
I2NSF L. Xia
Internet Draft J. Strassner
Intended status: Standard Track D.Zhang
 Huawei
 K. Li
 Alibaba
 C. Basile
 A. Lioy
 PoliTO
 D. Lopez
 TID
 E. Lopez
 Fortinet
 N. BOUTHORS
 Qosmos
 Luyuan Fang
 Microsoft

Expires: December 2017 November 1, 2016

Information Model of NSFs Capabilities
draft-xibassnez-i2nsf-capability-00.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on December 1,2016.

Xia, et al. Expires December 31, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft I2NSF Capability Interface IM November 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 This draft aims at defining the concept of capability. Capabilities
 are data that unambiguously characterize NSFs (Network Security
 Functions). Their correct definition will ease all the management
 and automation that can be. Moreover, it allows the definition of
 Interfaces to manage NSFs.

 This draft is the first trial to merge two previous existing drafts
 on NSFs capabilities [I-D.draft-baspez-i2nsf-capabilities-00] and on
 the capability interface [I-D.draft-xia-i2nsf-capability-interface-

im-06]. Further work will be needed to homogenize all the concepts
 and incorporate the feedback that will result after its publication.

Table of Contents

1. Introduction .. 4
2. Conventions used in this document 6

2.1. Terminology .. 6
 3. Management of NSFs: Design Principles towards a model of
 Capabilities ... 7

4. Information Model .. 10
5. Capabilities for security policy enforcement 12

5.1. The CA Policy Model 13
5.2. Geometric Model of CA Policies 14
5.3. Condition Types 17

 5.4. Model of Capabilities for Policy Specification and Enforcement
 Purposes ... 19

5.5. Algebra of capabilities 20
5.6. Examples of NSFs Categories 21

5.6.1. Network Security 22

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-baspez-i2nsf-capabilities-00
https://datatracker.ietf.org/doc/html/draft-xia-i2nsf-capability-interface-im-06
https://datatracker.ietf.org/doc/html/draft-xia-i2nsf-capability-interface-im-06

Xia, et al. Expires December 1, 2017 [Page 2]

Internet-Draft I2NSF Capability Interface IM November 2016

5.6.2. Content Security 22
5.6.3. Attack Mitigation 22

6. Information Sub-Model for Network Security Capabilities 23
6.1. Information Sub-Model for Network Security 23

6.1.1. Network Security Policy Rule Extensions 24
6.1.2. Network Security Policy Rule Operation 26
6.1.3. Network Security Event Sub-Model 27

6.1.3.1. UserSecurityEvent Class Description 29
6.1.3.1.1. The usrSecEventContent Attribute 29
6.1.3.1.2. The usrSecEventFormat Attribute.......... 29
6.1.3.1.3. The usrSecEventType Attribute 30

6.1.3.2. DeviceSecurityEvent Class Description 30
6.1.3.2.1. The devSecEventContent Attribute 30
6.1.3.2.2. The devSecEventFormat Attribute.......... 31
6.1.3.2.3. The devSecEventType Attribute 31
6.1.3.2.4. The devSecEventTypeInfo[0..n] Attribute . 31
6.1.3.2.5. The devSecEventTypeSeverity Attribute ... 32

6.1.3.3. SystemSecurityEvent Class Description 32
6.1.3.3.1. The sysSecEventContent Attribute 32
6.1.3.3.2. The sysSecEventFormat Attribute.......... 33
6.1.3.3.3. The sysSecEventType Attribute 33

6.1.3.4. TimeSecurityEvent Class Description 33
6.1.3.4.1. The timeSecEventPeriodBegin Attribute ... 34
6.1.3.4.2. The timeSecEventPeriodEnd Attribute 34
6.1.3.4.3. The timeSecEventTimeZone Attribute 34

6.1.4. Network Security Condition Sub-Model 34
6.1.4.1. PacketSecurityCondition 36

6.1.4.1.1. PacketSecurityMACCondition 36
6.1.4.1.1.1. The pktSecCondMACDest Attribute 37
6.1.4.1.1.2. The pktSecCondMACSrc Attribute 37
6.1.4.1.1.3. The pktSecCondMAC8021Q Attribute ... 37

 6.1.4.1.1.4. The pktSecCondMACEtherType Attribute 37
6.1.4.1.1.5. The pktSecCondMACTCI Attribute 37

6.1.4.1.2. PacketSecurityIPv4Condition 37
 6.1.4.1.2.1. The pktSecCondIPv4SrcAddr Attribute 37
 6.1.4.1.2.2. The pktSecCondIPv4DestAddr Attribute 37

6.1.4.1.2.3. The pktSecCondIPv4ProtocolUsed Attribute
 .. 38

6.1.4.1.2.4. The pktSecCondIPv4DSCP Attribute ... 38
6.1.4.1.2.5. The pktSecCondIPv4ECN Attribute 38
6.1.4.1.2.6. The pktSecCondIPv4TotalLength Attribute

 .. 38
6.1.4.1.2.7. The pktSecCondIPv4TTL Attribute 38

6.1.4.1.3. PacketSecurityIPv6Condition 38
 6.1.4.1.3.1. The pktSecCondIPv6SrcAddr Attribute 38
 6.1.4.1.3.2. The pktSecCondIPv6DestAddr Attribute 38

6.1.4.1.3.3. The pktSecCondIPv6DSCP Attribute ... 38

Xia, et al. Expires December 1, 2017 [Page 3]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.4.1.3.4. The pktSecCondIPv6ECN Attribute 39
 6.1.4.1.3.5. The pktSecCondIPv6FlowLabel Attribute39
 6.1.4.1.3.6. The pktSecCondIPv6PayloadLength
 Attribute 39
 6.1.4.1.3.7. The pktSecCondIPv6NextHeader Attribute39
 6.1.4.1.3.8. The pktSecCondIPv6HopLimit Attribute 39

6.1.4.1.4. PacketSecurityTCPCondition 39
 6.1.4.1.4.1. The pktSecCondTPCSrcPort Attribute . 39
 6.1.4.1.4.2. The pktSecCondTPCDestPort Attribute 39

6.1.4.1.4.3. The pktSecCondTPCSeqNum Attribute .. 40
6.1.4.1.4.4. The pktSecCondTPCFlags Attribute ... 40

6.1.4.1.5. PacketSecurityUDPCondition 40
 6.1.4.1.5.1. The pktSecCondUDPSrcPort Attribute . 40
 6.1.4.1.5.2. The pktSecCondUDPDestPort Attribute 40

6.1.4.1.5.3. The pktSecCondUDPLength Attribute .. 40
6.1.4.2. PacketPayloadSecurityCondition 40
6.1.4.3. TargetSecurityCondition 40
6.1.4.4. UserSecurityCondition 41
6.1.4.5. SecurityContextCondition 41
6.1.4.6. GenericContextSecurityCondition 41

6.1.5. Network Security Action Sub-Model 42
6.1.5.1. IngressAction 43
6.1.5.2. EgressAction 43
6.1.5.3. ApplyProfileAction 43
6.1.5.4. ApplySignatureAction 43

6.2. Information Model for Content Security Control 43
6.3. Information Model for Attack Mitigation Control 44

7. Security Considerations 45
8. IANA Considerations ... 46
9. References .. 46

9.1. Normative References 46
9.2. Informative References 46

10. Acknowledgments .. 47
Appendix A. .. 48

A.1. AuthenticationECAPolicyRule Class Definition 48
A.2. AuthorizationECAPolicyRuleClass Definition 50
A.3. AccountingECAPolicyRuleClass Definition 52
A.4. TrafficInspectionECAPolicyRuleClass Definition.......... 54
A.5. ApplyProfileECAPolicyRuleClass Definition 56
A.6. ApplySignatureECAPolicyRuleClass Definition 58

 1. Introduction

 The rapid development of virtualized systems, along with the demand
 of security services in virtualized systems, requires advanced
 security protection in various scenarios. Examples include network
 devices in an enterprise network, User Equipment (UE) in a mobile

Xia, et al. Expires December 1, 2017 [Page 4]

Internet-Draft I2NSF Capability Interface IM November 2016

 network, devices in the Internet of Things (IoT), or residential
 access users [I-D.draft-ietf-i2nsf-problem-and-use-cases].

 Capabilities are precise information that characterize in an
 unambiguous way (in a given virtualized system) what a NSF can do in
 terms of security policy enforcement and how a Controller can
 interact with it in order to enforce a security policy. Even if the
 aim is a general of capabilities, the unambiguity of capabilities is
 only assured in a given virtualized system.

 According to [I-D.draft-ietf-i2nsf-framework], there are two types
 of I2NSF interfaces available for security rules provisioning:

 o Interface between I2NSF clients and a security controller (Client
 Facing Interface): This is a service-oriented interface, whose
 main objective is to define a communication channel over which
 information defining security services controlling client's
 specific flow can be requested. This enables security information
 to be exchanged between various applications (e.g., OpenStack, or
 various BSS/OSS components) and other components (e.g., security
 controllers). The design goal of the service interface is to
 decouple the security service in the application layer from
 various kinds of security devices and their device-specific
 security functions.

 Interface between NSFs (e.g., firewall, intrusion prevention, or
 anti-virus) and a security controller (NSFs Facing Interface):
 This interface is independent of how the NSFs are implemented
 (e.g., run in Virtual Machines (VMs) or physical appliances). The
 NSFs Facing Interface is used to decouple the security management
 scheme from the set of NSFs and their various implementations for
 this scheme, so as to specify and monitor a number of flow based
 security policies to individual NSFs. According to the definition
 in [I-D.draft-ietf-i2nsf-framework], NSFs Facing Interface
 includes sub-interfaces of Capability Interface, Registration
 Interface and Monitoring Interface. This document proposes the
 information model design for the first two interfaces (Capability
 and Registration), the Monitoring Interface information model is
 discussed in [I-D.draft-zhang-i2nsf-info-model-monitoring].

 This document is organized as follows: Section 3 discusses the
 design principles for NSF capabilities and related ECA model.

Section 4 further describes design principles for I2NSF capability
 information model. Section 5 provides more details about the design
 of network security capability. Section 6 presents further
 information on specific aspects of the information model.

https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework
https://datatracker.ietf.org/doc/html/draft-zhang-i2nsf-info-model-monitoring

Xia, et al. Expires December 1, 2017 [Page 5]

Internet-Draft I2NSF Capability Interface IM November 2016

 2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

 This document references to [I-D.draft-ietf-i2nsf-terminology] for
 more specific security related and I2NSF scoped terminology
 definitions.

 2.1. Terminology

 AAA -Access control, Authorization, Authentication

 ACL - Access Control List

 AD - Active Directory

 ANSI - American National Standards Institute

 DDoS - Distributed Deny of Services

 FW - Firewall

 I2NSF - Interface to Network Security Functions

 INCITS - International Committee for Information Technology
Standards

 IoT - Internet of Things

 IPS - Intrusion Prevention System

 LDAP - Lightweight Directory Access Protocol

 NAT - Network Address Translation

 NBI - North-bound Interface

 NIST - National Institute of Standard Technology

 NSF - Network Security Function

 RBAC - Role Based Access Control

 UE - User Equipment

Xia, et al. Expires December 1, 2017 [Page 6]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology

Internet-Draft I2NSF Capability Interface IM November 2016

 URL - Uniform/Universal Resource Locator

 VM - Virtual Machine

 WAF - Web Application Firewall

 3. Management of NSFs: Design Principles towards a model of
 Capabilities

 Some basic principles for security capabilities and the systems that
 have to manage them need to be considered:

 o Flexibility: each security capability should be an independent
 function, with minimum overlap or dependency to other
 capabilities. This enables each security capability to be
 utilized and assembled together freely. More importantly, changes
 to one capability will not affect other capabilities;

 o High level of abstraction: each capability should be associated
 to a unified interface to make it programmable; this in turn
 provides a standardized ability to describe and report its
 processing results and corresponding statistics information.
 Furthermore, it facilitates the multi-vendor interoperability;

 o Automation: The system must have the ability to auto-discover,
 auto-negotiate, and auto-update security capabilities. These
 features are especially useful for the management of a large
 number of NSFs. They are essential to add smart services
 (refinement, analysis, capability reasoning, optimization) on top
 of the virtual layer;

 o Scalability: the management system must have the capability to
 scale up/down or scale in/out. Thus, it can meet various
 performance requirements derived from changeable network traffic
 or service requests. In addition, the security capability must
 support reporting statistics to the security controller to assist
 its decision on whether it needs to invoke scaling or not.

 Based on the above principles, a set of abstract and vendor-neutral
 capabilities with standard interfaces is needed together with a
 model of capabilities that allows to unambiguously determine what
 NSFs can do in terms of security policy enforcement. The security
 controller can compare the requirements of clients to the set of
 capabilities that are currently available in order to choose which
 NSFs are needed to meet those requirements. Note that this choice is
 independent of vendor, and instead relies specifically on the
 capabilities (i.e., the description) of the functions provided. This

Xia, et al. Expires December 1, 2017 [Page 7]

Internet-Draft I2NSF Capability Interface IM November 2016

 also facilitates the customization of the functionality of the
 selected NSFs by setting the parameters of their interfaces.

 Furthermore, when an unknown threat (e.g., zero-day exploits,
 unknown malware, and APTs) is reported by a network security device,
 new capabilities may be created, and/or existing capabilities may be
 updated (e.g., signature and algorithm), to correspond to the new
 functionality provided by the NSF to handle the threat. The new
 capabilities are provided from different vendors after their
 analysis of the new threats and subsequent installation of the
 functions required to report on (and possibly mitigate) the threat.
 New capabilities may be sent to and stored in a centralized
 repository, or stored separately in a local repository. In either
 cases, a standard interface is needed during this automated update
 process.

 In defining the capabilities of a NSF, the "Event-Condition-Action"
 (ECA) policy rule set model in [I-D.draft-ietf-i2nsf-framework]
 should be here as the basis for the design:

 o Event: An Event is defined as any important occurrence in time of
 a change in the system being managed, and/or in the environment
 of the system being managed. When used in the context of policy
 rules for I2NSF, it is used to determine whether the Condition
 clause of the Policy Rule can be evaluated or not. Examples of an
 I2NSF Event include time and user actions (e.g., logon, logoff,
 and actions that violate an ACL);

 o Condition: A set of attributes, features, and/or values that are
 to be compared with a set of known attributes, features, and/or
 values in order to make a decision. When used in the context of
 policy rules for I2NSF, it is used to determine whether or not
 the set of Actions in that Policy Rule can be executed or not.
 The following are exemplary types of conditions:

 ? Packet content values: Refer to the kind of information or
 attributes acquired directly from the packet headers or
 payloads that can be used in the security policy. It can be
 any fields or attributes in the packet L2/L3/L4 header, or
 special segment of bytes in the packet payload;

 ? Context values: Refer to the context information for the
 received packets. It can be (and not limited to):

https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework

Xia, et al. Expires December 1, 2017 [Page 8]

Internet-Draft I2NSF Capability Interface IM November 2016

 * User: The user (or user group) information to which a
 network flow is associated. A user has many attributes,
 such as name, id, password, authentication mode, and so
 on. The combination of name and id (where id could be a
 password, a certificate, or other means of identifying
 the user) is often used in the security policy to
 identify the user. For example, if an NSF is aware of
 the IP (or MAC) address associated with the user, the
 NSF can use a pre-defined or dynamically learned name-
 address association to enforce the security functions
 for this given user (or user group);

 * Schedule: Time or time range when packet or flow is
 received;

 * Region: The geographic location where network traffic is
 received;

 * Target: The target indicates the entity to which the
 security services are applied. This can be a service,
 application, or device. A service is identified by the
 protocol type and/or port number. An application is a
 computer program for a specific task or purpose. It
 provides additional semantics (e.g., dependencies
 between services) for matching traffic. A device is a
 managed entity that is connected to the network. The
 attributes that can identify a device include type (e.g.,
 router, switch, pc) and operating system (e.g., Windows,
 Linux, or Android), as well as the device's owner;

 * State: It refers to various states to which the network
 flow is associated. It can be either the TCP session
 state (e.g., new, established, related, invalid, or
 untracked), the session AAA state (e.g., authenticated
 but not authorized), or the access mode of the device
 (e.g., wireline, wireless, or cellular; these could be
 augmented with additional attributes, such as the type
 of VPN that is being used);

 * Direction: the direction of the network flow.

 o Action: NSFs provide security functions by executing various
 Actions, which at least includes:

 ? Ingress actions, such as pass, drop, mirroring, etc;

Xia, et al. Expires December 1, 2017 [Page 9]

Internet-Draft I2NSF Capability Interface IM November 2016

 ? Egress actions, such as invoke signaling, tunnel
 encapsulation, packet forwarding and/or transformation;

 ? Applying a specific Functional Profile or signature - e.g.,
 an IPS Profile, a signature file, an anti-virus file, or a
 URL filtering file. It is one of the key properties that
 determine the effectiveness of the NSF, and is mostly vendor-
 specific today. One goal of I2NSF is to standardize the form
 and functional interface of those security capabilities while
 supporting vendor-specific implementations of each. However,
 it is important to properly model the parts that are related
 to the action (what is enforced) and the conditions (on what
 it is enforced).

 The above ECA ruleset is very general and easily extensible, thus
 can avoid any potential constraints which could limit the
 implementation of the network security control capability.

 4. Information Model

 An information model will be developed in order to describe in an
 abstract and vendor independent manner all the aspects related to
 the capabilities of NSFs. A detailed information model will be
 designed in the next versions of this draft as a consequence of the
 discussions, feedback, and extensions that will originate after the
 publication of this draft. In this version of the draft, we present
 a simplified view that only highlights the most important concepts.

 The I2NSF capability interface is in charge of controlling and
 managing the NSFs by means of the information about the capabilities
 each NSF owns. This is done using the following approach:

 1) User of the capability interface selects the set of capabilities
 required to meet the needs of the application;

 2) A management entity uses the information model to match chosen
 capabilities to NSFs, independent of vendor;

 3) A management entity takes the above information and creates or
 uses vendor-specific data models to install the NSFs identified by
 the chosen capabilities;

 4) Control and monitoring can then begin.

 This assumes that an external model, or set of models, is used to
 define the concept of an ECA Policy Rule and its components (e.g.,
 Event, Condition, and Action objects).

Xia, et al. Expires December 1, 2017 [Page 10]

Internet-Draft I2NSF Capability Interface IM November 2016

 Since Capabilities are unambiguous only within the same management
 system, and are not inherent characteristics that differentiate
 objects, it is also assumed that an external model (or set of models)
 will define a generic metadata concept.

 The Capability is a general abstract concept. Currently, the most
 promising approach for defining the information model of the
 Capabilities uses the sub-classing to define non-overlapping and
 independent concepts. For instance, the Capability model that will
 be presented in the next sections that abstractly determines the
 security policies that a NSF can enforce does not overlap with an
 independent model that specifies how a NSF can be contacted by the
 controller (i.e., the protocols and secure channels) and when (i.e.,
 the events to which it reacts). Capabilities are sub-classed from an
 appropriate class in the external metadata model.

 The capability interface is used for advertising, creating,
 selecting and managing a set of specific security capabilities
 independent of the type and vendor of device that contains the NSF.
 That is, the user of the capability interface does not care whether
 the NSF is virtualized or hosted in a physical device, the vendor of
 the NSF, and which set of entities the NSF is communicating with
 (e.g., a firewall or an IPS). Instead, the user only cares about the
 set of capabilities that the NSF has, such as packet filtering or
 deep packet inspection. The overall structure is illustrated in the
 figure below:

 +-------------------------+ 0..n 0..n +---------------+
 | |/ \ \| External |
 | External ECA Info Model + A ----------------+ Metadata |
 | |\ / Aggregates /| Info Model |
 +-------------------------+ Metadata +------+--------+
 / \
 |
 |
 |
 +----+-------+
 | Capability |
 | Sub-Model |
 +------------+

 Figure 1. The Overall I2NSF Information Model Design

Xia, et al. Expires December 1, 2017 [Page 11]

Internet-Draft I2NSF Capability Interface IM November 2016

 This draft defines the Capability sub-Model shown in Figure 1. This
 model assumes that another, generic, information model for defining
 ECA policy rules (which includes a specific one for the CA part of
 ECA policy rules) exists outside of I2NSF.

 It also assumes that Capabilities are modeled as metadata, since a
 Capability is something that describes and/or prescribes
 functionality about an object, but is not an inherent part of that
 object. Hence, the Security Capability Sub-Model extends the generic
 external metadata model.

 Both of these external models could, but do not have to, draw from
 the SUPA model [I-D.draft-ietf-supa-generic-policy-info-model].

 The external ECA Information Model supplies at least a set of
 objects that represent a generic ECA Policy Rule, and a set of
 objects that represent Events, Conditions, and Actions that can be
 aggregated by the generic ECA Policy Rule. This enables I2NSF to
 reuse this generic model for different purposes.

 It is assumed that the external ECA Information Model has the
 ability to aggregate metadata. Capabilities are then sub-classed
 from an appropriate class in the external Metadata Information Model;
 this enables the ECA objects to use the existing aggregation between
 them and Metadata to add Metadata to appropriate ECA objects.

 Detailed descriptions of each portion of the information model are
 given in the following sections.

 5. Capabilities for security policy enforcement

 At present, a variety of NSFs produced by multiple security vendors
 provide various security capabilities to customers. Multiple NSFs
 can be combined together to provide security services over the given
 network traffic, regardless of whether the NSFs are implemented as
 physical or virtual functions.

 Security Capabilities are intended to describe the potentiality that
 Network Security Functions (NSFs) have for security policy
 enforcement purposes. Security Capabilities are abstract concepts
 that are independent of the actual security control that will
 implement them. However, every NSF will be associated to the
 capabilities it owns. Security Capabilities are required to allow
 differentiating among network functions. It would be a market
 enabler having a way to substitute a NSF with an equivalent one
 (i.e., having the same functionality). Moreover, Security
 Capabilities are very useful to reason about generic functions,

https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-info-model

Xia, et al. Expires December 1, 2017 [Page 12]

Internet-Draft I2NSF Capability Interface IM November 2016

 which may be needed at design time. That is, it is not needed to
 refer to a specific product when designing the network; rather the
 functions characterized by their capabilities are considered.

 Therefore, we have developed another model where Security
 Capabilities determine what a security control can do in terms of
 conditions, actions, resolution strategies, external data, if it
 supports default action, etc. That is, Security Capabilities define
 without any ambiguity the actions a function can do in term of
 security policy enforcement. The Security Capability model is built
 on a predefined general policy model. The type of policies that a
 NSF can enforce is obtained by customizing the general policy model
 with the Security Capability information.

 The Capability Model has been preliminarily validated by verifying
 that is allows the correct description of several existing security
 controls.

 5.1. The CA Policy Model

 The starting point of the design of our capability model is a simple
 observation. As human beings, we all understand immediately each
 other when we refer to security controls by just naming their
 category. For instance, experts agree on what is a NAT, a filtering
 control, or a VPN concentrator. Network security experts
 unequivocally refer to "packet filters" as stateless devices able to
 allow or deny packets forwarding based on conditions on source and
 destination IP addresses, source and destination ports, and IP
 protocol type fields [Alshaer]. Moreover, it is known that packet
 filter rules are prioritized and it is possible to specify a default
 action. More precisely, packet filters implement the First Matching
 Rule (FMR) or Last Matching Rule (LMR) resolution strategies.

 However, we feel the need for more information in case of other
 devices, like stateful firewalls or application layer filters.
 These devices filter packets or communications, but there are
 differences among products in the packets and communications that
 they can categorize and the states they maintain. Analogous
 considerations can be applied for channel protection protocols,
 where we all understand that they will protect packets by means of
 symmetric algorithms whose keys could have been negotiated with
 asymmetric cryptography, but they may work at different layers and
 support different algorithms and protocols. To ensure protection,
 these protocols apply integrity, optionally confidentiality, apply
 anti-reply protections, and authenticate peers.

Xia, et al. Expires December 1, 2017 [Page 13]

Internet-Draft I2NSF Capability Interface IM November 2016

 The purpose is to build a model of security capabilities that allow
 automatic management of virtualized systems, where intelligent
 components are able to properly identify and manage NSFs, and allow
 NSFs to properly declare their functionality so that they can be
 used in the correct way.

 5.2. Geometric Model of CA Policies

 We refer in this draft to the policy model defined in [Bas12] as
 geometric model, which is summarized here. Policies are specified by
 means of a set of rules in the "if condition then action" format
 [RFC3198]. Rules are formed by a condition clause and an action
 clause. This model can be further extended to support events, that
 is, in the Event-Condition-Action paradigms. However, for our
 purpose, the geometric model will only be used to define the CA part
 of the ECA model that we have selected as reference.

 All the actions available to the security function are well known
 and organized in an action set A.

 For filtering controls, the enforceable actions are either Allow and
 Deny, thus A={Allow,Deny}. For channel protection controls, they may
 be informally written as "enforce confidentiality", "enforce data
 authentication and integrity", and "enforce confidentiality and data
 authentication and integrity". However, these actions need to be
 instantiated to the technology used, for instance AH-transport mode
 and ESP-transport mode (and combinations thereof) are a more precise
 and univocal definition of channel protection actions.

 Conditions are typed predicates concerning a given selector. A
 selector describes the values that a protocol field may take, e.g.,
 the IP source selector is the set of all possible IP addresses, and
 it may also refer to the part of the packet where the values come
 from, e.g., the IP source selector refers to the IP source field in
 the IP header. Geometrically, a condition is the subset of its
 selector for which it evaluates to true. A condition on a given
 selector matches a packet if the value of the field referred to by
 the selector belongs to the condition. For instance, in Figure 2
 the conditions are s1 <= S1 (read as s1 subset of or equal to S1)
 and s2 <= S2 (s1 of or equal to S2), both s1 and s2 match the packet
 x1, while only s2 matches x2.

Xia, et al. Expires December 1, 2017 [Page 14]

https://datatracker.ietf.org/doc/html/rfc3198

Internet-Draft I2NSF Capability Interface IM November 2016

 S2 ^ Destination port
 |
 |
 | x2
 +......o
 | .
 | .
 --+.............+------------------------------------+
 | | . | |
 s | . | |
 e | . | (rectangle) |
 g | . | condition clause (c) |
 m | . | here the action a is applied |
 e | . | |
 n | . | x1=point=packet |
 t +.............|.............o |
 | | . | . |
 --+.............+------------------------------------+
 |
 |
 |
 |
 |
 |
 +------------+------+-------------+----------------------+------>
 | |---- segment = condition in S1 -----| S1
 + IP source

 Figure 2: Geometric representation of a rule r=(c,a) that matches x1
 but does not match x2.

 To consider conditions in different selectors, the decision space is
 extended using the Cartesian product because distinct selectors
 refer to different fields, possibly from different protocol headers.
 Hence, given a policy-enabled element that allows the definition of
 conditions on the selectors S1, S2,..., Sm (where m is the number of
 Selectors available at the security control we want to model), its
 selection space is:

 S=S1 X S2 X ... X Sm

 To consider conditions in different selectors, the decision space is
 extended using the Cartesian product because distinct selectors
 refer to different fields, possibly from different protocol headers.

Xia, et al. Expires December 1, 2017 [Page 15]

Internet-Draft I2NSF Capability Interface IM November 2016

 Accordingly, the condition clause c is a subset of S:

 c = s1 X s2 X ... X sm <= S1 X S2 X ... X Sm = S

 S represents the totality of the packets that are individually
 selectable by the security control to model when we use it to
 enforce a policy. Unfortunately, not all its subsets are valid
 condition clauses: only hyper-rectangles or union of hyper-
 rectangles (as they are Cartesian product of conditions) are valid.
 This is an intrinsic constraint of the policy languages as they
 specify rules by defining a condition for each selector. Languages
 that allow specification of conditions as relations over more fields
 are modeled by the geometric model as more complex geometric shapes
 determined by the equations. However, the algorithms to compute
 intersections are much more sophisticated than intersection hyper-
 rectangles. Figure 1 graphically represents a condition clause c in
 a two-dimensional selection space.

 In the geometric model, a rule is expressed as r=(c,a), where c <= S
 (the condition clause is a subset of the selection space), and the
 action a belongs to A. Rule condition clauses matche a packet (rules
 matche a packet), if all the conditions forming the clauses match
 the packet: in Figure 1, the rule with condition clause c matches
 the packet x1 but not x2.

 The rule set R is composed of n rules ri=(ci,ai).

 The decision criteria for the action to apply when a packet matches
 two or more rules is abstracted by means of the resolution strategy
 RS: Pow(R) -> A, where Pow(R) is the power set of rules in R.

 Formally, given a set of rules, the resolution strategy maps all the
 possible subsets of rules to an action a in A. When no rule matches
 a packet, the security controls may select the default action d in A,
 if they support one.

 Resolution strategies may use, besides intrinsic rule data (i.e.,
 condition clause and action clause), also ``external data''
 associated to each rule, such as priority, identity of the creator,
 and creation time. Formally, every rule ri is associated by means
 of the function e(.) to:

 e(ri) = (ri,f1(ri),f2(ri),...)

 where E={fj:R -> Xj} (j=1,2,...) is the set that includes all the
 functions that map rules to external attributes in Xj. However, E, e,
 and all the Xj are determined by the resolution strategy used.

Xia, et al. Expires December 1, 2017 [Page 16]

Internet-Draft I2NSF Capability Interface IM November 2016

 A policy is thus a function p: S -> A that connects each point of
 the selection space to an action taken from the action set A
 according to the rules in R. By also assuming RS(0)=d (where 0 is
 the empty-set) and RS(ri)=ai, the policy p can be described with
 this formula

 p(x)=RS(match{R(x)}).

 Therefore, in the geometric model, a policy is completely defined by
 the 4-tuple (R,RS,E,d): the rule set R, the resolution function RS,
 the set E of mappings to the external attributes, and the default
 action d.

 Note that, the geometric model also supports ECA paradigms by simply
 modeling events like an additional selector.

 5.3. Condition Types

 After having analyzed the literature and the existing security
 controls, we have categorized the types of selectors in exact-match,
 range-based, regex-based, and custom-match [Bas15][Lunt].

 Exact-match selectors are (unstructured) sets: elements can only be
 checked for equality, as no order is defined on them. As an example,
 the protocol type field of the IP header is a unordered set of
 integer values associated to protocols. The assigned protocol
 numbers are maintained by the IANA
 (http://www.iana.org/assignments/protocol-numbers/protocol-

numbers.xhtml).

 In this selector, it is only meaningful to specify conditions

 proto = tcp, udp (protocol type field equals to TCP or UDP)

 proto != tcp (protocol type field different from TCP)

 No other operators are allowed on exact-match selectors, for
 instance

 proto < 62 (invalid condition)

 is not a valid condition, even if protocol types map to integers.

 Range-based selectors are ordered sets where it is possible to
 naturally specify ranges as they can be easily mapped to integers.

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Xia, et al. Expires December 1, 2017 [Page 17]

Internet-Draft I2NSF Capability Interface IM November 2016

 As an example, the ports in the TCP protocol are well represented
 using a range-based selector (e.g., 1024-65535). As an example

 source_port = 80

 source_port < 1024

 source_port < 30000 && source_port >= 1024

 are valid conditions.

 We include in the range-based selectors all the category of
 selectors that have been defined by Al-Shaer et al. as prefix match
 [Alshaer]. These selectors allow the specification of ranges of
 values by means of simple regular expressions. The typical case is
 the IP address selector (e.g., 10.10.1.*). There is no need to
 distinguish between prefix match and range-based selectors as
 10.10.1.* easily maps to [10.10.1.0, 10.10.1.255].

 Another category of selector types includes the regex-based
 selectors, where the matching is performed by using regular
 expressions. This selector type is frequent at the application layer,
 where data are often represented as strings of text. The regex-based
 selector type also includes as sub-case the string-based selectors,
 where matching is evaluated using string matching algorithms (SMA)
 [Cormen] Indeed, for our purposes, string matching can be mapped to
 regular expressions, even if in practice SMA are much faster. For
 instance, Squid (http://www.squid-cache.org/), a popular Web caching
 proxy that offers various access control capabilities, allows the
 definition of conditions on URLs that can be evaluated with SMA
 (e.g., dstdomain) or regex matching (e.g., dstdom_regex).

 As an example,

 URL = *.website.*

 matches all the URLs that contain a domain, subdomain named website
 and the ones whose path contain the string .website.

 MIME_type = video/*

 matches all the MIME objects whose type is video.

 Finally, we introduce the idea of custom check selectors. For
 instance the malware analysis looks for specific patterns and
 returns a Boolean value is an example of custom check selector, if

http://www.squid-cache.org/

Xia, et al. Expires December 1, 2017 [Page 18]

Internet-Draft I2NSF Capability Interface IM November 2016

 the logic of checking is not seen (nor really interesting) from the
 outside.

 In order to be properly used by high-level policy based processed
 (like reasoning systems, refinement systems) these custom check
 selector need at least to be described as black-boxes, that is, the
 list of fields that they process (inputs) in order to return the
 Boolean verdict (output).

 More examples of custom check selectors will be presented in the
 next versions of the draft. Some example is already present in

Section 6.

 5.4. Model of Capabilities for Policy Specification and
Enforcement
 Purposes

 Our model of capabilities is based on actions and traffic
 classification features. Indeed, the need for enforcing one of the
 actions that a security control can apply to packets/flows is the
 main reason to use a security control. Moreover, security controls
 have classification features that permit the identification of the
 target packets/flows of the actions enforced, i.e., the selectors
 presented in Section 5.2. A security manager decides for a specific
 security control depending on the actions and classification
 features. If the security control can enforce the needed actions and
 has the classification features needed to identify the packets flows
 required by a policy, then the security control is capable of
 enforcing the policy. Our refinement model needs to know NSFs
 capabilities to perform its operations.

 However, security controls may have specific characteristics that
 automatic processes or administrators need to know when they have to
 generate configurations, like the available resolution strategies
 and the possibility to set default actions. We have ignored, to
 simplify this presentation, options to generate configurations that
 may have better performance, like the use of chains or ad hoc
 structures [Taylor]. Adding support to these forms of optimization
 is certainly feasible with a limited effort but it was outside the
 scope of this paper, that is, to show that adding security awareness
 to NFV management and orchestration features is possible. It is one
 of the task for future work.

 Capabilities can be used for two purposes: describing generic
 security functions, and describing specific products. With the term
 generic security function (GNSF) we denote known classes of security
 functions. The idea is to have generic components whose behavior is
 as well understood as for the network components (i.e., a switch is

Xia, et al. Expires December 1, 2017 [Page 19]

Internet-Draft I2NSF Capability Interface IM November 2016

 a switch and we know to use it even if it may have some vendor-
 specific functions). These generic functions can be substituted by
 any product that owns the required capability at instantiation time.

 We have analyzed several classes of NSFs to prove the validity of
 our approach. We found the common features and defined a set of
 generic NSFs, including packet filter, URL filter, HTTP filter, VPN
 gateway, anti-virus, anti-malware, content filter, monitoring,
 anonymity proxy that will be described in a data model TBD.

 Moreover, we have also categorized common extensions of the generic
 NSFs, packet filters that may decide based on time information.
 Moreover, some other packet filters add stateful features at ISO/OSI
 layer 4.

 The next section will introduce our algebra to compose capabilities,
 defined to associate NSFs to capabilities and to check whether a NSF
 has the capabilities needed to enforce policies.

 5.5. Algebra of capabilities

 Our capabilities are defined by a 4-tuple, that is every NSF N will
 be associated to a 4-tuple (Ac; Cc; RSc; Dc) such that:

 (Ac; Cc; RSc; Dc) <= (XAC; XCC; XRSC; XDC)= K

 where

 o XAC is the set of all the supported actions, that is, the set of
 all the actions supported by at least one of the existing NSFs;

 o Ac <= XAC is a set of actions that determine the actions actually
 available at the NSF N;

 o XCC is set of all the supported conditions types, that is, the
 set of all the conditions that can be to specify rules in at
 least one of the existing NSFs;

 o Cc <= XCC is the sef of conditions actually available at the NSF
 N;

 o XRSC is the set of all the existing resolutions strategies,

 o RSc <= XCC is the set of resolution strategies that can be used
 to specify solve conflicts of multiple matching rules at the NSF
 N;

Xia, et al. Expires December 1, 2017 [Page 20]

Internet-Draft I2NSF Capability Interface IM November 2016

 o XDC={F} U XAC, is the set of all the existing actions plus a
 dummy symbol F, a placeholder value that can be used to indicate
 that the default action can be freely selected by the policy
 editor; and

 o Dc <= XDC, Dc may be {F}, to indicate that the default action can
 be freely selected by the policy editor, thus it can vary in
 every policy, or an explicit action {a<=XAC} to indicate that the
 default action is fixed and the policy editor will not have the
 possibility to choice it.

 Given cap1=(Ac1,Cc1,RSc1,def1) and cap2=(Ac2,Cc2,RSc2,def2), we
 define two operations that are useful to manipulate capabilities:

 o capability addition: cap1+cap2 = (Ac1 U Ac2, Cc1 U Cc2, RSc1,def1)

 o capability subtraction: cap_1-cap_2 = (Ac1\Ac2,Cc1\Cc2,RSc1,def1)

 Note that addition and subtraction do not alter the resolution
 strategy and the default action method, as our main intent was to
 model addition of modules.

 As an example, a generic packet filter that supports the first
 matching rule resolution strategies, allows the explicit
 specification of default actions and also supports time-based
 conditions. The description of its capabilities is the following:

 Apf = {Allow, Deny}

 Cpf= {IPsrc,IPdst,Psrc,Pdst,protType}

 Ctime = {timestart,days,datestart,datestop}

 cap_pf=(Apf; Cpf; {FMR}; F)

 cap_pf+time=cap_pf + Ctime

 By abuse of notation, we have written cap_pf+time=cap_pf + Ctime to
 shorten the more correct expression cap_pf+time=cap_pf +(;Ctime;;).

 5.6. Examples of NSFs Categories

 As an example of the application of the general capability model, we
 present in the next sections three examples of common categories:
 network security, content security, and attack mitigation.

Xia, et al. Expires December 1, 2017 [Page 21]

Internet-Draft I2NSF Capability Interface IM November 2016

5.6.1. Network Security

 Network security is a category that describes the inspecting and
 processing of network traffic based on pre-defined security policies.

 The inspecting portion may be thought of as a packet-processing
 engine that inspects packets traversing networks, either directly or
 in context to flows with which the packet is associated. From the
 perspective of packet-processing, implementations differ in the
 depths of packet headers and/or payloads they can inspect, the
 various flow and context states they can maintain, and the actions
 that can be applied to the packets or flows.

5.6.2. Content Security

 Content security is another category of security capabilities
 applied to application layer. Through detecting the contents carried
 over the traffic in application layer, these capabilities can
 realize various security functions, such as defending against
 intrusion, inspecting virus, filtering malicious URL or junk email,
 blocking illegal web access or malicious data retrieval.

 Generally, each type of threat in the application layer has a set of
 unique characteristics, and requires handling with a set of specific
 methods. Thus, these NSFs will be characterized by their own
 security capabilities.

5.6.3. Attack Mitigation

 This category of security capabilities is used to detect and
 mitigate various types of network attacks. Today's common network
 attacks can be classified into the following sets, and each set
 further consists of a number of specific attacks:

 o DDoS attacks:

 ?Network layer DDoS attacks: Examples include SYN flood, UDP
 flood, ICMP flood, IP fragment flood, IPv6 Routing header
 attack, and IPv6 duplicate address detection attack;

 ?Application layer DDoS attacks: Examples include http flood,
 https flood, cache-bypass http floods, WordPress XML RPC
 floods, ssl DDoS.

 o Single-packet attack:

 ?Scanning and sniffing attacks: IP sweep, port scanning, etc

Xia, et al. Expires December 1, 2017 [Page 22]

Internet-Draft I2NSF Capability Interface IM November 2016

 ?malformed packet attacks: Ping of Death, Teardrop, etc

 ?special packet attacks: Oversized ICMP, Tracert, IP timestamp
 option packets, etc

 Each type of network attack has its own network behaviors and
 packet/flow characteristics. Therefore, each type of attack needs a
 special security function, which is advertised as a capability, for
 detection and mitigation.

 Overall, the implementation and management of this category of
 security capabilities of attack mitigation control is very similar
 to content security control. A standard interface, through which the
 security controller can choose and customize the given security
 capabilities according to specific requirements, is essential.

 6. Information Sub-Model for Network Security Capabilities

 The purpose of the Capability Framework Information Sub-Model is to
 define the concept of a Capability from an external metadata model,
 and enable Capabilities to be aggregated to appropriate objects. In
 the following sections we will present the cases of Network Security,
 Content Security, and Attack Mitigation sub-models.

 6.1. Information Sub-Model for Network Security

 The purpose of the Network Security Information Sub-Model is to
 define how network traffic is defined and determine if one or more
 network security features need to be applied to the traffic or not.
 Its basic structure is shown in the following figure:

Xia, et al. Expires December 1, 2017 [Page 23]

Internet-Draft I2NSF Capability Interface IM November 2016

 +---------------------+
 +---------------+ | |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule + A -------------+ for ECA Objects |
 | |\ / /| |
 +-------+-------+ +---------+-----------+
 / \ / \
 | |
 | |
 (subclasses to define Network (subclasses of Event,
 Security ECA Policy Rules, Condition, and Action Objects
 such as InspectTraffic) for Network Security Control)

 Figure 3. Network Security Information Sub-Model Overview

 In the above figure, the ECAPolicyRule, along with the Event,
 Condition, and Action Objects, are defined in the external ECA Info
 Model. The Network Security Sub-Model extends both to define
 security-specific ECA policy rules, as well as Events, Conditions,
 and Actions.
 An I2NSF Policy Rule is a special type of Policy Rule that is in
 event-condition-action (ECA) form. It consists of the Policy Rule,
 components of a Policy Rule (e.g., events, conditions, and actions),
 and optionally, metadata. It can be applied to both uni-directional
 and bi-directional traffic across the NSF.

 Each rule is triggered by one or more events. If the set of events
 evaluates to true, then a set of conditions are evaluated and, if
 true, enable a set of actions to be executed.

 An example of an I2NSF Policy Rule is, in pseudo-code:

 IF <event-clause> is TRUE
 IF <condition-clause> is TRUE
 THEN execute <action-clause>
 END-IF
 END-IF

 In the above example, the Event, Condition, and Action portions of a
 Policy Rule are all **Boolean Clauses**.

6.1.1. Network Security Policy Rule Extensions

 Figure 3 shows an example of more detailed design of the ECA Policy
 Rule subclasses that are contained in the Network Security
 Information Sub-Model, which just illustrates how more specific
 Network Security Policies are inherited and extended from the

Xia, et al. Expires December 1, 2017 [Page 24]

Internet-Draft I2NSF Capability Interface IM November 2016

 SecurityECAPolicyRule class. Any new kinds of specific Network
 Security Policy can be created by following the same pattern of
 class design as below.

 +---------------+
 | External |
 | ECAPolicyRule |
 +-------+-------+
 / \
 |
 |
 +------------+----------+
 | SecurityECAPolicyRule |
 +------------+----------+
 |
 |
 +----+-----+--------+-----+----+---------+---------+--- ...
 | | | | | |
 | | | | | |
 +------+-------+ | +-----+-------+ | +------+------+ |
 |Authentication| | | Accounting | | |ApplyProfile | |
 |ECAPolicyRule | | |ECAPolicyRule| | |ECAPolicyRule| |
 +--------------+ | +-------------+ | +-------------+ |
 | | |
 +------+------+ +------+------+ +--------------+
 |Authorization| | Traffic | |ApplySignature|
 |ECAPolicyRule| | Inspection | |ECAPolicyRule |
 +-------------+ |ECAPolicyRule| +--------------+
 +-------------+

 Figure 4. Network Security Info Sub-Model ECAPolicyRule Extensions

 The SecurityECAPolicyRule is the top of the I2NSF ECA Policy Rule
 hierarchy. It inherits from the (external) generic ECA Policy Rule
 to define Security ECA Policy Rules. The SecurityECAPolicyRule
 contains all of the attributes, methods, and relationships defined
 in its superclass, and adds additional concepts that are required
 for Network Security (these will be defined in the next version of
 this draft). The six SecurityECAPolicyRule subclasses extend the
 SecurityECAPolicyRule class to represent six different types of
 Network Security ECA Policy Rules. It is assumed that the (external)
 generic ECAPolicyRule class defines basic information in the form of
 attributes, such as an unique object ID, as well as a description
 and other basic, but necessary, information.

Xia, et al. Expires December 1, 2017 [Page 25]

Internet-Draft I2NSF Capability Interface IM November 2016

 It is assumed that the (external) generic ECA Policy Rule is
 abstract; the SecurityECAPolicyRule is also abstract. This enables
 data model optimizations to be made while making this information
 model detailed but flexible and extensible.

 The SecurityECAPolicyRule defines network security policy as a
 container that aggregates Event, Condition, and Action objects,
 which are described in Section 6.1.3, 6.1.4, and 6.1.5, respectively.
 Events, Conditions, and Actions can be generic or security-specific.

Section 4.6 defines the concept of default security Actions.

 Brief class descriptions of these six ECA Policy Rules are provided
 in the Appendix A.

6.1.2. Network Security Policy Rule Operation

 Network security policy consists of a number of more granular ECA
 Policy Rules formed from the information model described above. In
 simpler cases, where the Event and Condition clauses remain
 unchanged, then network security control may be performed by calling
 additional network security actions. Network security policy
 examines and performs basic processing of the traffic as follows:

 1. For a given SecurityECAPolicyRule (which can be generic or
 specific to security, such as those in Figure 3), the NSF
 evaluates the Event clause. It may use security Event objects to
 do all or part of this evaluation, which are defined in section

4.3.3. If the Event clause evaluates to TRUE, then the Condition
 clause of this SecurityECAPolicyRule is evaluated; otherwise,
 execution of this SecurityECAPolicyRule is stopped, and the next
 SecurityECAPolicyRule (if one exists) is evaluated;

 2. The Condition clause is then evaluated. It may use security
 Condition objects to do all or part of this evaluation, which are
 defined in section 4.3.4. If the Condition clause evaluates to
 TRUE, then the set of Actions in this SecurityECAPolicyRule MUST
 be executed. This is defined as "matching" the
 SecurityECAPolicyRule; otherwise, execution of this
 SecurityECAPolicyRule is stopped, and the next
 SecurityECAPolicyRule (if one exists) is evaluated;

 3. If none of the SecurityECAPolicyRules are matched, then the NSF
 denies the traffic by default;

Xia, et al. Expires December 1, 2017 [Page 26]

Internet-Draft I2NSF Capability Interface IM November 2016

 4. If the traffic matches a rule, the NSF performs the defined
 Actions on the traffic. It may use security Action objects to do
 all or part of this execution, which are defined in section 4.3.5.
 If the action is "deny", the NSF blocks the traffic. If the basic
 action is permit or mirror, the NSF firstly performs that
 function, and then checks whether certain other security
 capabilities are referenced in the rule. If yes, go to step 5. If
 no, the traffic is permitted;

 5. If other security capabilities (e.g., Anti-virus or IPS) are
 referenced in the SecurityECAPolicyRule, and the Action defined
 in the rule is permit or mirror, the NSF performs the referenced
 security capabilities.

 Metadata attached to the SecurityECAPolicyRule MAY be used to
 control how the SecurityECAPolicyRule is evaluated. This is called a
 Policy Rule Evaluation Strategy. For example, one strategy is to
 match and execute the first SecurityECAPolicyRule, and then exit
 without executing any other SecurityECAPolicyRules (even if they
 matched). In contrast, a second strategy is to first collect all
 SecurityECAPolicyRules that matched, and then execute them according
 to a pre-defined order (e.g., the priority of each
 SecurityECAPolicyRule).

 One policy or rule can be applied multiple times to different
 managed objects (e.g., links, devices, networks, VPNS). This not
 only guarantees consistent policy enforcement, but also decreases
 the configuration workload.

6.1.3. Network Security Event Sub-Model

 Figure 10 shows a more detailed design of the Event subclasses that
 are contained in the Network Security Information Sub-Model.

Xia, et al. Expires December 1, 2017 [Page 27]

Internet-Draft I2NSF Capability Interface IM November 2016

 +---------------------+
 +---------------+ 1..n 1..n| |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule + A ---------+ for ECA Objects |
 | |\ / /| |
 +---------------+ +-----------+---------+
 / \
 |
 |
 +--------------+--------+------+
 | | |
 | | |
 +-----+----+ +------+------+ +-----+-----+
 | An Event | | A Condition | | An Action |
 | Class | | Class | | Class |
 +-----+----+ +-------------+ +-----------+
 / \
 |
 |
 |
 +-----------+---+----------------+--------------+-- ...
 | | | |
 | | | |
 +-------+----+ +--------+-----+ +--------+-----+ +------+-----+
 |UserSecurity| | Device | | System | |TimeSecurity|
 | Event | | SecurityEvent| | SecurityEvent| | Event |
 +------------+ +--------------+ +--------------+ +------------+

 Figure 5. Network Security Info Sub-Model Event Class Extensions

 The four Event classes shown in Figure 5 extend the (external)
 generic Event class to represent Events that are of interest to
 Network Security. It is assumed that the (external) generic Event
 class defines basic Event information in the form of attributes,
 such as a unique event ID, a description, as well as the date and
 time that the event occurred.

 The following are assumptions that define the functionality of the
 generic Event class. If desired, these could be defined as
 attributes in a SecurityEvent class (which would be a subclass of
 the generic Event class, and a superclass of the four Event classes
 shown in Figure 10). However, this makes it harder to use any
 generic Event model with the I2NSF events. Assumptions are:

Xia, et al. Expires December 1, 2017 [Page 28]

Internet-Draft I2NSF Capability Interface IM November 2016

 - The generic Event class is abstract
 - All four SecurityEvent subclasses are concrete
 - The generic Event class uses the composite pattern, so
 individual Events as well as hierarchies of Events are
 available (the four subclasses in Figure 10 would be
 subclasses of the Atomic Event)
 - The generic Event class has a mechanism to uniquely identify
 the source of the Event
 - The generic Event class has a mechanism to separate header
 information from its payload
 - The generic Event class has a mechanism to attach zero or more
 metadata objects to it

 Brief class descriptions are provided in the following sub-sections.

6.1.3.1. UserSecurityEvent Class Description

 The purpose of this class is to represent Events that are initiated
 by a user, such as logon and logoff Events. Information in this
 Event may be used as part of a test to determine if the Condition
 clause in this ECA Policy Rule should be evaluated or not. Examples
 include user identification data and the type of connection used by
 the user.

 The UserSecurityEvent class defines the following attributes:

6.1.3.1.1. The usrSecEventContent Attribute

 This is a mandatory string that contains the content of the
 UserSecurityEvent. The format of the content is specified in the
 usrSecEventFormat class attribute, and the type of Event is defined
 in the usrSecEventType class attribute. An example of the
 usrSecEventContent attribute is the string "hrAdmin", with the
 usrSecEventFormat set to 1 (GUID) and the usrSecEventType attribute
 set to 5 (new logon).

6.1.3.1.2. The usrSecEventFormat Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the data type of the usrSecEventContent attribute. The
 content is specified in the usrSecEventContent class attribute, and
 the type of Event is defined in the usrSecEventType class attribute.
 An example of the usrSecEventContent attribute is the string
 "hrAdmin", with the usrSecEventFormat attribute set to 1 (GUID) and
 the usrSecEventType attribute set to 5 (new logon). Values include:

Xia, et al. Expires December 1, 2017 [Page 29]

Internet-Draft I2NSF Capability Interface IM November 2016

 0: unknown
 1: GUID (Generic Unique IDentifier)
 2: UUID (Universal Unique IDentifier)
 3: URI (Uniform Resource Identifier)
 4: FQDN (Fully Qualified Domain Name)
 5: FQPN (Fully Qualified Path Name)

6.1.3.1.3. The usrSecEventType Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the type of Event that involves this user. The content
 and format are specified in the usrSecEventContent and
 usrSecEventFormat class attributes, respectively. An example of the
 usrSecEventContent attribute is the string "hrAdmin", with the
 usrSecEventFormat attribute set to 1 (GUID) and the usrSecEventType
 attribute set to 5 (new logon). Values include:

 0: unknown
 1: new user created
 2: new user group created
 3: user deleted
 4: user group deleted
 5: user logon
 6: user logoff
 7: user access request
 8: user access granted
 9: user access violation

6.1.3.2. DeviceSecurityEvent Class Description

 The purpose of a DeviceSecurityEvent is to represent Events that
 provide information from the Device that are important to I2NSF
 Security. Information in this Event may be used as part of a test to
 determine if the Condition clause in this ECA Policy Rule should be
 evaluated or not. Examples include alarms and various device
 statistics (e.g., a type of threshold that was exceeded), which may
 signal the need for further action.

 The DeviceSecurityEvent class defines the following attributes:

6.1.3.2.1. The devSecEventContent Attribute

 This is a mandatory string that contains the content of the
 DeviceSecurityEvent. The format of the content is specified in the
 devSecEventFormat class attribute, and the type of Event is defined

Xia, et al. Expires December 1, 2017 [Page 30]

Internet-Draft I2NSF Capability Interface IM November 2016

 in the devSecEventType class attribute. An example of the
 devSecEventContent attribute is "alarm", with the devSecEventFormat
 attribute set to 1 (GUID), the devSecEventType attribute set to 5
 (new logon).

6.1.3.2.2. The devSecEventFormat Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the data type of the devSecEventContent attribute. Values
 include:

 0: unknown
 1: GUID (Generic Unique IDentifier)
 2: UUID (Universal Unique IDentifier)
 3: URI (Uniform Resource Identifier)
 4: FQDN (Fully Qualified Domain Name)
 5: FQPN (Fully Qualified Path Name)

6.1.3.2.3. The devSecEventType Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the type of Event that was generated by this device.
 Values include:

 0: unknown
 1: communications alarm
 2: quality of service alarm
 3: processing error alarm
 4: equipment error alarm
 5: environmental error alarm

 Values 1-5 are defined in X.733. Additional types of errors may also
 be defined.

6.1.3.2.4. The devSecEventTypeInfo[0..n] Attribute

 This is an optional array of strings, which is used to provide
 additional information describing the specifics of the Event
 generated by this Device. For example, this attribute could contain
 probable cause information in the first array, trend information in
 the second array, proposed repair actions in the third array, and
 additional information in the fourth array.

Xia, et al. Expires December 1, 2017 [Page 31]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.3.2.5. The devSecEventTypeSeverity Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the perceived severity of the Event generated by this
 Device. Values include:

 0: unknown
 1: cleared
 2: indeterminate
 3: critical
 4: major
 5: minor
 6: warning

 Values 1-6 are from X.733.

6.1.3.3. SystemSecurityEvent Class Description

 The purpose of a SystemSecurityEvent is to represent Events that are
 detected by the management system, instead of Events that are
 generated by a user or a device. Information in this Event may be
 used as part of a test to determine if the Condition clause in this
 ECA Policy Rule should be evaluated or not. Examples include an
 event issued by an analytics system that warns against a particular
 pattern of unknown user accesses, or an Event issued by a management
 system that represents a set of correlated and/or filtered Events.

 The SystemSecurityEvent class defines the following attributes:

6.1.3.3.1. The sysSecEventContent Attribute

 This is a mandatory string that contains the content of the
 SystemSecurityEvent. The format of the content is specified in the
 sysSecEventFormat class attribute, and the type of Event is defined
 in the sysSecEventType class attribute. An example of the
 sysSecEventContent attribute is the string "sysadmin3", with the
 sysSecEventFormat attribute set to 1 (GUID), and the sysSecEventType
 attribute set to 2 (audit log cleared).

Xia, et al. Expires December 1, 2017 [Page 32]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.3.3.2. The sysSecEventFormat Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the data type of the sysSecEventContent attribute. Values
 include:

 0: unknown
 1: GUID (Generic Unique IDentifier)
 2: UUID (Universal Unique IDentifier)
 3: URI (Uniform Resource Identifier)
 4: FQDN (Fully Qualified Domain Name)
 5: FQPN (Fully Qualified Path Name)

6.1.3.3.3. The sysSecEventType Attribute

 This is a mandatory non-negative enumerated integer, which is used
 to specify the type of Event that involves this device. Values
 include:

 0: unknown
 1: audit log written to
 2: audit log cleared
 3: policy created
 4: policy edited
 5: policy deleted
 6: policy executed

6.1.3.4. TimeSecurityEvent Class Description

 The purpose of a TimeSecurityEvent is to represent Events that are
 temporal in nature (e.g., the start or end of a period of time).
 Time events signify an individual occurrence, or a time period, in
 which a significant event happened. Information in this Event may be
 used as part of a test to determine if the Condition clause in this
 ECA Policy Rule should be evaluated or not. Examples include issuing
 an Event at a specific time to indicate that a particular resource
 should not be accessed, or that different authentication and
 authorization mechanisms should now be used (e.g., because it is now
 past regular business hours).

 The TimeSecurityEvent class defines the following attributes:

Xia, et al. Expires December 1, 2017 [Page 33]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.3.4.1. The timeSecEventPeriodBegin Attribute

 This is a mandatory DateTime attribute, and represents the beginning
 of a time period. It has a value that has a date and/or a time
 component (as in the Java or Python libraries).

6.1.3.4.2. The timeSecEventPeriodEnd Attribute

 This is a mandatory DateTime attribute, and represents the end of a
 time period. It has a value that has a date and/or a time component
 (as in the Java or Python libraries). If this is a single Event
 occurence, and not a time period when the Event can occur, then the
 timeSecEventPeriodEnd attribute may be ignored.

6.1.3.4.3. The timeSecEventTimeZone Attribute

 This is a mandatory string attribute, and defines the time zone that
 this Event occurred in using the format specified in ISO8601.

6.1.4. Network Security Condition Sub-Model

 Figure 6 shows a more detailed design of the Condition subclasses
 that are contained in the Network Security Information Sub-Model.

Xia, et al. Expires December 1, 2017 [Page 34]

Internet-Draft I2NSF Capability Interface IM November 2016

 +---------------------+
 +---------------+ 1..n 1..n | |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule+ A ----------+ for ECA Objects |
 | |\ / /| |
 +-------+-------+ +-----------+---------+
 / \
 |
 |
 +--------------+----------+----+
 | | |
 | | |
 +-----+----+ +------+------+ +-----+-----+
 | An Event | | A Condition | | An Action |
 | Class | | Class | | Class |
 +----------+ +------+------+ +-----------+
 / \
 |
 |
 +--------+----------+------+---+---------+--------+--- ...
 | | | | | |
 | | | | | |
 +-----+-----+ | +-------+-------+ | +------+-----+ |
 | Packet | | | PacketPayload | | | Target | |
 | Security | | | Security | | | Security | |
 | Condition | | | Condition | | | Condition | |
 +-----------+ | +---------------+ | +------------+ |
 | | |
 +------+-------+ +----------+------+ +--------+-------+
 | UserSecurity | | SecurityContext | | GenericContext |
 | Condition | | Condition | | Condition |
 +--------------+ +-----------------+ +----------------+

 Figure 6. Network Security Info Sub-Model Condition Class
 Extensions

 The six Condition classes shown in Figure 6 extend the (external)
 generic Condition class to represent Conditions that are of interest
 to Network Security. It is assumed that the (external) generic
 Condition class is abstract, so that data model optimizations may be
 defined. It is also assumed that the generic Condition class defines
 basic Condition information in the form of attributes, such as a
 unique object ID, a description, as well as a mechanism to attach
 zero or more metadata objects to it. While this could be defined as
 attributes in a SecurityCondition class (which would be a subclass

Xia, et al. Expires December 1, 2017 [Page 35]

Internet-Draft I2NSF Capability Interface IM November 2016

 of the generic Condition class, and a superclass of the six
 Condition classes shown in Figure 11), this makes it harder to use
 any generic Condition model with the I2NSF conditions.

 Brief class descriptions are provided in the following sub-sections.

6.1.4.1. PacketSecurityCondition

 The purpose of this Class is to represent packet header information
 that can be used as part of a test to determine if the set of Policy
 Actions in this ECA Policy Rule should be executed or not. This
 class is abstract, and serves as the superclass of more detailed
 conditions that involve different types of packet formats. Its
 subclasses are shown in Figure 7, and are defined in the following
 sections.

 +-------------------------+
 | PacketSecurityCondition |
 +------------+------------+
 / \
 |
 |
 +---------+----------+---+-----+----------+
 | | | | |
 | | | | |
 +--------+-------+ | +--------+-------+ | +--------+-------+
 | PacketSecurity | | | PacketSecurity | | | PacketSecurity |
 | MACCondition | | | IPv4Condition | | | IPv6Condition |
 +----------------+ | +----------------+ | +----------------+
 | |
 +--------+-------+ +--------+-------+
 | TCPCondition | | UDPCondition |
 +----------------+ +----------------+

 Figure 7. Network Security Info Sub-Model PacketSecurityCondition
 Class Extensions

6.1.4.1.1. PacketSecurityMACCondition

 The purpose of this Class is to represent packet MAC packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes:

Xia, et al. Expires December 1, 2017 [Page 36]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.4.1.1.1. The pktSecCondMACDest Attribute

 This is a mandatory string attribute, and defines the MAC
 destination address (6 octets long).

6.1.4.1.1.2. The pktSecCondMACSrc Attribute

 This is a mandatory string attribute, and defines the MAC source
 address (6 octets long).

6.1.4.1.1.3. The pktSecCondMAC8021Q Attribute

 This is an optional string attribute, and defines the 802.1Q tag
 value (2 octets long). This defines VLAN membership and 802.1p
 priority values.

6.1.4.1.1.4. The pktSecCondMACEtherType Attribute

 This is a mandatory string attribute, and defines the EtherType
 field (2 octets long). Values up to and including 1500 indicate the
 size of the payload in octets; values of 1536 and above define which
 protocol is encapsulated in the payload of the frame.

6.1.4.1.1.5. The pktSecCondMACTCI Attribute

 This is an optional string attribute, and defines the Tag Control
 Information. This consists of a 3 bit user priority field, a drop
 eligible indicator (1 bit), and a VLAN identifier (12 bits).

6.1.4.1.2. PacketSecurityIPv4Condition

 The purpose of this Class is to represent packet IPv4 packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes:

6.1.4.1.2.1. The pktSecCondIPv4SrcAddr Attribute

 This is a mandatory string attribute, and defines the IPv4 Source
 Address (32 bits).

6.1.4.1.2.2. The pktSecCondIPv4DestAddr Attribute

 This is a mandatory string attribute, and defines the IPv4
 Destination Address (32 bits).

Xia, et al. Expires December 1, 2017 [Page 37]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.4.1.2.3. The pktSecCondIPv4ProtocolUsed Attribute

 This is a mandatory string attribute, and defines the protocol used
 in the data portion of the IP datagram (8 bits).

6.1.4.1.2.4. The pktSecCondIPv4DSCP Attribute

 This is a mandatory string attribute, and defines the Differentiated
 Services Code Point field (6 bits).

6.1.4.1.2.5. The pktSecCondIPv4ECN Attribute

 This is an optional string attribute, and defines the Explicit
 Congestion Notification field (2 bits).

6.1.4.1.2.6. The pktSecCondIPv4TotalLength Attribute

 This is a mandatory string attribute, and defines the total length
 of the packet (including header and data) in bytes (16 bits).

6.1.4.1.2.7. The pktSecCondIPv4TTL Attribute

 This is a mandatory string attribute, and defines the Time To Live
 in seconds (8 bits).

6.1.4.1.3. PacketSecurityIPv6Condition

 The purpose of this Class is to represent packet IPv6 packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes:

6.1.4.1.3.1. The pktSecCondIPv6SrcAddr Attribute

 This is a mandatory string attribute, and defines the IPv6 Source
 Address (128 bits).

6.1.4.1.3.2. The pktSecCondIPv6DestAddr Attribute

 This is a mandatory string attribute, and defines the IPv6
 Destination Address (128 bits).

6.1.4.1.3.3. The pktSecCondIPv6DSCP Attribute

 This is a mandatory string attribute, and defines the Differentiated
 Services Code Point field (6 bits). It consists of the six most
 significant bits of the Traffic Class field in the IPv6 header.

Xia, et al. Expires December 1, 2017 [Page 38]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.4.1.3.4. The pktSecCondIPv6ECN Attribute

 This is a mandatory string attribute, and defines the Explicit
 Congestion Notification field (2 bits). It consists of the two least
 significant bits of the Traffic Class field in the IPv6 header.

6.1.4.1.3.5. The pktSecCondIPv6FlowLabel Attribute

 This is a mandatory string attribute, and defines an IPv6 flow label.
 This, in combination with the Source and Destination Address fields,
 enables efficient IPv6 flow classification by using only the IPv6
 main header fields (20 bits).

6.1.4.1.3.6. The pktSecCondIPv6PayloadLength Attribute

 This is a mandatory string attribute, and defines the total length
 of the packet (including the fixed and any extension headers, and
 data) in bytes (16 bits).

6.1.4.1.3.7. The pktSecCondIPv6NextHeader Attribute

 This is a mandatory string attribute, and defines the type of the
 next header (e.g., which extension header to use) (8 bits).

6.1.4.1.3.8. The pktSecCondIPv6HopLimit Attribute

 This is a mandatory string attribute, and defines the maximum number
 of hops that this packet can traverse (8 bits).

6.1.4.1.4. PacketSecurityTCPCondition

 The purpose of this Class is to represent packet TCP packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes:

6.1.4.1.4.1. The pktSecCondTPCSrcPort Attribute

 This is a mandatory string attribute, and defines the Source Port
 (16 bits).

6.1.4.1.4.2. The pktSecCondTPCDestPort Attribute

 This is a mandatory string attribute, and defines the Destination
 Port (16 bits).

Xia, et al. Expires December 1, 2017 [Page 39]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.4.1.4.3. The pktSecCondTPCSeqNum Attribute

 This is a mandatory string attribute, and defines the sequence
 number (32 bits).

6.1.4.1.4.4. The pktSecCondTPCFlags Attribute

 This is a mandatory string attribute, and defines the nine Control
 bit flags (9 bits).

6.1.4.1.5. PacketSecurityUDPCondition

 The purpose of this Class is to represent packet UDP packet header
 information that can be used as part of a test to determine if the
 set of Policy Actions in this ECA Policy Rule should be executed or
 not. This class is concrete, and defines the following attributes:

6.1.4.1.5.1. The pktSecCondUDPSrcPort Attribute

 This is a mandatory string attribute, and defines the UDP Source
 Port (16 bits).

6.1.4.1.5.2. The pktSecCondUDPDestPort Attribute

 This is a mandatory string attribute, and defines the UDP
 Destination Port (16 bits).

6.1.4.1.5.3. The pktSecCondUDPLength Attribute

 This is a mandatory string attribute, and defines the length in
 bytes of the UDP header and data (16 bits).

6.1.4.2. PacketPayloadSecurityCondition

 The purpose of this Class is to represent packet payload data that
 can be used as part of a test to determine if the set of Policy
 Actions in this ECA Policy Rule should be executed or not. Examples
 include a specific set of bytes in the packet payload.

6.1.4.3. TargetSecurityCondition

 The purpose of this Class is to represent information about
 different targets of this policy (i.e., entities to which this
 policy rule should be applied), which can be used as part of a test
 to determine if the set of Policy Actions in this ECA Policy Rule

Xia, et al. Expires December 1, 2017 [Page 40]

Internet-Draft I2NSF Capability Interface IM November 2016

 should be executed or not. Examples include whether the targeted
 entities are playing the same role, or whether each device is
 administered by the same set of users, groups, or roles.

 This Class has several important subclasses, including:

 a. ServiceSecurityContextCondition is the superclass for all
 information that can be used in an ECA Policy Rule that specifies
 data about the type of service to be analyzed (e.g., the protocol
 type and port number)

 b. ApplicationSecurityContextCondition is the superclass for all
 information that can be used in a ECA Policy Rule that specifies
 data that identifies a particular application (including metadata,
 such as risk level)

 c. DeviceSecurityContextCondition is the superclass for all
 information that can be used in a ECA Policy Rule that specifies
 data about a device type and/or device OS that is being used

6.1.4.4. UserSecurityCondition

 The purpose of this Class is to represent data about the user or
 group referenced in this ECA Policy Rule that can be used as part of
 a test to determine if the set of Policy Actions in this ECA Policy
 Rule should be evaluated or not. Examples include the user or group
 id used, the type of connection used, whether a given user or group
 is playing a particular role, or whether a given user or group has
 failed to login a particular number of times.

6.1.4.5. SecurityContextCondition

 The purpose of this Class is to represent security conditions that
 are part of a specific context, which can be used as part of a test
 to determine if the set of Policy Actions in this ECA Policy Rule
 should be evaluated or not. Examples include testing to determine if
 a particular pattern of security-related data have occurred, or if
 the current session state matches the expected session state.

6.1.4.6. GenericContextSecurityCondition

 The purpose of this Class is to represent generic contextual
 information in which this ECA Policy Rule is being executed, which
 can be used as part of a test to determine if the set of Policy
 Actions in this ECA Policy Rule should be evaluated or not. Examples
 include geographic location and temporal information.

Xia, et al. Expires December 1, 2017 [Page 41]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.5. Network Security Action Sub-Model

 Figure 7 shows a more detailed design of the Action subclasses that
 are contained in the Network Security Information Sub-Model.

 +---------------------+
 +---------------+ 1..n 1..n | |
 | |/ \ \| A Common Superclass |
 | ECAPolicyRule+ A ----------+ for ECA Objects |
 | |\ / /| |
 +---------------+ +-----------+---------+
 / \
 |
 |
 +--------------+--------+------+
 | | |
 | | |
 +-----+----+ +------+------+ +-----+-----+
 | An Event | | A Condition | | An Action |
 | Class | | Class | | Class |
 +----------+ +-------------+ +-----+-----+
 / \
 |
 |
 +------------+-------------+------------------+-------- ...
 | | | |
 | | | |
 +----+----+ +----+---+ +------+-------+ +-------+--------+
 | Ingress | | Egress | | ApplyProfile | | ApplySignature |
 | Action | | Action | | Action | | Action |
 +---------+ +--------+ +--------------+ +----------------+

 Figure 7. Network Security Info Sub-Model Action Extensions

 The four Action classes shown in Figure 7 extend the (external)
 generic Action class to represent Actions that perform a Network
 Security Control function. Brief class descriptions are provided in
 the following sub-sections.

Xia, et al. Expires December 1, 2017 [Page 42]

Internet-Draft I2NSF Capability Interface IM November 2016

6.1.5.1. IngressAction

 The purpose of this Class is to represent actions performed on
 packets that enter an NSF. Examples include pass, drop, mirror
 traffic.

6.1.5.2. EgressAction

 The purpose of this Class is to represent actions performed on
 packets that exit an NSF. Examples include pass, drop, mirror
 traffic, signal, encapsulate.

6.1.5.3. ApplyProfileAction

 The purpose of this Class is to represent applying a profile to
 packets to perform content security and/or attack mitigation control.

6.1.5.4. ApplySignatureAction

 The purpose of this Class is to represent applying a signature file
 to packets to perform content security and/or attack mitigation
 control.

 6.2. Information Model for Content Security Control

 The block for content security control is composed of a number of
 security capabilities, while each one aims for protecting against a
 specific type of threat in the application layer.

 Following figure shows a basic structure of the information model:

Xia, et al. Expires December 1, 2017 [Page 43]

Internet-Draft I2NSF Capability Interface IM November 2016

 +----------------------------------+
 | |
 | |
 | Anti-Virus |
 | Intrusion Prevention |
 | URL Filtering |
 | File Blocking |
 | Data Filtering |
 | Application Behavior Control |
 | Mail Filtering |
 | Packet Capturing |
 | File Isolation |
 | ... |
 | |
 | |
 | |
 | |
 | Information model |
 | for content security|
 | control |
 +----------------------------------+
 Figure 8. The basic structure of information model for content
 security control

 The detailed description about the standard interface and the
 parameters for all the security capabilities of this category are
 TBD.

 6.3. Information Model for Attack Mitigation Control

 The block for attack mitigation control is composed of a number of
 security capabilities, while each one aims for mitigating a specific
 type of network attack.

 Following figure shows a basic structure of the information model:

Xia, et al. Expires December 1, 2017 [Page 44]

Internet-Draft I2NSF Capability Interface IM November 2016

 Please view in a fixed-width font such as Courier.

 +---+
 | |
 | +---------------------+ +---------------+ |
 | |Attack mitigation | | General Shared| |
 | |capabilites: | | Parameters: | |
 | | SYN flood, | | | |
 | | UDP flood, | | | |
 | | ICMP flood, | | | |
 | | IP fragment flood, | | | |
 | | IPv6 related attacks| | | |
 | | HTTP flood, | | | |
 | | HTTPS flood, | | | |
 | | DNS flood, | | | |
 | | DNS amplification, | | | |
 | | SSL DDoS, | | | |
 | | IP sweep, | | | |
 | | Port scanning, | | | |
 | | Ping of Death, | | | |
 | | Oversized ICMP | | | |
 | | | | | |
 | | ... | | | |
 | | | | | |
 | +---------------------+ +---------------+ |
 | |
 | Information model |
 | for attack mitigation|
 | control |
 +---+
 Figure 9. The basic structure of information model for attack
 mitigation control

 The detailed description about the standard interface and the
 general shared parameters for all the security capabilities of this
 category are TBD.

 7. Security Considerations

 The security capability policy information sent to NSFs should be
 protected by the secure communication channel, to ensure the
 confidentiality and integrity. In another side, the NSFs and
 security controller can all be faked, which lead to undesirable
 results, i.e., security policy leakage from security controller,
 faked security controller sending false information to mislead the
 NSFs. The mutual authentication is essential to protected against

Xia, et al. Expires December 1, 2017 [Page 45]

Internet-Draft I2NSF Capability Interface IM November 2016

 this kind of attack. The current mainstream security technologies
 (i.e., TLS, DTLS, IPSEC, X.509 PKI) can be employed appropriately to
 provide the above security functionalities.

 In addition, to defend against the DDoS attack caused by the
 security controller sending too much configuration messages to the
 NSFs, the rate limiting or similar mechanisms should be considered
 in NSF, whether in advance or just in the process of DDoS attack.

 8. IANA Considerations

 This document requires no IANA actions. RFC Editor: Please remove
 this section before publication.

 9. References

 9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2234] Crocker, D. and Overell, P.(Editors), "Augmented BNF for
 Syntax Specifications: ABNF", RFC 2234, Internet Mail
 Consortium and Demon Internet Ltd., November 1997.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
 Used to Form Encoding Rules in Various Routing Protocol
 Specifications", RFC 5511, April 2009.

 [RFC3198] Westerinen, A., Schnizlein, J., Strassner, J., Scherling,
 M., Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry,
 J., and S. Waldbusser, "Terminology for Policy-Based
 Management", RFC 3198, DOI 10.17487/RFC3198,
 November 2001, <http://www.rfc-editor.org/info/rfc3198>.

 9.2. Informative References

 [INCITS359 RBAC] NIST/INCITS, "American National Standard for
 Information Technology - Role Based Access Control",
 INCITS 359, April, 2003

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc5511
https://datatracker.ietf.org/doc/html/rfc3198
http://www.rfc-editor.org/info/rfc3198

Xia, et al. Expires December 1, 2017 [Page 46]

Internet-Draft I2NSF Capability Interface IM November 2016

 [I-D.draft-ietf-i2nsf-problem-and-use-cases] Hares, S., et.al.,
 "I2NSF Problem Statement and Use cases", Work in Progress,
 February, 2016.

 [I-D.draft-ietf-i2nsf-framework] Lopez, E., et.al., "Framework for
 Interface to Network Security Functions", Work in Progress,
 October, 2016.

 [I-D.draft-ietf-i2nsf-terminology] Hares, S., et.al., "Interface to
 Network Security Functions (I2NSF) Terminology", Work in
 Progress, April, 2016

 [I-D.draft-ietf-supa-generic-policy-info-model] Strassner, J.,
 Halpern, J., Coleman, J., "Generic Policy Information
 Model for Simplified Use of Policy Abstractions (SUPA)",
 Work in Progress, June, 2016.

 [I-D.draft-baspez-i2nsf-capabilities-00] Basile C., Lopez D. R., "A
 Model of Security Capabilities for Network Security
 Functions", July 2016

 [I-D.draft-xia-i2nsf-capability-interface-im-06] Xia L., et al.,
 "Information Model of Interface to Network Security
 Functions Capability Interface", June 2016

 [Alshaer] Al Shaer, E. and H. Hamed, "Modeling and management of
 firewall policies", 2004.

 [Bas12] Basile, C., Cappadonia, A., and A. Lioy, "Network-Level
 Access Control Policy Analysis and Transformation", 2012.

 [Bas15] Basile, C. and A. Lioy, "Analysis of application-layer
 filtering policies with application to HTTP", 2015.

 [Cormen] Cormen, T., "Introduction to Algorithms", 2009.

 [Lunt] van Lunteren, J. and T. Engbersen, "Fast and scalable
 packet classification", 2003.

 [Taylor] Taylor, D. and J. Turner, "Scalable packet classification
 using distributed crossproducting of field labels", 2004.

 10. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot.

https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology
https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-info-model
https://datatracker.ietf.org/doc/html/draft-baspez-i2nsf-capabilities-00
https://datatracker.ietf.org/doc/html/draft-xia-i2nsf-capability-interface-im-06

Xia, et al. Expires December 1, 2017 [Page 47]

Internet-Draft I2NSF Capability Interface IM November 2016

Appendix A.

 Six exemplary policy rules of Network Security Capability are
 introduced in this Appendix to clarify how to create different kinds
 of specific ECA policy rules.

 Note that there is a common pattern that defines how these
 ECAPolicyRules operate; this simplifies their implementation. All of
 these six ECA Policy Rules are concrete classes.

 In addition, none of these six subclasses define attributes. This
 enables them to be viewed as simple object containers, and hence,
 applicable to a wide variety of content. It also means that the
 content of the function (e.g., how an entity is authenticated, what
 specific traffic is inspected, or which particular signature is
 applied) is defined solely by the set of events, conditions, and
 actions that are contained by the particular subclass. This enables
 the policy rule, with its aggregated set of events, conditions, and
 actions, to be treated as a reusable object.

A.1. AuthenticationECAPolicyRule Class Definition

 The purpose of an AuthenticationECAPolicyRule is to define an ECA
 Policy Rule that can verify whether an entity has an attribute of a
 specific value.

 This class does NOT define the authentication method used. This is
 because this would effectively "enclose" this information within the
 AuthenticationECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Authentication
 class(es) could not; they would have to associate with the
 AuthenticationECAPolicyRule class, and those other classes would not
 likely be interested in the AuthenticationECAPolicyRule. Second, the
 evolution of new authentication methods should be independent of the
 AuthenticationECAPolicyRule; this cannot happen if the
 Authentication class(es) are embedded in the
 AuthenticationECAPolicyRule. Hence, this document recommends the
 following design:
 +----------------+
 +----------------+ 1..n 1...n | |
 | |/ \ HasAuthenticationMethod \| Authentication |
 | Authentication + A ----------+-----------------+ Method |
 | ECAPolicyRule |\ / ^ /| |
 | | | +----------------+
 +----------------+ |

Xia, et al. Expires December 1, 2017 [Page 48]

Internet-Draft I2NSF Capability Interface IM November 2016

 |
 +------------+-------------+
 | AuthenticationRuleDetail |
 +------------+-------------+
 / \ 0..n
 |
 | PolicyControlsAuthentication
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 10. Modeling Authentication Mechanisms

 This document only defines the AuthenticationECAPolicyRule; all
 other classes, and the aggregations, are defined in an external
 model. For completeness, descriptions of how the two aggregations
 are used are below.

 Figure 10 defines an aggregation between the
 AuthenticationECAPolicyRule and an externalAuthenticationMethod
 class (which is likely a superclass for different types of
 authentication mechanisms). This decouples the implementation of
 authentication mechanisms from how authentication mechanisms are
 used.

 Since different AuthenticationECAPolicyRules can use different
 authentication mechanisms in different ways, the aggregation is
 realized as an association class. This enables the attributes and
 methods of the association class (i.e., AuthenticationRuleDetail) to
 be used to define how a given AuthenticationMethod is used by a
 particular AuthenticationECAPolicyRule.

 Similarly, the PolicyControlsAuthentication aggregation defines
 policies to control the configuration of the
 AuthenticationRuleDetail association class. This enables the entire
 authentication process to be managed by ECAPolicyRules.

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the AuthenticationECAPolicyRule class, called (for
 example) authenticationMethodCurrent and
 authenticationMethodSupported, to represent the
 HasAuthenticationMethod aggregation and its association class. The

Xia, et al. Expires December 1, 2017 [Page 49]

Internet-Draft I2NSF Capability Interface IM November 2016

 former is a string attribute that defines the current authentication
 method used by this AuthenticationECAPolicyRule, while the latter
 defines a set of authentication methods, in the form of an
 authentication capability, which this AuthenticationECAPolicyRule
 can advertise.

A.2. AuthorizationECAPolicyRuleClass Definition

 The purpose of an AuthorizationECAPolicyRule is to define an ECA
 Policy Rule that can determine whether access to a resource should
 be given and, if so, what permissions should be granted to the
 entity that is accessing the resource.

 This class does NOT define the authorization method(s) used. This is
 because this would effectively "enclose" this information within the
 AuthorizationECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Authorization
 class(es) could not; they would have to associate with the
 AuthorizationECAPolicyRule class, and those other classes would not
 likely be interested in the AuthorizationECAPolicyRule. Second, the
 evolution of new authorization methods should be independent of the
 AuthorizationECAPolicyRule; this cannot happen if the Authorization
 class(es) are embedded in the AuthorizationECAPolicyRule. Hence,
 this document recommends the following design:

Xia, et al. Expires December 1, 2017 [Page 50]

Internet-Draft I2NSF Capability Interface IM November 2016

 +---------------+
 +----------------+ 1..n 1...n | |
 | |/ \ HasAuthorizationMethod \| Authorization |
 | Authorization + A ----------+----------------+ Method |
 | ECAPolicyRule |\ / ^ /| |
 | | | +---------------+
 +----------------+ |
 |
 +------------+------------+
 | AuthorizationRuleDetail |
 +------------+------------+
 / \ 0..n
 |
 | PolicyControlsAuthorization
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 11. Modeling Authorization Mechanisms

 This document only defines the AuthorizationECAPolicyRule; all other
 classes, and the aggregations, are defined in an external model. For
 completeness, descriptions of how the two aggregations are used are
 below.

 Figure 11 defines an aggregation between the
 AuthorizationECAPolicyRule and an external AuthorizationMethod class
 (which is likely a superclass for different types of authorization
 mechanisms). This decouples the implementation of authorization
 mechanisms from how authorization mechanisms are used.

 Since different AuthorizationECAPolicyRules can use different
 authorization mechanisms in different ways, the aggregation is
 realized as an association class. This enables the attributes and
 methods of the association class (i.e., AuthorizationRuleDetail) to
 be used to define how a given AuthorizationMethod is used by a
 particular AuthorizationECAPolicyRule.

 Similarly, the PolicyControlsAuthorization aggregation defines
 policies to control the configuration of the AuthorizationRuleDetail
 association class. This enables the entire authorization process to
 be managed by ECAPolicyRules.

Xia, et al. Expires December 1, 2017 [Page 51]

Internet-Draft I2NSF Capability Interface IM November 2016

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the AuthorizationECAPolicyRule class, called (for
 example) authorizationMethodCurrent and authorizationMethodSupported,
 to represent the HasAuthorizationMethod aggregation and its
 association class. The former is a string attribute that defines the
 current authorization method used by this AuthorizationECAPolicyRule,
 while the latter defines a set of authorization methods, in the form
 of an authorization capability, which this
 AuthorizationECAPolicyRule can advertise.

A.3. AccountingECAPolicyRuleClass Definition

 The purpose of an AccountingECAPolicyRule is to define an ECA Policy
 Rule that can determine which information to collect, and how to
 collect that information, from which set of resources for the
 purpose of trend analysis, auditing, billing, or cost allocation
 [RFC2975] [RFC3539].

 This class does NOT define the accounting method(s) used. This is
 because this would effectively "enclose" this information within the
 AccountingECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Accounting class(es)
 could not; they would have to associate with the
 AccountingECAPolicyRule class, and those other classes would not
 likely be interested in the AccountingECAPolicyRule. Second, the
 evolution of new accounting methods should be independent of the
 AccountingECAPolicyRule; this cannot happen if the Accounting
 class(es) are embedded in the AccountingECAPolicyRule. Hence, this
 document recommends the following design:

Xia, et al. Expires December 1, 2017 [Page 52]

https://datatracker.ietf.org/doc/html/rfc2975
https://datatracker.ietf.org/doc/html/rfc3539

Internet-Draft I2NSF Capability Interface IM November 2016

 +-------------+
 +----------------+ 1..n 1...n | |
 | |/ \ HasAccountingMethod \| Accounting |
 | Accounting + A ----------+--------------+ Method |
 | ECAPolicyRule |\ / ^ /| |
 | | | +-------------+
 +----------------+ |
 |
 +----------+-----------+
 | AccountingRuleDetail |
 +----------+-----------+
 / \ 0..n
 |
 | PolicyControlsAccounting
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 12. Modeling Accounting Mechanisms

 This document only defines the AccountingECAPolicyRule; all other
 classes, and the aggregations, are defined in an external model. For
 completeness, descriptions of how the two aggregations are used are
 below.

 Figure 12 defines an aggregation between the AccountingECAPolicyRule
 and an external AccountingMethod class (which is likely a superclass
 for different types of accounting mechanisms). This decouples the
 implementation of accounting mechanisms from how accounting
 mechanisms are used.

 Since different AccountingECAPolicyRules can use different
 accounting mechanisms in different ways, the aggregation is realized
 as an association class. This enables the attributes and methods of
 the association class (i.e., AccountingRuleDetail) to be used to
 define how a given AccountingMethod is used by a particular
 AccountingECAPolicyRule.

 Similarly, the PolicyControlsAccounting aggregation defines policies
 to control the configuration of the AccountingRuleDetail association
 class. This enables the entire accounting process to be managed by
 ECAPolicyRules.

Xia, et al. Expires December 1, 2017 [Page 53]

Internet-Draft I2NSF Capability Interface IM November 2016

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the AccountingECAPolicyRule class, called (for
 example) accountingMethodCurrent and accountingMethodSupported, to
 represent the HasAccountingMethod aggregation and its association
 class. The former is a string attribute that defines the current
 accounting method used by this AccountingECAPolicyRule, while the
 latter defines a set of accounting methods, in the form of an
 authorization capability, which this AccountingECAPolicyRule can
 advertise.

A.4. TrafficInspectionECAPolicyRuleClass Definition

 The purpose of a TrafficInspectionECAPolicyRule is to define an ECA
 Policy Rule that, based on a given context, can determine which
 traffic to examine on which devices, which information to collect
 from those devices, and how to collect that information.

 This class does NOT define the traffic inspection method(s) used.
 This is because this would effectively "enclose" this information
 within the TrafficInspectionECAPolicyRule. This has two drawbacks.
 First, other entities that need to use information from the
 TrafficInspection class(es) could not; they would have to associate
 with the TrafficInspectionECAPolicyRule class, and those other
 classes would not likely be interested in the
 TrafficInspectionECAPolicyRule. Second, the evolution of new traffic
 inspection methods should be independent of the
 TrafficInspectionECAPolicyRule; this cannot happen if the
 TrafficInspection class(es) are embedded in the
 TrafficInspectionECAPolicyRule. Hence, this document recommends the
 following design:

Xia, et al. Expires December 1, 2017 [Page 54]

Internet-Draft I2NSF Capability Interface IM November 2016

 +------------------+
 +-------------------+1..n 1..n| |
 | |/ \ HasTrafficInspection \| Traffic |
 | TrafficInspection + A ----------+-------------+ InspectionMethod |
 | ECAPolicyRule |\ / ^ / | |
 | | | +------------------+
 +-------------------+ |
 |
 +------------+------------+
 | TrafficInspectionDetail |
 +------------+------------+
 / \ 0..n
 |
 | PolicyControlsTrafficInspection
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+
 Figure 13. Modeling Traffic Inspection Mechanisms

 This document only defines the TrafficInspectionECAPolicyRule; all
 other classes, and the aggregations, are defined in an external
 model. For completeness, descriptions of how the two aggregations
 are used are below.

 Figure 13 defines an aggregation between the
 TrafficInspectionECAPolicyRule and an external TrafficInspection
 class (which is likely a superclass for different types of traffic
 inspection mechanisms). This decouples the implementation of traffic
 inspection mechanisms from how traffic inspection mechanisms are
 used.

 Since different TrafficInspectionECAPolicyRules can use different
 traffic inspection mechanisms in different ways, the aggregation is
 realized as an association class. This enables the attributes and
 methods of the association class (i.e., TrafficInspectionDetail) to
 be used to define how a given TrafficInspectionMethod is used by a
 particular TrafficInspectionECAPolicyRule.

 Similarly, the PolicyControlsTrafficInspection aggregation defines
 policies to control the configuration of the TrafficInspectionDetail
 association class. This enables the entire traffic inspection
 process to be managed by ECAPolicyRules.

Xia, et al. Expires December 1, 2017 [Page 55]

Internet-Draft I2NSF Capability Interface IM November 2016

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the TrafficInspectionECAPolicyRule class, called (for
 example) trafficInspectionMethodCurrent and
 trafficInspectionMethodSupported, to represent the
 HasTrafficInspectionMethod aggregation and its association class.
 The former is a string attribute that defines the current traffic
 inspection method used by this TrafficInspectionECAPolicyRule, while
 the latter defines a set of traffic inspection methods, in the form
 of a traffic inspection capability, which this
 TrafficInspectionECAPolicyRule can advertise.

A.5. ApplyProfileECAPolicyRuleClass Definition

 The purpose of an ApplyProfileECAPolicyRule is to define an ECA
 Policy Rule that, based on a given context, can apply a particular
 profile to specific traffic. The profile defines the security
 capabilities for content security control and/or attack mitigation
 control; these will be described in sections 4.4 and 4.5,
 respectively.

 This class does NOT define the set of Profiles used. This is because
 this would effectively "enclose" this information within the
 ApplyProfileECAPolicyRule. This has two drawbacks. First, other
 entities that need to use information from the Profile class(es)
 could not; they would have to associate with the
 ApplyProfileECAPolicyRule class, and those other classes would not
 likely be interested in the ApplyProfileECAPolicyRule. Second, the
 evolution of new Profile classes should be independent of the
 ApplyProfileECAPolicyRule; this cannot happen if the Profile
 class(es) are embedded in the ApplyProfileECAPolicyRule. Hence, this
 document recommends the following design:

Xia, et al. Expires December 1, 2017 [Page 56]

Internet-Draft I2NSF Capability Interface IM November 2016

 +-------------+
 +-------------------+ 1..n 1..n | |
 | |/ \ ProfileApplied \| |
 | ApplyProfile + A -----------+-------------+ Profile |
 | ECAPolicyRule |\ / ^ /| |
 | | | +-------------+
 +-------------------+ |
 |
 +------------+---------+
 | ProfileAppliedDetail |
 +------------+---------+
 / \ 0..n
 |
 |
 PolicyControlsProfileApplication |
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 14. Modeling Profile ApplicationMechanisms

 This document only defines the ApplyProfileECAPolicyRule; all other
 classes, and the aggregations, are defined in an external model. For
 completeness, descriptions of how the two aggregations are used are
 below.

 Figure 14 defines an aggregation between the
 ApplyProfileECAPolicyRule and an external Profile class (which is
 likely a superclass for different types of Profiles). This decouples
 the implementation of Profiles from how Profiles are used.

 Since different ApplyProfileECAPolicyRules can use different
 Profiles in different ways, the aggregation is realized as an
 association class. This enables the attributes and methods of the
 association class (i.e., ProfileAppliedDetail) to be used to define
 how a given Profileis used by a particular ApplyProfileECAPolicyRule.

 Similarly, the PolicyControlsProfileApplication aggregation defines
 policies to control the configuration of the ProfileAppliedDetail
 association class. This enables the application of Profiles to be
 managed by ECAPolicyRules.

Xia, et al. Expires December 1, 2017 [Page 57]

Internet-Draft I2NSF Capability Interface IM November 2016

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the ApplyProfileECAPolicyRuleclass, called (for
 example) profileAppliedCurrent and profileAppliedSupported, to
 represent the ProfileApplied aggregation and its association class.
 The former is a string attribute that defines the current Profile
 used by this ApplyProfileECAPolicyRule, while the latter defines a
 set of Profiles, in the form of a Profile capability, which this
 ApplyProfileECAPolicyRule can advertise.

A.6. ApplySignatureECAPolicyRuleClass Definition

 The purpose of an ApplySignatureECAPolicyRule is to define an ECA
 Policy Rule that, based on a given context, can determine which
 Signature object (e.g., an anti-virus file, or aURL filtering file,
 or a script) to apply to which traffic. The Signature object defines
 the security capabilities for content security control and/or attack
 mitigation control; these will be described in sections 4.4 and 4.5,
 respectively.

 This class does NOT define the set of Signature objects used. This
 is because this would effectively "enclose" this information within
 the ApplySignatureECAPolicyRule. This has two drawbacks. First,
 other entities that need to use information from the Signature
 object class(es) could not; they would have to associate with the
 ApplySignatureECAPolicyRule class, and those other classes would not
 likely be interested in the ApplySignatureECAPolicyRule. Second, the
 evolution of new Signature object classes should be independent of
 the ApplySignatureECAPolicyRule; this cannot happen if the Signature
 object class(es) are embedded in the ApplySignatureECAPolicyRule.
 Hence, this document recommends the following design:

Xia, et al. Expires December 1, 2017 [Page 58]

Internet-Draft I2NSF Capability Interface IM November 2016

 +-------------+
 +---------------+ 1..n 1..n | |
 | |/ \ SignatureApplied \| |
 | ApplySignature+ A ----------+--------------+ Signature |
 | ECAPolicyRule |\ / ^ /| |
 | | | +-------------+
 +---------------+ |
 |
 +------------+-----------+
 | SignatureAppliedDetail |
 +------------+-----------+
 / \ 0..n
 |
 | PolicyControlsSignatureApplication
 |
 / \
 A
 \ / 0..n
 +----------+--------------+
 | ManagementECAPolicyRule |
 +-------------------------+

 Figure 15. Modeling Sginature Application Mechanisms

 This document only defines the ApplySignatureECAPolicyRule; all
 other classes, and the aggregations, are defined in an external
 model. For completeness, descriptions of how the two aggregations
 are used are below.

 Figure 15 defines an aggregation between the
 ApplySignatureECAPolicyRule and an external Signature object class
 (which is likely a superclass for different types of Signature
 objects). This decouples the implementation of signature objects
 from how Signature objects are used.

 Since different ApplySignatureECAPolicyRules can use different
 Signature objects in different ways, the aggregation is realized as
 an association class. This enables the attributes and methods of the
 association class (i.e., SignatureAppliedDetail) to be used to
 define how a given Signature object is used by a particular
 ApplySignatureECAPolicyRule.

 Similarly, the PolicyControlsSignatureApplication aggregation
 defines policies to control the configuration of the

Xia, et al. Expires December 1, 2017 [Page 59]

Internet-Draft I2NSF Capability Interface IM November 2016

 SignatureAppliedDetail association class. This enables the
 application of the Signature object to be managed by policy.

 Note: a data model MAY choose to collapse this design into a more
 efficient implementation. For example, a data model could define two
 attributes for the ApplySignatureECAPolicyRule class, called (for
 example) signature signatureAppliedCurrent and
 signatureAppliedSupported, to represent the SignatureApplied
 aggregation and its association class. The former is a string
 attribute that defines the current Signature object used by this
 ApplySignatureECAPolicyRule, while the latter defines a set of
 Signature objects, in the form of a Signature capability, which this
 ApplySignatureECAPolicyRule can advertise.

Xia, et al. Expires December 1, 2017 [Page 60]

Internet-Draft I2NSF Capability Interface IM November 2016

Authors' Addresses

 Liang Xia (Frank)
 Huawei

 101 Software Avenue, Yuhuatai District
 Nanjing, Jiangsu 210012
 China

 Email: Frank.xialiang@huawei.com

 John Strassner
 Huawei
 Email: John.sc.Strassner@huawei.com

 DaCheng Zhang
 Huawei

 Email: dacheng.zhang@huawei.com

 Kepeng Li
 Alibaba

 Email: kepeng.lkp@alibaba-inc.com

 Cataldo Basile, Antonio Lioy
 Politecnico di Torino
 Corso Duca degli Abruzzi, 34
 Torino, 10129
 Italy
 Email: cataldo.basile@polito.it

 Antonio Lioy
 Politecnico di Torino
 Corso Duca degli Abruzzi, 34
 Torino, 10129
 Italy
 Email: lioy@polito.it

Xia, et al. Expires December 1, 2017 [Page 61]

Internet-Draft I2NSF Capability Interface IM November 2016

 Diego R. Lopez
 Telefonica I+D
 Zurbaran, 12
 Madrid, 28010
 Spain

 Phone: +34 913 129 041
 Email: diego.r.lopez@telefonica.com

 Edward Lopez
 Fortinet
 899 Kifer Road
 Sunnyvale, CA 94086
 Phone: +1 703 220 0988

 EMail: elopez@fortinet.com

 Nicolas BOUTHORS
 Qosmos

 Email: Nicolas.BOUTHORS@qosmos.com

 Luyuan Fang
 Microsoft
 15590 NE 31st St
 Redmond, WA 98052
 Email: lufang@microsoft.com

Xia, et al. Expires December 1, 2017 [Page 62]

