
Internet Engineering Task Force A. Wright, Ed.
Internet-Draft
Intended status: Informational G. Luff
Expires: October 17, 2017
 H. Andrews, Ed.
 Cloudflare, Inc.
 April 15, 2017

JSON Schema Validation: A Vocabulary for Structural Validation of JSON
draft-wright-json-schema-validation-01

Abstract

 JSON Schema (application/schema+json) has several purposes, one of
 which is JSON instance validation. This document specifies a
 vocabulary for JSON Schema to describe the meaning of JSON documents,
 provide hints for user interfaces working with JSON data, and to make
 assertions about what a valid document must look like.

Note to Readers

 The issues list for this draft can be found at <https://github.com/
json-schema-org/json-schema-spec/issues>.

 For additional information, see <http://json-schema.org/>.

 To provide feedback, use this issue tracker, the communication
 methods listed on the homepage, or email the document editors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 17, 2017.

Wright, et al. Expires October 17, 2017 [Page 1]

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
http://json-schema.org/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Schema Validation April 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 4
3. Interoperability considerations 4
3.1. Validation of string instances 4
3.2. Validation of numeric instances 4
3.3. Regular expressions 4

4. General validation considerations 5
4.1. Keywords and instance primitive types 5
4.2. Validation of primitive types and child values 5
4.3. Constraints and missing keywords 6
4.4. Keyword independence 6

5. Meta-schema . 6
6. Validation keywords . 6
6.1. multipleOf . 6
6.2. maximum . 6
6.3. exclusiveMaximum . 7
6.4. minimum . 7
6.5. exclusiveMinimum . 7
6.6. maxLength . 7
6.7. minLength . 7
6.8. pattern . 8
6.9. items . 8
6.10. additionalItems . 8
6.11. maxItems . 9
6.12. minItems . 9
6.13. uniqueItems . 9
6.14. contains . 9
6.15. maxProperties . 9
6.16. minProperties . 9
6.17. required . 10
6.18. properties . 10

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Wright, et al. Expires October 17, 2017 [Page 2]

Internet-Draft JSON Schema Validation April 2017

6.19. patternProperties . 10
6.20. additionalProperties 11
6.21. dependencies . 11
6.22. propertyNames . 11
6.23. enum . 12
6.24. const . 12
6.25. type . 12
6.26. allOf . 12
6.27. anyOf . 12
6.28. oneOf . 13
6.29. not . 13

7. Metadata keywords . 13
7.1. definitions . 13
7.2. "title" and "description" 14
7.3. "default" . 14
7.4. "examples" . 14

8. Semantic validation with "format" 14
8.1. Foreword . 14
8.2. Implementation requirements 15
8.3. Defined formats . 15
8.3.1. date-time . 15
8.3.2. email . 15
8.3.3. hostname . 15
8.3.4. ipv4 . 15
8.3.5. ipv6 . 16
8.3.6. uri . 16
8.3.7. uri-reference . 16
8.3.8. uri-template . 16
8.3.9. json-pointer . 16

9. Security considerations 16
10. References . 17
10.1. Normative References 17
10.2. Informative References 17

Appendix A. Acknowledgments 19
Appendix B. ChangeLog . 19

 Authors' Addresses . 20

1. Introduction

 JSON Schema can be used to require that a given JSON document (an
 instance) satisfies a certain number of criteria. These criteria are
 asserted by using keywords described in this specification. In
 addition, a set of keywords is also defined to assist in interactive
 user interface instance generation.

 This specification will use the terminology defined by the JSON
 Schema core [json-schema] specification.

Wright, et al. Expires October 17, 2017 [Page 3]

Internet-Draft JSON Schema Validation April 2017

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This specification uses the term "container instance" to refer to
 both array and object instances. It uses the term "children
 instances" to refer to array elements or object member values.

 Elements in an array value are said to be unique if no two elements
 of this array are equal [json-schema].

3. Interoperability considerations

3.1. Validation of string instances

 It should be noted that the nul character (\u0000) is valid in a JSON
 string. An instance to validate may contain a string value with this
 character, regardless of the ability of the underlying programming
 language to deal with such data.

3.2. Validation of numeric instances

 The JSON specification allows numbers with arbitrary precision, and
 JSON Schema does not add any such bounds. This means that numeric
 instances processed by JSON Schema can be arbitrarily large and/or
 have an arbitrarily long decimal part, regardless of the ability of
 the underlying programming language to deal with such data.

3.3. Regular expressions

 Two validation keywords, "pattern" and "patternProperties", use
 regular expressions to express constraints. These regular
 expressions SHOULD be valid according to the ECMA 262 [ecma262]
 regular expression dialect.

 Furthermore, given the high disparity in regular expression
 constructs support, schema authors SHOULD limit themselves to the
 following regular expression tokens:

 individual Unicode characters, as defined by the JSON
 specification [RFC7159];

 simple character classes ([abc]), range character classes ([a-z]);

 complemented character classes ([^abc], [^a-z]);

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159

Wright, et al. Expires October 17, 2017 [Page 4]

Internet-Draft JSON Schema Validation April 2017

 simple quantifiers: "+" (one or more), "*" (zero or more), "?"
 (zero or one), and their lazy versions ("+?", "*?", "??");

 range quantifiers: "{x}" (exactly x occurrences), "{x,y}" (at
 least x, at most y, occurrences), {x,} (x occurrences or more),
 and their lazy versions;

 the beginning-of-input ("^") and end-of-input ("$") anchors;

 simple grouping ("(...)") and alternation ("|").

 Finally, implementations MUST NOT take regular expressions to be
 anchored, neither at the beginning nor at the end. This means, for
 instance, the pattern "es" matches "expression".

4. General validation considerations

4.1. Keywords and instance primitive types

 Most validation keywords only constrain values within a certain
 primitive type. When the type of the instance is not of the type
 targeted by the keyword, the validation succeeds.

 For example, the "maxLength" keyword will only restrict certain
 strings (that are too long) from being valid. If the instance is a
 number, boolean, null, array, or object, the keyword passes
 validation.

4.2. Validation of primitive types and child values

 Two of the primitive types, array and object, allow for child values.
 The validation of the primitive type is considered separately from
 the validation of child instances.

 For arrays, primitive type validation consists of validating
 restrictions on length with "minItems" and "maxItems", while "items"
 and "additionalItems" determine which subschemas apply to which
 elements of the array. In addition, "uniqueItems" and "contains"
 validate array contents as a whole.

 For objects, primitive type validation consists of validating
 restrictions on which and how many properties appear with "required",
 "minProperties", "maxProperties", "propertyNames", and the string
 array form of "dependencies", while "properties",
 "patternProperties", and "additionalProperties" determine which
 subschemas apply to which object property values. In addition, the
 schema form of "dependencies" validates the object as a whole based
 on the presence of specific property names.

Wright, et al. Expires October 17, 2017 [Page 5]

Internet-Draft JSON Schema Validation April 2017

4.3. Constraints and missing keywords

 Each JSON Schema validation keyword adds constraints that an instance
 must satisfy in order to successfully validate.

 Validation keywords that are missing never restrict validation. In
 some cases, this no-op behavior is identical to a keyword that exists
 with certain values, and these values are noted where known.

4.4. Keyword independence

 Validation keywords typically operate independently, without
 affecting each other's outcomes.

 For schema author convenience, there are some exceptions:

 "additionalProperties", whose behavior is defined in terms of
 "properties" and "patternProperties"; and

 "additionalItems", whose behavior is defined in terms of "items".

5. Meta-schema

 The current URI for the JSON Schema Validation is <http://json-
schema.org/draft-06/schema#>.

6. Validation keywords

 Validation keywords in a schema impose requirements for successful
 validation of an instance.

6.1. multipleOf

 The value of "multipleOf" MUST be a number, strictly greater than 0.

 A numeric instance is valid only if division by this keyword's value
 results in an integer.

6.2. maximum

 The value of "maximum" MUST be a number, representing an inclusive
 upper limit for a numeric instance.

 If the instance is a number, then this keyword validates only if the
 instance is less than or exactly equal to "maximum".

http://json-schema.org/draft-06/schema#
http://json-schema.org/draft-06/schema#

Wright, et al. Expires October 17, 2017 [Page 6]

Internet-Draft JSON Schema Validation April 2017

6.3. exclusiveMaximum

 The value of "exclusiveMaximum" MUST be number, representing an
 exclusive upper limit for a numeric instance.

 If the instance is a number, then the instance is valid only if it
 has a value strictly less than (not equal to) "exclusiveMaximum".

6.4. minimum

 The value of "minimum" MUST be a number, representing an inclusive
 upper limit for a numeric instance.

 If the instance is a number, then this keyword validates only if the
 instance is greater than or exactly equal to "minimum".

6.5. exclusiveMinimum

 The value of "exclusiveMinimum" MUST be number, representing an
 exclusive upper limit for a numeric instance.

 If the instance is a number, then the instance is valid only if it
 has a value strictly greater than (not equal to) "exclusiveMinimum".

6.6. maxLength

 The value of this keyword MUST be a non-negative integer.

 A string instance is valid against this keyword if its length is less
 than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 7159 [RFC7159].

6.7. minLength

 The value of this keyword MUST be a non-negative integer.

 A string instance is valid against this keyword if its length is
 greater than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 7159 [RFC7159].

 Omitting this keyword has the same behavior as a value of 0.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Wright, et al. Expires October 17, 2017 [Page 7]

Internet-Draft JSON Schema Validation April 2017

6.8. pattern

 The value of this keyword MUST be a string. This string SHOULD be a
 valid regular expression, according to the ECMA 262 regular
 expression dialect.

 A string instance is considered valid if the regular expression
 matches the instance successfully. Recall: regular expressions are
 not implicitly anchored.

6.9. items

 The value of "items" MUST be either a valid JSON Schema or an array
 of valid JSON Schemas.

 This keyword determines how child instances validate for arrays, and
 does not directly validate the immediate instance itself.

 If "items" is a schema, validation succeeds if all elements in the
 array successfully validate against that schema.

 If "items" is an array of schemas, validation succeeds if each
 element of the instance validates against the schema at the same
 position, if any.

 Omitting this keyword has the same behavior as an empty schema.

6.10. additionalItems

 The value of "additionalItems" MUST be a valid JSON Schema.

 This keyword determines how child instances validate for arrays, and
 does not directly validate the immediate instance itself.

 If "items" is an array of schemas, validation succeeds if every
 instance element at a position greater than the size of "items"
 validates against "additionalItems".

 Otherwise, "additionalItems" MUST be ignored, as the "items" schema
 (possibly the default value of an empty schema) is applied to all
 elements.

 Omitting this keyword has the same behavior as an empty schema.

Wright, et al. Expires October 17, 2017 [Page 8]

Internet-Draft JSON Schema Validation April 2017

6.11. maxItems

 The value of this keyword MUST be a non-negative integer.

 An array instance is valid against "maxItems" if its size is less
 than, or equal to, the value of this keyword.

6.12. minItems

 The value of this keyword MUST be a non-negative integer.

 An array instance is valid against "minItems" if its size is greater
 than, or equal to, the value of this keyword.

 Omitting this keyword has the same behavior as a value of 0.

6.13. uniqueItems

 The value of this keyword MUST be a boolean.

 If this keyword has boolean value false, the instance validates
 successfully. If it has boolean value true, the instance validates
 successfully if all of its elements are unique.

 Omitting this keyword has the same behavior as a value of false.

6.14. contains

 The value of this keyword MUST be a valid JSON Schema.

 An array instance is valid against "contains" if at least one of its
 elements is valid against the given schema.

6.15. maxProperties

 The value of this keyword MUST be a non-negative integer.

 An object instance is valid against "maxProperties" if its number of
 properties is less than, or equal to, the value of this keyword.

6.16. minProperties

 The value of this keyword MUST be a non-negative integer.

 An object instance is valid against "minProperties" if its number of
 properties is greater than, or equal to, the value of this keyword.

 Omitting this keyword has the same behavior as a value of 0.

Wright, et al. Expires October 17, 2017 [Page 9]

Internet-Draft JSON Schema Validation April 2017

6.17. required

 The value of this keyword MUST be an array. Elements of this array,
 if any, MUST be strings, and MUST be unique.

 An object instance is valid against this keyword if every item in the
 array is the name of a property in the instance.

 Omitting this keyword has the same behavior as an empty array.

6.18. properties

 The value of "properties" MUST be an object. Each value of this
 object MUST be a valid JSON Schema.

 This keyword determines how child instances validate for objects, and
 does not directly validate the immediate instance itself.

 Validation succeeds if, for each name that appears in both the
 instance and as a name within this keyword's value, the child
 instance for that name successfully validates against the
 corresponding schema.

 Omitting this keyword has the same behavior as an empty object.

6.19. patternProperties

 The value of "patternProperties" MUST be an object. Each property
 name of this object SHOULD be a valid regular expression, according
 to the ECMA 262 regular expression dialect. Each property value of
 this object MUST be a valid JSON Schema.

 This keyword determines how child instances validate for objects, and
 does not directly validate the immediate instance itself. Validation
 of the primitive instance type against this keyword always succeeds.

 Validation succeeds if, for each instance name that matches any
 regular expressions that appear as a property name in this keyword's
 value, the child instance for that name successfully validates
 against each schema that corresponds to a matching regular
 expression.

 Omitting this keyword has the same behavior as an empty object.

Wright, et al. Expires October 17, 2017 [Page 10]

Internet-Draft JSON Schema Validation April 2017

6.20. additionalProperties

 The value of "additionalProperties" MUST be a valid JSON Schema.

 This keyword determines how child instances validate for objects, and
 does not directly validate the immediate instance itself.

 Validation with "additionalProperties" applies only to the child
 values of instance names that do not match any names in "properties",
 and do not match any regular expression in "patternProperties".

 For all such properties, validation succeeds if the child instance
 validates against the "additionalProperties" schema.

 Omitting this keyword has the same behavior as an empty schema.

6.21. dependencies

 This keyword specifies rules that are evaluated if the instance is an
 object and contains a certain property.

 This keyword's value MUST be an object. Each property specifies a
 dependency. Each dependency value MUST be an array or a valid JSON
 Schema.

 If the dependency value is a subschema, and the dependency key is a
 property in the instance, the entire instance must validate against
 the dependency value.

 If the dependency value is an array, each element in the array, if
 any, MUST be a string, and MUST be unique. If the dependency key is
 a property in the instance, each of the items in the dependency value
 must be a property that exists in the instance.

 Omitting this keyword has the same behavior as an empty object.

6.22. propertyNames

 The value of "propertyNames" MUST be a valid JSON Schema.

 If the instance is an object, this keyword validates if every
 property name in the instance validates against the provided schema.
 Note the property name that the schema is testing will always be a
 string.

 Omitting this keyword has the same behavior as an empty schema.

Wright, et al. Expires October 17, 2017 [Page 11]

Internet-Draft JSON Schema Validation April 2017

6.23. enum

 The value of this keyword MUST be an array. This array SHOULD have
 at least one element. Elements in the array SHOULD be unique.

 An instance validates successfully against this keyword if its value
 is equal to one of the elements in this keyword's array value.

 Elements in the array might be of any value, including null.

6.24. const

 The value of this keyword MAY be of any type, including null.

 An instance validates successfully against this keyword if its value
 is equal to the value of the keyword.

6.25. type

 The value of this keyword MUST be either a string or an array. If it
 is an array, elements of the array MUST be strings and MUST be
 unique.

 String values MUST be one of the six primitive types ("null",
 "boolean", "object", "array", "number", or "string"), or "integer"
 which matches any number with a zero fractional part.

 An instance validates if and only if the instance is in any of the
 sets listed for this keyword.

6.26. allOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against all schemas defined by this keyword's
 value.

6.27. anyOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against at least one schema defined by this
 keyword's value.

Wright, et al. Expires October 17, 2017 [Page 12]

Internet-Draft JSON Schema Validation April 2017

6.28. oneOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against exactly one schema defined by this
 keyword's value.

6.29. not

 This keyword's value MUST be a valid JSON Schema.

 An instance is valid against this keyword if it fails to validate
 successfully against the schema defined by this keyword.

7. Metadata keywords

7.1. definitions

 This keyword's value MUST be an object. Each member value of this
 object MUST be a valid JSON Schema.

 This keyword plays no role in validation per se. Its role is to
 provide a standardized location for schema authors to inline JSON
 Schemas into a more general schema.

 As an example, here is a schema describing an array of positive
 integers, where the positive integer constraint is a subschema in
 "definitions":

 {
 "type": "array",
 "items": { "$ref": "#/definitions/positiveInteger" },
 "definitions": {
 "positiveInteger": {
 "type": "integer",
 "exclusiveMinimum": 0
 }
 }
 }

Wright, et al. Expires October 17, 2017 [Page 13]

Internet-Draft JSON Schema Validation April 2017

7.2. "title" and "description"

 The value of both of these keywords MUST be a string.

 Both of these keywords can be used to decorate a user interface with
 information about the data produced by this user interface. A title
 will preferably be short, whereas a description will provide
 explanation about the purpose of the instance described by this
 schema.

7.3. "default"

 There are no restrictions placed on the value of this keyword.

 This keyword can be used to supply a default JSON value associated
 with a particular schema. It is RECOMMENDED that a default value be
 valid against the associated schema.

7.4. "examples"

 The value of this keyword MUST be an array. There are no
 restrictions placed on the values within the array.

 This keyword can be used to provide sample JSON values associated
 with a particular schema, for the purpose of illustrating usage. It
 is RECOMMENDED that these values be valid against the associated
 schema.

 Implementations MAY use the value of "default", if present, as an
 additional example. If "examples" is absent, "default" MAY still be
 used in this manner.

8. Semantic validation with "format"

8.1. Foreword

 Structural validation alone may be insufficient to validate that an
 instance meets all the requirements of an application. The "format"
 keyword is defined to allow interoperable semantic validation for a
 fixed subset of values which are accurately described by
 authoritative resources, be they RFCs or other external
 specifications.

 The value of this keyword is called a format attribute. It MUST be a
 string. A format attribute can generally only validate a given set
 of instance types. If the type of the instance to validate is not in
 this set, validation for this format attribute and instance SHOULD
 succeed.

Wright, et al. Expires October 17, 2017 [Page 14]

Internet-Draft JSON Schema Validation April 2017

8.2. Implementation requirements

 Implementations MAY support the "format" keyword. Should they choose
 to do so:

 they SHOULD implement validation for attributes defined below;

 they SHOULD offer an option to disable validation for this
 keyword.

 Implementations MAY add custom format attributes. Save for agreement
 between parties, schema authors SHALL NOT expect a peer
 implementation to support this keyword and/or custom format
 attributes.

8.3. Defined formats

8.3.1. date-time

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 date representation as defined by RFC 3339, section 5.6 [RFC3339].

8.3.2. email

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 Internet email address as defined by RFC 5322, section 3.4.1
 [RFC5322].

8.3.3. hostname

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 representation for an Internet host name, as defined by RFC 1034,
 section 3.1 [RFC1034].

8.3.4. ipv4

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 representation of an IPv4 address according to the "dotted-quad" ABNF
 syntax as defined in RFC 2673, section 3.2 [RFC2673].

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc1034#section-3.1
https://datatracker.ietf.org/doc/html/rfc1034#section-3.1
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2673#section-3.2
https://datatracker.ietf.org/doc/html/rfc2673

Wright, et al. Expires October 17, 2017 [Page 15]

Internet-Draft JSON Schema Validation April 2017

8.3.5. ipv6

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 representation of an IPv6 address as defined in RFC 2373, section 2.2
 [RFC2373].

8.3.6. uri

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 URI, according to [RFC3986].

8.3.7. uri-reference

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 URI Reference (either a URI or a relative-reference), according to
 [RFC3986].

8.3.8. uri-template

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 URI Template (of any level), according to [RFC6570].

8.3.9. json-pointer

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 JSON Pointer, according to [RFC6901]

9. Security considerations

 JSON Schema validation defines a vocabulary for JSON Schema core and
 concerns all the security considerations listed there.

 JSON Schema validation allows the use of Regular Expressions, which
 have numerous different (often incompatible) implementations. Some
 implementations allow the embedding of arbitrary code, which is
 outside the scope of JSON Schema and MUST NOT be permitted. Regular
 expressions can often also be crafted to be extremely expensive to

https://datatracker.ietf.org/doc/html/rfc2373#section-2.2
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6901

Wright, et al. Expires October 17, 2017 [Page 16]

Internet-Draft JSON Schema Validation April 2017

 compute (with so-called "catastrophic backtracking"), resulting in a
 denial-of-service attack.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [json-schema]
 "JSON Schema: A Media Type for Describing JSON Documents",

draft-wright-json-schema-00 (work in progress), October
 2016.

10.2. Informative References

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, DOI 10.17487/RFC2373, July 1998,
 <http://www.rfc-editor.org/info/rfc2373>.

 [RFC2673] Crawford, M., "Binary Labels in the Domain Name System",
RFC 2673, DOI 10.17487/RFC2673, August 1999,

 <http://www.rfc-editor.org/info/rfc2673>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-00
https://datatracker.ietf.org/doc/html/rfc1034
http://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc2373
http://www.rfc-editor.org/info/rfc2373
https://datatracker.ietf.org/doc/html/rfc2673
http://www.rfc-editor.org/info/rfc2673
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570

Wright, et al. Expires October 17, 2017 [Page 17]

Internet-Draft JSON Schema Validation April 2017

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <http://www.rfc-editor.org/info/rfc6901>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <http://www.rfc-editor.org/info/rfc5322>.

 [ecma262] "ECMA 262 specification", <http://www.ecma-
international.org/publications/files/ECMA-ST/
Ecma-262.pdf>.

https://datatracker.ietf.org/doc/html/rfc6901
http://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc5322
http://www.rfc-editor.org/info/rfc5322
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Wright, et al. Expires October 17, 2017 [Page 18]

Internet-Draft JSON Schema Validation April 2017

Appendix A. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff
 for their work on the initial drafts of JSON Schema.

 Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton,
 Evgeny Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, and
 Dave Finlay for their submissions and patches to the document.

Appendix B. ChangeLog

 [[CREF1: This section to be removed before leaving Internet-Draft
 status.]]

draft-wright-json-schema-validation-01

 * Standardized on hyphenated format names ("uriref" becomes "uri-
 ref")

 * Add the formats "uri-template" and "json-pointer"

 * Changed "exclusiveMaximum"/"exclusiveMinimum" from boolean
 modifiers of "maximum"/"minimum" to independent numeric fields.

 * Split the additionalItems/items into two sections

 * Reworked properties/patternProperties/additionalProperties
 definition

 * Added "examples" keyword

 * Added "contains" keyword

 * Allow empty "required" and "dependencies" arrays

 * Fixed "type" reference to primitive types

 * Added "const" keyword

 * Added "propertyNames" keyword

draft-wright-json-schema-validation-00

 * Added additional security considerations

 * Removed reference to "latest version" meta-schema, use numbered
 version instead

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-00

Wright, et al. Expires October 17, 2017 [Page 19]

Internet-Draft JSON Schema Validation April 2017

 * Rephrased many keyword definitions for brevity

 * Added "uriref" format that also allows relative URI references

draft-fge-json-schema-validation-01

 * Initial draft.

 * Salvaged from draft v3.

 * Redefine the "required" keyword.

 * Remove "extends", "disallow"

 * Add "anyOf", "allOf", "oneOf", "not", "definitions",
 "minProperties", "maxProperties".

 * "dependencies" member values can no longer be single strings;
 at least one element is required in a property dependency
 array.

 * Rename "divisibleBy" to "multipleOf".

 * "type" arrays can no longer have schemas; remove "any" as a
 possible value.

 * Rework the "format" section; make support optional.

 * "format": remove attributes "phone", "style", "color"; rename
 "ip-address" to "ipv4"; add references for all attributes.

 * Provide algorithms to calculate schema(s) for array/object
 instances.

 * Add interoperability considerations.

Authors' Addresses

 Austin Wright (editor)

 EMail: aaa@bzfx.net

 Geraint Luff

 EMail: luffgd@gmail.com

https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-01

Wright, et al. Expires October 17, 2017 [Page 20]

Internet-Draft JSON Schema Validation April 2017

 Henry Andrews (editor)
 Cloudflare, Inc.

 EMail: henry@cloudflare.com

Wright, et al. Expires October 17, 2017 [Page 21]

