
Netmod Working Group Q. Wu
Internet-Draft Huawei
Intended status: Best Current Practice A. Farrel
Expires: December 18, 2018 Juniper Networks
 B. Claise
 Cisco Systems, Inc.
 June 16, 2018

Documentation Conventions for lines wrapping and indentation in authored
 work

draft-wu-netmod-yang-xml-doc-conventions-05

Abstract

 Many documents that define YANG modules or YANG fragments also
 include protocol message instance data examples.

 IETF documentation has specific limits on line length (73 characters)
 and some YANG fragment example or protocol message instance data
 examples such as XML encoded YANG data node instance examples have to
 include line wraps that would not normally be allowed according to
 the XML representation rules of RFC7950 and RFC7952.

 This document lays out documentation conventions that allow authored
 work to be presented in IETF documentation when authored work such as
 YANG fragment or protocol message instance data example would
 otherwise exceed the maximum line length and provide consistent
 representation of authored work within an Internet-Draft or RFC.
 There are no implications in this document for YANG tools: this
 document does not change the rules for presenting authored work in
 data files or in the wire.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Wu, et al. Expires December 18, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/draft-wu-netmod-yang-xml-doc-conventions-05
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7952
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft YANG Documentation Conventions June 2018

 This Internet-Draft will expire on December 18, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions Used in this Document 3
2.1. Glossary of New Terms 4

3. Long line wrapping Example 4
4. Objectives . 5
5. Line wrapping and indentation document convention 5
5.1. Long line wrapping 6
5.2. Line unwrapping . 7
5.3. Auto indentation and dedentation 8

6. Limitation and complexity 8
6.1. Limitations . 8
6.2. Complexity . 9

7. Security Considerations 9
8. IANA Considerations . 9
9. Acknowledgements . 9
10. Normative References . 10
Appendix A. Representing XML and JSON Encodings of Metadata

 Annotations . 10
Appendix B. Auto-wrapping tool code 11

 Authors' Addresses . 15

1. Introduction

 When documenting authored work such as YANG fragments example of
 example of YANG module represented in XML encoding it is possible
 that the representation of these authored work will exceed the
 available line length. Indentation may further aggravate this issue.
 The line wrapping is needed for formatting purposes, however
 different document author may take different ways to wrap line which

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Wu, et al. Expires December 18, 2018 [Page 2]

Internet-Draft YANG Documentation Conventions June 2018

 makes difficult to improve the readability and interoperability of
 published YANG data models.

 This document lays out documentation conventions that allow authored
 work to be presented in IETF documentation when authored work such as
 YANG fragment or protocol message instance data example would
 otherwise exceed the maximum line length and provide consistent
 representation of authored work within an Internet-Draft or RFC.

 Document conventions defined in this document are not representative
 of how the Authored work must be presented to a software component or
 carried on the wire. There are no implications in this document for
 YANG tools(e.g., libyang parser): this document does not change the
 rules for presenting YANG models or for encoding YANG in data files
 or in the wire.

2. Conventions Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o data node

 o leaf

 o leaf-list

 o instance

 The following term is defined in [RFC7951] and [RFC7952] and are not
 redefined here:

 o data node Instance

 o data node identifier

 The following terms are defined in [RFC8340]and
 [I-D.ietf-netmod-rfc6087bis].

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc7952
https://datatracker.ietf.org/doc/html/rfc8340

Wu, et al. Expires December 18, 2018 [Page 3]

Internet-Draft YANG Documentation Conventions June 2018

2.1. Glossary of New Terms

 Authored work: A set of text format work representing YANG
 fragments, and protocol message instance data except YANG Tree
 Diagrams.

 Wrap: Convert authored work with long lines not fitting into an
 Internet-Draft or RFC into authored work with split line fitting
 into an Internet-Draft or RFC.

 Unwrap: Re-Convert authored work with split line fitting into an
 Internet-Draft or RFC back to valid authored work without split
 line that can be consumed by a software component or carried on
 the wire.

 Indent: used to describe the distance, or number of blank spaces
 used to separate a paragraph from the left or right margins.

 Libyang parser: YANG tool and library for parsing and validating
 YANG schemas and instance data.

3. Long line wrapping Example

 An example of the documentation of a leaf node is shown in Figure 1.
 The container node is called <parent-node-label>, any whitespace,
 carriage returns, or line feeds between the subelements <parent-node-
 label> is insignificant, i.e., an implementation MAY insert
 whitespace, carriage return, or line feed characters between
 subelements. The leaf is called "long-leaf-node-label" and is
 assigned the value "long-leaf-node-value". As can be seen in the
 example, this fits on one line. However it would only take the
 addition of a few more characters to the node label or value for the
 example to overflow the 73 character limit if the line of leaf node
 instance is indented (e.g., start below <parent-node-label> with a
 whitespace offset of two characters. .

 <parent-node-label>
 <long-leaf-node-label>long-leaf-node-value</long-leaf-node-label>
 </parent-node-label>

 Figure 1: A Simple Leaf Node Example

 For the sake of documentation purpose, the representation shown in
 Figure 2 SHALL be considered as equivalent to that shown in Figure 1,
 but when a document uses this convention it MUST also include the
 text shown in Figure 3. Note that the first example representation
 in figure 2 is more easily parsed by a human reader than the second
 example in figure 2.

Wu, et al. Expires December 18, 2018 [Page 4]

Internet-Draft YANG Documentation Conventions June 2018

 <parent-node-label>
 <long-leaf-node-label>\
 long-leaf-node-value\
 </long-leaf-node-label>
 </parent-node-label>
 Or
 <parent-node-label>
 <long-leaf-node-label> long-leaf-node-value </long-leaf-nod\
 e-label>
 </parent-node-label>

 Figure 2: A Split Leaf Node Example

4. Objectives

 In order to allow authored work to be presented in IETF documentation
 when authored work such as YANG fragment or protocol message instance
 data example would otherwise exceed the maximum line length and
 provide consistent representation of the authored work within an
 Internet-Draft or RFC, the following design criteria are used:

 o Allow automatic wrapping line when any line presented in the
 authored work of I-D or RFCs exceed the maximum line length.

 o Allow automatic unwrapping line in the artwork when the artwork
 needs to be presented to a software component or carried on the
 wire.

5. Line wrapping and indentation document convention

 When the representation of an authored work (e.g.,a leaf node
 instance representation) in an example would result in a line being
 longer than the maximum line length for an IETF document the long
 line must be split and presented on more than one lines. The new
 line may be indented, if necessary, so that it starts below the first
 line with a whitespace offset of two characters, which improve
 readability and interoperability of published YANG data models.

 When these authored work with split lines needs to be fed into
 software component or carried in the wire, these authored work with
 split lines should be unwrapped and reversed into the valid authored
 work with long line. If the indentation is applied to authored work
 with split lines, the indentation should be removed during unwrapped
 process.

Wu, et al. Expires December 18, 2018 [Page 5]

Internet-Draft YANG Documentation Conventions June 2018

5.1. Long line wrapping

 Long line wrapping most likely to happen when the authored work
 example such as leaf node contains built-in type string or datetime
 or container node and list node includes metadata attributes.
 Indeed, if this problem arises for other YANG types it may be
 indicative of poorly chosen YANG type values, and the YANG
 definitions should be revised before applying document convention for
 line wrapping defined in this document.

 In the case of long line exceeding 73 characters, the following long
 line wrapping conventions MUST be observed:

 o Split long line in the authored work (e.g.,leaf node instance,
 YANG data node instance containing metadata annotation attributes)
 exceeding 73 characters limits with the backslash ("\") and use
 backslash ("\")to indicate wrapping at the end of the line. The
 broken line MUST be terminated with a backslash ("\") without the
 addition of any additional space before the backslash and with no
 further characters after the backslash.

 o Any continuation lines or new line MUST align with the first line
 and MAY chose be indented with two whitespace offset for
 readability purposes.

 o When a backslash appears in any line not used for split line, the
 representation of this artwork MUST be arranged so that this
 backslash is not the final character of a broken line. If this
 backslash is the second last character (e.g., backslash at the
 position 72) of a broken line, the line should be split at the
 position one or several characters before this backslash as the
 second last character with the backslash ("\") . In extreme case,
 if a long line is full of backslashes, the backslashs before
 backslash at position 73 in this line should be treated in the
 same way as other normal characters.

 Furthermore, whenever a document uses long line wrapping conventions
 it MUST also include the following boilerplate text :

 [!!! '\' line wrapping is for formatting only and adopt the conventions
 shown in BCPXX [RFCYYYY]]
 <WRAPPED TEXT BEGIN>
 //Authored work
 <WRAPPED TEXT END>
 RFC Editor Note: Please replace XX and YYYY with the numbers assigned
 for this document.

 Figure 3

Wu, et al. Expires December 18, 2018 [Page 6]

Internet-Draft YANG Documentation Conventions June 2018

 Figure 4 shows an example of Backslash appearing in the long line not
 used for split line.

 <long-leaf-complex-string-node-label>Punctuation is important. As
 are line feeds.Some characters are special,e.g., the backslash\.
 Don't forget. </long-leaf-string-node-label>

 Figure 4: An Example Leaf Node With a Complex String Value

 Figure 5 shows a semantically equivalent representation of the
 example.

 <long-leaf-complex-string-node-label>Punctuation is important. As \
 are line feeds.Some characters are special,e.g., the backslash \.\
 Don't forget.</long-leaf-string-node-label>

 Figure 5

5.2. Line unwrapping

 If line wrapping is done for formatting purposes, the line wrapping
 in the authored work should be reversed back or unwrapped before the
 authored work is fed into software component for validation or
 carried in the wire. Therefore line unwrapping help remove backslash
 and additional carriage return or line feed character and make
 unwrapped authored work to be effectively compliant with the tool.
 The line wrapping for formatting purpose is indicated by the above
 boilerplate text in Figure 3. To unwrap line, the following
 conventions must be observed:

 o Consecutive split lines in the authored work with backslash at the
 end of the line should be merged into one long line, the last
 split line in Consecutive split lines should not be terminated
 with backslash.

 o If a backslash character ("\") doesn't appear at the end of the
 line within authored work, it should not be stripped.

 o If a backslash character ("\") appears at the end of the line
 within authored work, it should be stripped. In the meanwhile, if
 and only if it is immediately followed by a carriage return or
 line feed character then all carriage return, line feed, and
 whitespace characters should be stripped until the next character
 is encountered.

 o In extrem case, if a backslash character ("\") or space character
 appears full of line, the full line of backslash character ("\")
 or space character should be stripped.

Wu, et al. Expires December 18, 2018 [Page 7]

Internet-Draft YANG Documentation Conventions June 2018

5.3. Auto indentation and dedentation

 Consistent indentation should be used for all authored work in the
 I-D and RFCs, e.g., if a space or tab characters are used to index
 the text in the long line during wraping process, the space and tab
 characters used for indentation should be removed during unwrapping
 process. If the new line or continuation line indented with a
 whitespace offset of two characters during wrapping process, the
 indentation with a whitespace offset of two characters should be
 removed during unwrapping process.

6. Limitation and complexity

6.1. Limitations

 All modules need to be extracted YANG modules from an Internet Draft
 or RFC and then validated before submission in an Internet Draft.
 However we don't have automation tool to extract authored work such
 as YANG fragments or protocol message instance. To extract authored
 work, the similar strings "<CODE BEGINS>" and "<CODE ENDS>" MUST be
 defined and populated to identify each authored work component, e.g.,
 the boilerplate text in Section 5 can be used to indicate the
 begining of authored work.

 Applying wrapping and unwrapping functionality to example YANG module
 or YANG module extracted using existing tool also has limitation,
 even introduce confusion, e.g.,

 1. The data definition description statement has long line exceeding
 73 characters, it should be wrapped without using backslash as
 termination point.

 "
 grouping link-ref {
 description
 "This grouping can be used to reference a link in a specific
 network. Although it is not used in this module, it is
 defined here for the convenience of augmenting modules.";
 "

 2. Another example is when a plus character ("+") is used to
 concatenate two quoted string into one string, using backslash to
 split the line Confuses with using a plus character ("+") to
 split the line.

Wu, et al. Expires December 18, 2018 [Page 8]

Internet-Draft YANG Documentation Conventions June 2018

 "
 container dhcp-relay {
 when "derived-from-or-self(../address-allocation-type, "+
 "'l3vpn-svc:provider-dhcp-relay')" {
 description
 "Only applies when provider is required to implement
 DHCP relay function.";
 }
 "

6.2. Complexity

 We can build tool to support auto wrap and auto indentation. However
 if the tool is designed to understand various encodings, e.g., XML
 encoding, JSON encoding or metadata annotation, it adds a lot of
 complexity to build such tool, therefore the only choice to make tool
 understand various encodings, is to build encoding specific tool
 which doesn't scale well,e.g., if the tool understands metadata
 annotation, we can decide where to insert backslash to split the
 lines: either inserted between metadata Attributes or insert at any
 place when the long line exceeding 73 characters limits. See more
 complexity details in Appendix A.

7. Security Considerations

 There is no direct security impact related to the documentation
 convention for lines wrapping and indentation in authored work
 described in this document. However, attempting to provide
 representation of authored work using the documentation conventions
 described in this document would have unpredictable results. The
 risk here is that someone uses an example as a template for actual
 authored work representation. The mandatory boilerplate text
 provides a mitigation against this risk.

8. IANA Considerations

 There are no IANA requests or assignments included in this document.

9. Acknowledgements

 Thanks to Kent Watsen for discussions that kept us close to being on
 the right track. Additional thanks to John Scudder for flagging some
 nits, Martin Bjorklund, Charles Eckel, Robert Wilton and many others
 for valuable comments and review, special thanks Xiongjie to help
 support automation tool building.

Wu, et al. Expires December 18, 2018 [Page 9]

Internet-Draft YANG Documentation Conventions June 2018

10. Normative References

 [I-D.ietf-netmod-rfc6087bis]
 Bierman, A., "Guidelines for Authors and Reviewers of YANG
 Data Model Documents", draft-ietf-netmod-rfc6087bis-20
 (work in progress), March 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,

 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <https://www.w3.org/TR/2008/REC-xml-20081126/>.

Appendix A. Representing XML and JSON Encodings of Metadata Annotations

 [RFC7952] section 5.1 and section 5.2 provide an encoding rule for
 metadata annotations in XML and JSON respectively.

 When an example XML representation of a leaf node element that
 includes metadata attributes results in a line being longer than the
 maximum number of characters allowed in a line of an IETF document,
 the value of the leaf node must be split across more than one line.

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc6087bis-20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://www.rfc-editor.org/info/rfc7951
https://datatracker.ietf.org/doc/html/rfc7952
https://www.rfc-editor.org/info/rfc7952
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340
https://www.w3.org/TR/2008/REC-xml-20081126/

Wu, et al. Expires December 18, 2018 [Page 10]

Internet-Draft YANG Documentation Conventions June 2018

 Where possible, all line breaks should be inserted between metadata
 attributes. Continuation lines MUST align with the first line and
 not be indented with any whitespace. The leading and trailing
 whitespace of each line MUST be ignored. Figure 6 gives a XML
 example.

 When an example JSON representation of a leaf node element that
 includes metadata attributes starting with the "@" character results
 in a line being longer than the maximum number of characters allowed
 in a line of an IETF document,the value of the leaf node must be
 split across more than one line. Continuation lines MUST align with
 the first line and indented with one whitespace character. The
 leading and trailing whitespace of each line MUST be ignored.
 Figure 7 gives a JSON example.

 Whenever this documentation convention is used, the boilerplate text
 shown in Figure 3 MUST be present in the document using the
 convention.

 <foo xmlns:elm=http://example.org/example-last-modified\
 elm:last-modified="2015-09-16T10:27:35+02:00">
 ...
 </foo>

 Figure 6: An XML Example Leaf Node With Metadata Split Across Lines

 "cask": {
 "@": {
 "example-org-example-last-modified:last-modified":\
 "2015-09-16T10:27:35+02:00"
 },
 ...
 }

 Figure 7: A JSON Example Leaf Node With Metadata Split Across Lines

Appendix B. Auto-wrapping tool code

 We provide examples of python code for aspects of line wrapping and
 unwrapping algorithms. There may be other implementation methods
 that are faster in particular operating environments or have other
 advantages. These implementation notes are for informational
 purposes only and are meant to clarify the this specification for
 line wrapping and unwrapping.

#!/usr/bin/env python2.7
-*- coding: utf-8 -*-
"""Qin Wu, 2018-06-02

Wu, et al. Expires December 18, 2018 [Page 11]

Internet-Draft YANG Documentation Conventions June 2018

Autowrapper.py uses Text Wrap Module as library and support auto wrap and auto
indent
two functionalities.
(1)Lines with "\" in position 72 have been handled.
(2)Lines with space in position 73 have been handled.
(3)A line of "\" has been handled.
(4)A line of space has been hanled.
https://github.com/sunseawq/auto-wrap-indent/blob/master/autowrapper.py
Text Wrap module provides two convenience functions, wrap() and fill(), as well
as
TextWrapper, the class that does all the work, and a utility function dedent().
If
you're just wrapping or filling one or two text strings, the convenience
functions
should be good enough; otherwise, you should use an instance of TextWrapper for
efficiency.

https://github.com/python/cpython/blob/2.7/Lib/textwrap.py
"""
import textwrap
import string, re
import argparse
import os.path
import sys, getopt

def indent(text, prefix, predicate=None):
 """Adds 'prefix' to the beginning of selected lines in 'text'.

 If 'predicate' is provided, 'prefix' will only be added to the lines
 where 'predicate(line)' is True. If 'predicate' is not provided,
 it will default to adding 'prefix' to all non-empty lines that do not
 consist solely of whitespace characters.
 """
 if predicate is None:
 def predicate(line):
 return line.strip()

 def prefixed_lines():
 for line in text.splitlines(True):
 yield (prefix + line if predicate(line) else line)
 return ''.join(prefixed_lines())

def auto_wrap(input_file, dst_file):
 finput=open(input_file, "r")
 alllines=finput.readlines()
 finput.close()
 foutput = 0
 output_file = dst_file

https://github.com/sunseawq/auto-wrap-indent/blob/master/autowrapper.py
https://github.com/python/cpython/blob/2.7/Lib/textwrap.py

 foutput = open(output_file, 'a')
 for eachline in alllines:
 bc = textwrap.fill(eachline,73)
 tmplines = bc.split('\n')

Wu, et al. Expires December 18, 2018 [Page 12]

Internet-Draft YANG Documentation Conventions June 2018

 tmplen = len(tmplines)
 if tmplen == 1 :
 foutput.writelines(bc)
 foutput.writelines('\n')
 else :
 i = 0
 while i < tmplen-1 :
 foutput.writelines(tmplines[i])
 foutput.writelines('\\')
 foutput.writelines('\n')
 i += 1
 foutput.writelines(tmplines[tmplen-1])
 foutput.writelines('\n')
 foutput.close

def auto_unwrap(input_file, dst_file) :
 finput=open(input_file, "r")
 alllines=finput.readlines()
 finput.close()
 foutput = 0
 output_file = dst_file
 foutput = open(output_file, 'a')
 for eachline in alllines:
 if eachline.endswith('\\\n') :
 eachline = eachline.strip('\\\n')
 foutput.writelines(eachline)

def auto_wrap_indent(input_file, dst_file,width):
 finput=open(input_file, "r")
 alllines=finput.readlines()
 finput.close()
 foutput = 0
 flag_add = 0
 backslashpos = 0
 output_file = dst_file
 foutput = open(output_file, 'a')
 for eachline in alllines:
 backslashpos = eachline.rstrip('\\\n').rfind('\\',0,width)
 '''handle backslash at position 72'''
 if (backslashpos == width-1) :
 print("backslash appear at the end of the line,
 the line is wrapped at the position one or multiple characters
 before the backslash")
 bc = textwrap.fill(eachline,width-1)
 else :
 bc = textwrap.fill(eachline,73)
 '''handle space at position 71,72,73'''
 if eachline.rstrip('\n').rfind(' ',width-2,width) == width-2 :

Wu, et al. Expires December 18, 2018 [Page 13]

Internet-Draft YANG Documentation Conventions June 2018

 bc = bc[:width-2] + ' \n' + bc[width-1:]
 if eachline.rstrip(' \n').rfind(' ',width-2,width) == width-1 :
 bc = bc[:width-1] + ' \n' + bc[width:]
 if eachline.rstrip(' \n').rfind(' ',width-2,width+1) == width :
 bc = bc[:width] + ' \n' + bc[width+1:]
 tmplines = bc.split('\n')
 tmplen = len(tmplines)
 if tmplen == 1 :
 foutput.writelines(bc)
 foutput.writelines('\n')
 else :
 flag_add = 0
 i = 0
 while i < tmplen-1 :
 if(flag_add == 1) :
 tmplines[i] = indent(tmplines[i], ' ')
 foutput.writelines(tmplines[i])
 foutput.writelines('\\')
 flag_add = 1
 foutput.writelines('\n')
 i += 1
 if(flag_add == 1) :
 tmplines[i] = indent(tmplines[i], ' ')
 foutput.writelines(tmplines[tmplen-1])
 foutput.writelines('\n')
 foutput.close

def auto_unwrap_dedent(input_file, dst_file) :
 finput=open(input_file, "r")
 alllines=finput.readlines()
 finput.close()
 foutput = 0
 flag_del = 0
 flag_space = 0
 output_file = dst_file
 foutput = open(output_file, 'a')
 for eachline in alllines:
 print(eachline)
 if(flag_del == 1) :
 eachline = eachline[2:]
 if eachline.endswith('\\\n') :
 flag_del = 1
 eachline = eachline.rstrip('\\\n')
 if eachline == '':
 flag_del = 0
 else :
 flag_del = 0

Wu, et al. Expires December 18, 2018 [Page 14]

Internet-Draft YANG Documentation Conventions June 2018

 if eachline == '\n' :
 continue
 foutput.writelines(eachline)

if __name__ == "__main__":
 auto_wrap("in-1.txt","out-1.txt")
 auto_unwrap("out-1.txt", "out-2.txt")
 auto_wrap_indent("in-1.txt","out-1.txt",73)
 auto_unwrap_dedent("out-1.txt", "out-2.txt")

Authors' Addresses

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: bill.wu@huawei.com

 Adrian Farrel
 Juniper Networks

 Email: afarrel@juniper.net

 Benoit Claise
 Cisco Systems, Inc.
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium

 Phone: +32 2 704 5622
 Email: bclaise@cisco.com

Wu, et al. Expires December 18, 2018 [Page 15]

