changed. However, other units may define write

semantics different from a read, if symmetric behavior would not

make sense. For example, if a Content-Range field adds an item in a

JSON array, this write may add a leading or trailing comma, not

technically part of the item itself, in order to keep the resulting

document well-formed. Units that change the overall length of the

document might always be classified as "splice" operations.

3. Segmented document creation with PATCH

As an alternative to using PUT to create a new resource, the

contents of a resource may be uploaded in segments, written across

several PATCH requests.

A user-agent may also use PATCH to recover from an interrupted PUT

request, if it was expected to create a new resource. The server

will store the data sent to it by the user agent, but will not

finalize the upload until the final length of the document is known

and received.

The client makes a PUT or PATCH request to a URL, a portion of

which is generated by the client, to be unpredictable to other

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

clients. This first request creates the resource, and should

include If-None-Match: * to verify the target does not exist.

If a PUT request, the server reads the Content-Length header

and stores the intended final length of the document. If a

PATCH request, the "Content-Range" field in the "message/

byterange" patch is read for the final length. The final length

may also be undefined, and defined in a later request.

If any request is interrupted, the client may make a HEAD

request to determine how much, if any, of the previous response

was stored, and resumes uploading from that point. The server

will return 200 (OK), but this may only indicate the write has

been saved; the server is not obligated to begin acting on the

upload until it is complete.

If the client sees from the HEAD response that additional data

remains to be uploaded, it may make a PATCH request to resume

uploading. Even if no data was uploaded or the resource was not

created, the client should attempt creating the resource with

PATCH to mitigate the possibility of another interrupted

connection with a server that does not save incomplete

transfers. However if in response to PATCH, the server reports

405 (Method Not Allowed), 415 (Unsupported Media Type), or 501

(Not Implemented), then the client must resort to a PUT

request.

The server detects the completion of the final request when the

current received data matches the indicated final length. For

example, a Content-Range: 500-599/600 field is a write at the

end of the resource. The server processes the upload and

returns a response for it.

For building POST endpoints that support large uploads, clients can

first upload the data to a scratch file as described above, and then

process by submitting a POST request that links to the scratch file.

For updating an existing large file, the client can upload to a

scratch file, then execute a MOVE (Section 9.9 of [RFC4918]) over

the intended target.

3.1. Example

A single PUT request that creates a new resource may be split apart

into multiple PATCH requests. Here is an example that uploads a 600-

byte document across three 200-byte segments.

The first PATCH request creates the resource:

¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4918#section-9.9

This request allocates a 600 byte document, and uploading the first

200 bytes of it. The server responds with 200, indicating that the

complete upload was stored.

Additional requests upload the remainder of the document:

This second request also returns 200 (OK).

A third request uploads the final portion of the document:

The server responds with 200 (OK). Since this completely writes out

the 600-byte document, the server may also perform final processing,

for example, checking that the document is well formed. The server

MAY return an error code if there is a syntax or other error, or in

an earlier response as soon as it it able to detect an error,

however the exact behavior is left undefined.

PATCH /uploads/foo HTTP/1.1

Content-Type: message/byterange

Content-Length: 281

If-None-Match: *

Content-Range: bytes 0-199/600

Content-Type: text/plain

Content-Length: 200

[200 bytes...]

¶

¶

¶

PATCH /uploads/foo HTTP/1.1

Content-Type: message/byterange

Content-Length: 283

If-None-Match: *

Content-Range: bytes 200-399/600

Content-Type: text/plain

Content-Length: 200

[200 bytes...]

¶

¶

¶

PATCH /uploads/foo HTTP/1.1

Content-Type: message/byterange

Content-Length: 283

If-None-Match: *

Content-Range: bytes 200-399/600

Content-Type: text/plain

Content-Length: 200

[200 bytes...]

¶

¶

4. Registrations

4.1. message/byterange media type

The "message/byterange" media type patches the defined byte range to

some specified contents. It is similar to the "multipart/byteranges"

media type, except it omits the multipart separator, and so only

allows a single range to be specified.

It follows the syntax of HTTP message headers and body. It MUST

include the Content-Range header field. If the message length is

known by the sender, it SHOULD contain the Content-Length header

field. Unknown or nonapplicable header fields MUST be ignored.

The field-line and message-body productions are specified in

[RFC9112].

This document has the same semantics as a single part in a

"multipart/byteranges" document (Section 5.1.1 of [RFC2046]) or any

response with a 206 (Partial Content) status code (Section 15.3.7 of

[RFC9110]). A "message/byterange" document may be trivially

transformed into a "multipart/byteranges" document by prepending a

dash-boundary and CRLF, and appending a close-delimiter (a CRLF,

dash-boundary, terminating "--", and optional CRLF).

4.2. message/byterange+bhttp media type

The "message/byterange+bhttp" media type patches the defined byte

range to some specified contents. It has the same semantics as

"message/byterange", but follows a syntax closely resembling

"message/bhttp" [RFC9292]

¶

¶

¶

byterange-document = *(field-line CRLF)

 CRLF

 [message-body]

¶

¶

¶

https://rfc-editor.org/rfc/rfc2046#section-5.1.1
https://rfc-editor.org/rfc/rfc9110#section-15.3.7

5. Caveats

This section may be removed before final publication.

5.1. Indeterminate Length Uploads

There is no standard way for a Content-Range header to indicate an

unknown or indeterminate-length body starting at a certain offset;

the design of partial content messages requires that the sender know

the total length before transmission. However it seems it should be

possible to generate an indeterminate-length partial content

response (e.g. return a continuously growing audio file starting at

a 4MB offset). Fixing this would require a new header, update to

HTTP, or a revision of HTTP.

Ideally, this would look something like:

For example: "Content-Range: bytes 200-*/*" would indicate

overwriting or appending content, starting at a 200 byte offset.

And "Content-Range: bytes 200-*/4000" would indicate overwriting an

unknown amount of content, but not past 4000 bytes, starting at a

200 byte offset.

Request {

 Framing Indicator (i) = 8,

 Known-Length Field Section (..),

 Known-Length Content (..),

 Padding (..),

}

Known-Length Field Section {

 Length (i),

 Field Line (..) ...,

}

Known-Length Content {

 Content Length (i),

 Content (..),

}

Field Line {

 Name Length (i) = 1..,

 Name (..),

 Value Length (i),

 Value (..),

}

¶

¶

¶

¶

Content-Range =/ range-unit SP first-pos "-*/" (complete-length / "*")¶

¶

¶

Note these are different than "Content-Range: bytes 200/*" which

would indicate splicing in content at a 200 byte offset.

5.2. Sparse Documents

This pattern can enable multiple, parallel uploads to a document at

the same time. For example, uploading a large log file from multiple

devices. However, this document does not define any ways for clients

to track the unwritten regions in sparse documents, and the existing

conditional request headers are designed to cause conflicts.

Parallel uploads may requires a byte-level locking scheme or

conflict-free operators. This may be addressed in a later document.

5.3. Recovering from interrupted PUT

Servers do not necessarily save the results of an incomplete upload;

since most clients prefer atomic writes, many servers will discard

an incomplete upload. A mechanism to indicate a preference for

atomic vs. non-atomic writes may be defined at a later time.

Byte range PATCH cannot by itself be used to recover from an

interrupted PUT that updates an existing document. If the server

operation is atomic, the entire operation will be lost. If the

server saves the upload, it may not possible to know how much of the

request was received by the server, and what was old content that

already existed.

One technique would be to use a 1xx interim response to indicate a

location where the partial upload is being stored. If PUT request is

interrupted, the client can make PATCH requests to this temporary,

non-atomic location to complete the upload. When the last part is

uploaded, the original interrupted PUT request will appear.

6. Security Considerations

6.1. Unallocated ranges

The byterange media type technically permits writes to offsets

beyond the bound of the file. This may have behavior not be

predictable by the user.

Servers will normally only allow patch ranges to start inside or at

the immediate end of the representation. Servers supporting sparse

files MUST NOT return uninitialized memory or storage contents.

Uninitialized regions may be initialized prior to executing the

sparse write, or this may be left to the filesystem if it can

guarantee this behavior.

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC5234]

[RFC8174]

[RFC9110]

[RFC9112]

[RFC2046]

[RFC4918]

[RFC5789]

[RFC9292]

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,

June 2022, <https://www.rfc-editor.org/rfc/rfc9112>.

7.2. Informative References

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/rfc/rfc2046>.

Dusseault, L., Ed., "HTTP Extensions for Web Distributed

Authoring and Versioning (WebDAV)", RFC 4918, DOI

10.17487/RFC4918, June 2007, <https://www.rfc-editor.org/

rfc/rfc4918>.

Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC

5789, DOI 10.17487/RFC5789, March 2010, <https://www.rfc-

editor.org/rfc/rfc5789>.

Thomson, M. and C. A. Wood, "Binary Representation of

HTTP Messages", RFC 9292, DOI 10.17487/RFC9292, August

2022, <https://www.rfc-editor.org/rfc/rfc9292>.

Author's Address

Austin Wright

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc2046
https://www.rfc-editor.org/rfc/rfc4918
https://www.rfc-editor.org/rfc/rfc4918
https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc9292

Email: aaa@bzfx.net

mailto:aaa@bzfx.net

	Byte Range PATCH
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Modifying a content range with PATCH
	2.1. The multipart/byteranges media type
	2.2. The message/byterange media type
	2.3. The message/byterange+bhttp media type
	2.4. Appending
	2.5. Splicing
	2.6. Overwriting
	2.7. Range units

	3. Segmented document creation with PATCH
	3.1. Example

	4. Registrations
	4.1. message/byterange media type
	4.2. message/byterange+bhttp media type

	5. Caveats
	5.1. Indeterminate Length Uploads
	5.2. Sparse Documents
	5.3. Recovering from interrupted PUT

	6. Security Considerations
	6.1. Unallocated ranges

	7. References
	7.1. Normative References
	7.2. Informative References

	Author's Address

