
Network Working Group R. R. Stewart
INTERNET-DRAFT Cisco Systems
 Q. Xie
 Motorola

expires in six months November 15,2000

Aggregate Server Access Protocol (ASAP)
<draft-xie-rserpool-asap-01.txt>

Status of This Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC 2026. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

Aggregate Server Access Protocol (ASAP) in conjunction with ENRP [ENRP]
provides a
high availability data transfer mechanism over IP networks. ASAP uses a
name-based addressing model which isolates a logical communication
endpoint from its IP address(es), thus effectively eliminating the
binding between the communication endpoint and its physical IP

https://datatracker.ietf.org/doc/html/draft-xie-rserpool-asap-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

address(es) which normally constitutes a single point of failure.

In addition, ASAP defines each logical communication destination as a
named group, providing full transparent support for server-pooling and
load sharing. It also allows dynamic system scalability - members of a
server pool can be added or removed at any time without interrupting
the service.

ASAP is designed to take full advantage of the network level redundancy
provided by the Stream Transmission Control Protocol (SCTP) [SCTP]. But
it can also use other transport protocol like TCP.

The high availability server pooling is gained by combining two parts,
namely ASAP and the Endpoint Name Resolution Part (ENRP). ASAP
provides the user interface for name to address translation, load
sharing management, and fault management. ENRP defines the high
availability name translation service.

Table Of Contents

<TBD>

1. Introduction

Aggregate Server Access Protocol (ASAP) in conjunction with ENRP [ENRP]
provides a
high availability data transfer mechanism over IP networks. ASAP uses a
name-based addressing model which isolates a logical communication
endpoint from its IP address(es), thus effectively eliminating the
binding between the communication endpoint and its physical IP
address(es) which normally constitutes a single point of failure.

When multiple receiver instances exist under the same name, a.k.a,
server pool redundancy, ASAP will select one receiver instance, based
on the current load sharing policy indicated by the name, and deliver
the message to the selected receiver instance.

While delivering the message, ASAP monitors the reachability of
the selected destination instance. If it is found unreachable, before
notifying the sender the failure, ASAP can automatically select another
instance (if one exists) under that name and attempt to deliver the
message to that instance. In other words, ASAP is capable of
transparent fail-over amongst instances of a server pool if the
selected instance is unreachable.

ASAP uses the Endpoint Name Resolution Part (ENRP) to provide a high
availability name space. ASAP is responsible for the abstraction of the
underlying transport technologies, load distribution management, fault
management, as well as the presentation to the upper layer (i.e., the
ASAP user) a unified primitive interface.

When SCTP [SCTP] is used as the transport layer protocol, ASAP can
seamlessly incorporate the link-layer redundancy provided by the SCTP.

This document defines ASAP portion of the high availability server
pool. ASAP depends on the services of a high availiablity name space
a.k.a. ENRP.

1.1 Motivation

In this section, we will discuss the motivation for developing
ASAP. Our discussion will be focused on the analysis of the
inadequateness of two existing technologies, namely CORBA and DNS,
in providing solutions to fault-tolerance design of IP distributed
applications.

1.1.1 CORBA and Its Limitations

Often referred to as a Distributed Processing Environment (DPE),
CORBA was mainly designed to provide location transparency for
distributed applications. However, the following limitations may exist
when applying CORBA to the design of real time fault-tolerant system:

 1) CORBA is traditionally weak in high availability. The recent
 development of a high availability version of CORBA by OMG is perhaps
 a step in the right direction towards fixing this
 weakness. Nevertheless, the maturity, implementablity, and
 real-time performance of the design is yet to be proven.

 [Editor's Note: the fault tolerance mechanism being developed by
 OMG for CORBA bears quite some similarities to ASAP.]

 2) CORBA's distribution model encourages an object-based view,
 i.e., each communication endpoint is normally an object. We
 consider this kind of granularity too fine to be efficient and
 effective for designing real-time fault-tolerant applications.

 3) CORBA, in general, has a large signature that makes the use of it a
 challenge in real-time environments. Small devices with limited
 memory and CPU resource (e.g., H323 or SIP terminals) will find
 CORBA hard to fit in.

 4) CORBA uses TCP as its transport (Note, some effort is currently
 underway to separate CORBA from its transport). This makes CORBA
 suffer from the same limitations of TCP in terms of real-time and
 fault-tolerance performance.

 5) CORBA has long lacked easily usable support for the asynchronous
 communication model, and this may be an issue in many
 applications. An apparently improved API for asynchronous
 communication has been added to the CORBA standards only recently,
 and many, if not most, CORBA implementations still do not support

 it. There is as yet insufficient user experience with it to make
 conclusions regarding this new feature's usability.

1.1.2 DNS and Its Limitations

Undoubtedly DNS is the best-known and proven IP namespace mechanism.
However, namespace function alone does NOT provide real time
fault-tolerance solution. Other mechanisms and procedures, such as
server process failure detection, back-up server control and
selection, fast fail-over/switch-over, load balancing, etc., also play
crucial roles. These functions are supported by ASAP but not by DNS
DNS provides a loose binding where as ASAP and ENRP are designed to
provide a tight binding.

As will be further elaborated later in this document, the fault
tolerant design for server pools is made up in two parts, namely ASAP
and ENRP, where ENRP defines a light-weight yet highly efficient
namespace mechanism optimized for building real time fault-tolerant
applications. Nevertheless, ASAP does not restrict itself to ENRP for
namespace services. In fact, it is not only feasible but also
desirable in the future to generalize ASAP design so that the ENRP can
provide a generic interface that is capable of inter-working with
different namespace, including DNS, at the ASAP implementor's choice.

In the following, we list some limitations of the current DNS
namespace capability when compared to that of ENRP:

 1) DNS name registration and translation services have been primarily
 optimized for host names. But we consider namespace services
 optimized for process names or endpoint names more appropriate and
 efficient for supporting real time server-level fault-tolerance
 applications.

 2) DNS is primarily passive. It provides a query/response database
 that allows one to find information, but does NOT provide
 monitoring of hosts or processes to assure that the host or
 process associated with that IP address will be alive and
 able to provide service.

 3) DNS has dynamic extensions but is not designed around the
 dynamic fast changing process address space that is typical to
 real time distributed applications.

It has also been suggested that ASAP be extended to work with DNS to
bridge multiple ASAP planes and provide an "inter-ASAP-Domain" bridging
function.

1.2 Definitions

This document uses the following terms:

Operation scope --- the part of the network visible by ENRP.

ASAP Endpoint --- a logical entity in the operation scope which
implements the ASAP stack and is capable of sending and receiving
messages.

ASAP Node --- a host machine in the network which contains one or
more ASAP endpoints.

ASAP Plane or ASAP operational domain --- A relam of tight binding
controlled by a set of one or more ENRP deamons. A process or application
entitiy registers its name within this "plane" and is peroidically
checked for sanity. Note that a plane does not imply geographical locality.

Endpoint name --- the registered tag of a ASAP endpoint, consisting of
a NULL terminated ASCII string of fixed length.

Named group --- a group of ASAP endpoints sharing the same endpoint
name in the name space.

Endpoint handle --- a logical pointer, consisting of a name and the
primary destination transport address to a particular endpoint in a
named group.

ENRP client --- a ASAP endpoint using ENRP to obtain name translation
and other related services. In this document, the term "ASAP endpoint" is
exchangeable with "ENRP client", unless otherwise stated.

ENRP maintenance client --- a ASAP endpoint that has the additional
capability of exchanging ENRP maintenance messages with an ENRP
server in order to perform certain maintenance functions.

ENRP server --- a server program running on a node that manages the
name space collectively with its peer ENRP servers and replies to the
service requests from any ENRP client.

Home ENRP server --- the ENRP server to which an endpoint currently
belongs. Endpoints normally choose the ENRP server on their local
host as the home ENRP server, if one exists. An endpoint shall only
have one home ENRP server at any given time, and both the endpoint and
the server shall keep track of this master/slave relationship between
them.

ENRP server takeover --- the event that a remote ENRP server takes the
ownership of all the ENRP endpoints on a node and becomes their home
server.

Caretaker ENRP server --- The ENRP server on a remote node which takes
ownership of all endpoints on the local node because of the absence of
an active local server.

ENRP client channel --- the communication channel through which a ASAP
endpoint requests for ENRP service. The ENRP client channel is usually
defined by the transport address of the home server and a well known
port number.

ENRP server channel --- defined by a well known multicast IP address
and a well known port number. All ENRP servers in an operation scope
can communicate with one another through this channel. Endpoints are
also allowed to communicate on this channel occasionally.

ENRP name domain --- defined by the combination of the ENRP client
channel and the ENRP server channel in the operation scope.

Network Byte Order: Most significant byte first, a.k.a Big Endian.

PU --- A server pool user, i.e. one who uses the server pool.

1.3 Protocol overview

At startup, each endpoint in a ASAP operational domain registers its
name in the name space. Here a name is defined as a NULL terminated
ASCII string of fixed length.

When sending a message, the sender addresses the receiver endpoint by
its name and passes the message to its ASAP layer. The ASAP layer, with
the help from the ENRP name space daemon server(s), translates the
name to a valid transport address (or a list of transport addresses if
the receiver is multi-homed) and sends the message to the receiving
endpoint.

The following diagram illustrates the components of ASAP and their
relationships.

 Figure 1.
 Data Sender Data Receiver
 ENRP (ASAP-user) (ASAP-user)
 Server +---------+ +---------+
 | ASAP |<---//---->| ASAP |
 +------+ |------+ | |------+ |
 <----->| ENRP |<---->| ENRP | | | ENRP | |
 To peer +------+ +---------+ +---------+
 ENRP server| SCTP | | SCTP | | SCTP |
 +------+ +---------+ +---------+
 | IP | | IP | | IP |
 +------+ +---------+ +---------+
 |_______________|_____________________|

Multiple endpoints can register themselves under the same name. In
that case they will be treated as a receiver pool, and ASAP, when
sending a message addressed to that name, will use a predefined
load-sharing policy to determine which endpoint(s) in the pool to

send (or address) the message.

ASAP design has a high emphasis on seamless support of "server
pooling", high availability, dynamic scalability, and
close-to-real-time name translation.

In particular, ASAP can be characterized by:

A) Seamless support of "server pooling" --- ASAP allows multiple
 servers to register under the same name. It also allows servers to
 be dynamically add to or removed from a server pool without any
 reconfiguration.

B) Support automatic receiver "fail-over" --- when the chosen message
 receiver fails, ASAP, with pre-stated permission from its upper
 layer, can automatically re-direct the message to an alternative
 server under the same name if one exists.

C) Transaction management by nickname or "association handle" --- this
 is to allow a continuous transaction or session consisting of
 multiple interactions be held between a client endpoint and and one
 particular server in a server pool.

D) Fully distributed name space --- For achieving a high degree of
 fault tolerance and operation efficiency, the ENRP daemons which
 provide name translation service and the name space data are
 distributed across the operational scope of the network.

 ENRP daemon servers can be added to or removed from the operation
 scope dynamically, without interrupting the current name translation
 service.

 For example, a node may be originally configured to operate without a
 local ENRP server. When the load condition changes, one can start a
 new ENRP server on that node to increase the operation capacity. The
 new ENRP server will automatically integrate itself with the existing
 ENRP server(s) in the scope.

 Similarly, when an ENRP server becomes unavailable for service (e.g.,
 being intentionally shutdown, or suffered failure), its ASAP clients
 will be automatically taken-over by a remote ENRP server and
 continuously have ENRP services provided.

 Note: Details on ENRP can be found in [ENRP].

E) Network failure detection and automatic recovery --- In the case
 when a major network failure breaks the operation scope into
 isolated communication islands, the name translation service will
 survive and continue inside each island so long as there is one or
 more ENRP servers present in that island. Endpoints inside each
 island will still continue to be able to communicate with each other.
 Moreover, when the network recovers, the isolated ENRP servers will

 re-discover each other and re-integrate the name space back into
 its original form.

Figure 2. shows an example of distributed applications operating in a
scope that is connected by a pair of redundant networks.

 Figure 2.

 Node 1 Node 2
 +--------------+ || +--------------+
 | | || || | |
 | Apps1 | |+===||==| |
 | | || || | Apps2 |
 | |===+| || | |
 | Apps2 | || |+==| Apps3 |
 | | || || | |
 | |========+| | |
 | (ENRP Svr) | || || | (ENRP Svr) |
 +--------------+ || || +--------------+
 || ||
 Node 3 || || Node 4
 +--------------+ || || +--------------+
 | | || || | |
 | Apps2 | || || | |
 | |========+| | Apps3 |
 | | || || | |
 | Apps4 | || || | |
 | |===+| |+==| Apps1 |
 | | || || | |
 | (ENRP Svr) | |+===||==| |
 +--------------+ || || +--------------+
 || ||
 network1 network2

In this example, there are four nodes in the scope, as shown in Figure
2. On Node 1, Node 2, and Node 3, there is an ENRP server running. On
each of the nodes, there are also some applications running. Each
application has a registered name in the name space collectively
managed by the three ENRP servers. In the example, the registered
names are "Apps1", "Apps2", "Apps3", and "Apps4". Some of the
applications (Apps1, Apps2, and Apps3) are distributed as server
pools.

When sending messages to each other, the sender application simply
addresses the recipient by its registered name. The ASAP layer inside
the sender application will query its home ENRP server to obtain the
transport address(es) and load control information of the recipient
before sending the message out.

Also note in the example, there is no ENRP server on Node 4. But the
applications on Node 4 will be served by one of the ENRP servers on
other nodes.

1.4 Organization of this document

In Chapter 2 we give the details of the ASAP interface, focusing on
the communication primitives between the applications above ASAP and
ASAP itself, and the communications primitives between ASAP and SCTP
(or other transport layer). Also included in this discussion is
relevant timers and configurable parameters as appropriate. Chapter 3
details ASAP message formats. Chapter 4 provides settable protocol
values.

1.5 Scope of ASAP

The requirements for high availability and scalability do not imply
requirements on shared state and data. ASAP does not provide
transaction failover. If a host fails during processing of a
transaction this transaction may be lost. Some services may provide a
way to handle the failure, but this is not guaranteed. ASAP MAY provide
hooks to assist an application in building a mechanism to share state
but ASAP in itself will NOT share any state.

1.5.1 Extent of the name space

The scope of the ASAP/ENRP is NOT Internet wide. The namespace is neither
hierarchical nor arbitrarily large like DNS. We propose a flat peer-to-peer
model. Pools of servers will exist in different administrative domains. For
example, suppose I want to use ASAP/ENRP. First, the PU will use DNS to
contact an ENRP server. Suppose a PU in North America and wish to contact
the server pool in Japan instead of North America. The PU would use DNS to
get the IP address of the Japanese server pool domain, that is, the address
of an ENRP server('s) in Japan.

2. The ASAP Interfaces

This chapter will focus primarily on the primitives and notifications
that form the interface between the ASAP-user and the ASAP and that
between ASAP and its lower layer transport protocol (e.g., SCTP).

Appropriate timers and recovery actions for failure detection and
management are also discussed.

2.1 ASAP User <-> ASAP Layer: Primitives and Notifications

A ASAP user passes primitives to the ASAP sub-layer to request certain
actions. Upon the completion of those actions or upon the detection of

certain events, the ASAP will notify the ASAP-user.

2.1.1 Registration.Request Primitive

Format: registration.request(endpointName)

where the endpointName parameter contains a NULL terminated ASCII
string of fixed length.

The ASAP user invokes this primitive to add itself to the name
space. The ASAP user must register its name with the ENRP server by
using this primitive before other ASAP endpoints in the name space can
send message to this ASAP user by name or by handle (see Sections
2.1.5.1? and 2.1.5.2??).

In response to the registration primitive, the ASAP layer will send a
REGISTRATION message to the home ENRP server (See section 3.?), and start a
T2-registration timer.

If the T2-registration timer expires before receiving a
REGISTRATION_RESPONSE message, or a SEND.FAILURE notification is
received from the SCTP layer, the ASAP layer shall start the Server
Hunt procedure (see Section 2.5.4??) in an attempt to get service from
a remote ENRP server.

2.1.2 Deregistration.Request Primitive

Format: deregistration.request()

The ASAP user invokes this primitive to remove itself from the name
space. This should be used as a part of the graceful shutdown
process by the application.

A DEREGISTRATION message will be sent by ASAP layer to the home ENRP
server (see Section 3.2?).

2.1.3 Cache.Populate.Request Primitive

Format: cache.populate.request(destinationAddress, typeOfAddress)

If the address type is a name and local name translation cache exists,
the ASAP layer should initiate a mapping information query on the name
and update it local cache when the response comes back from the ENRP
server.

2.1.4 Cache.Purge.Request Primitive

Format: cache.purge.request(destinationAddress, typeOfAddress)

If the address type is a name and local name translation cache exists,
the ASAP layer should remove the mapping information on the name from
its local cache.

2.1.5 Data.Send.Request Primitive

Format: data.send(destinationAddress, typeOfAddress, message,
 sizeOfMessage, Options);

This primitive requests ASAP to send a message to some specified
receiver within the name space.

Depending on the address type used for the send request, the
sender's ASAP layer may perform address translation and receiver
selection before sending the message out.

The data.send primitive can take the following forms of address
type:

2.1.5.1 Send by Name

In this case the destinationAddress and typeOfAddress together
indicates a name.

This is the simplest form of data.request primitive. By default, this
directs ASAP to send the message to one of the endpoints in the named
group.

Before sending the message out to the named group, the sender's ASAP
layer must first perform a name to address translation. It may also need
to perform receiver selection if multiple endpoints exist in the group.

If the sender's ASAP implementation does not support local cache of the
translation information or if it does not have the translation
information on that named group in its local cache, it will transmit a
request for the name mapping information to the ENRP server, and hold
the outbound message in queue while waiting for the response from the
ENRP server (any further send request to this named group before the
ENRP server responds should also be queued).

Once the necessary mapping information arrives from the ENRP server,
the sender's ASAP will:

 A) map the name into a list of transport addresses of the
 destination endpoint,

 B) If multiple endpoints exist in that named group, ASAP will choose
 one of them and transmit the message to it. In that case, the

 choice of the receiver is made by ASAP layer of the sender
 based on the server pooling policy as discussed in section 2.????.

 C) if no association exists towards the destination, establish a
 new SCTP association,

 NOTE: if the underlying SCTP implementation supports implicit
 association setup, this step is not needed (see [??]).

 D) send out the queued message to the SCTP association using the
 SEND primitive (see [???]), and,

 E) if the local cache is implemented, append/update the local cache
 with the mapping information received in the ENRP server's
 response. Also, record the local SCTP association id if a new
 association was created.

For more on the ENRP server request procedures see [ENRP].

Optionally, the ASAP layer of the sender may return the SCTP
association handle of the selected receiver endpoint to the
application after sending the message. This handle can then be used
dfor future transmissions to that receiver endpoint (see Section
2.??).

Section ??? defines the fail-over procedures for cases where the
selected endpoint is found unreachable.

2.1.5.1.1 Receiver Endpoint Selection

Each time a ASAP user sends a message to a named group that contains
more than one endpoint, the sender's ASAP layer must select one of the
endpoints in the named group as the receiver of the current
message. The selection is done according to the current server pooling policy
of the named group to which the message is sent.

Note, no selection is needed if the ASAP_SEND_TOALL option is set (see
Section 2.??).

When joining a named group, along with its registration each endpoint
specifies its preferred server pooling policy for receiving messages sent to
this named group. But only the server pooling policy specified by the first
endpoint joining the named group will become the current server pooling
policy of the group.

Moreover, together with the server pooling policy, each endpoint can also
specify a Policy Value for itself at the registration time. The
meaning of the policy value depends on the current server pooling policy of
the group. An endpoint can also change its policy value whenever it
desires, see Section 3.?? for details.

Note, if this first endpoint removes itself from the named group
(e.g., by de-registration from the name space) and the remaining
endpoints have specified conflicting server pooling policies at their
corresponding registrations, it is implementation specific to
determine the new current server pooling policy.

Four basic server pooling policies are defined in ASAP, namely the Round
Robin, Least Used, Least Used Degrading and weighted round robin. The
following sections describes each of these policies.

2.1.5.1.2 Round Robin Policy

When a ASAP endpoint sends messages by name and Round-Robin is the
current policy of that named group, the ASAP layer of the sender will
select the receiver for each outbound message by round-Robining
through all the registered endpoints in that named group, in an
attempt to achieve an even distribution of outbound messages. Note
that in a large server pool, the ENRP deamon may NOT send back
all server elements to the ASAP client. In this case the client
or PU will be performing a round robin policy on a subset of
the entire server pool.

2.1.5.1.4 Least Used Policy

When the destination named group is under the Least Used server
pooling policy, the ASAP layer of the message sender will select the
registered endpoint that has the lowest policy value in the group as
the receiver of the current message. If more than one registered
endpoint from the group share the same lowest policy value, the
selection will be done round Robin amongst those registered endpoints.

It is important to note that this policy means that the same registered
endpoint will be always selected as the message receiver by the sender until
the load control information of the name is updated and changed in the
local cache of the sender (see section 2.??).

2.1.5.1.5 Least Used with Degradation Policy

This policy is the same as the Least Used policy with the exception
that, each time the endpoint with the lowest policy value is selected
from the group as the receiver of the current message, its policy
value is incremented, and thus it may no longer be the lowest value in
the group.

This provides a degradation of the policy towards round Robin policy
over time. As with the Least Used policy, every local cache update at
the sender will bring the policy back to Least Used with Degradation.

2.1.5.2 Send by Handle

In this case the destinationAddress and typeOfAddress together
indicates a ASAP endpoint handle.

This requests the ASAP layer to deliver the message to the endpoint
identified by the handle.

The handle should contains the name and the primary destination
transport address of the destination endpoint.

The ASAP layer shall use the address to identify the SCTP association
(or to setup a new one if necessary) and then invoke the SEND
primitive to send the message out.

If local cache is supported and the mapping information for the name
found in the handle is not available in the local cache, the sender's
ASAP layer should, after sending the message, also transmit a request
for the name mapping information to the ENRP server. Once the
necessary mapping information arrives from the ENRP server, the
sender's ASAP will update its local cache with the newly received
mapping information for that name.

Section ??? defines the fail-over procedures for cases where the
endpoint pointed to by the handle is found unreachable.

Optionally, the ASAP layer may return the actual handle to which the
message was sent (this may be different from the handle specified when
the primitive is invoked, due to the possibility of automatic
fail-over).

2.1.5.3 Send by Transport Address

In this case the destinationAddress and typeOfAddress together
indicates an SCTP transport address.

This directs the sender's ASAP layer to send the message out to the
specified transport address.

No endpoint fail-over is support when this form of send request is
used.

2.1.5.4 Options

The Options parameter passed in the various forms of the above
data.request primitive gives directions to the sender's ASAP layer on
special handling of the message delivery.

Options can be grouped as follows:

 - endpoint fail-over (allowed, or prohibited),
 - whether to send to one endpoint or to the whole named group,
 - whether to send to the same receiver endpoint last sent to within
 the named group, and
 - options passed to the SCTP transport protocol.

The complete list of Options is as follows:

ASAP_USE_DEFAULT: 0x0000

 Use default setting.

ASAP_SEND_FAILOVER: 0x0001

 Enables endpoint fail-over on this message. In case where the first
 selected receiver endpoint or the endpoint pointed to by the handle
 is found unreachable, this option allows the sender's ASAP layer to
 re-select an alternate receiver endpoint from the same named group
 if one exists, and silently re-send the message to this newly
 selected endpoint.

 Endpoint unreachable is normally indicated by the Communication
 Lost or Send Failure notification from SCTP.

ASAP_SEND_NO_FAILOVER: 0x0002

 This option prohibits the sender's ASAP layer from re-sending the
 message to any alternate receiver endpoint in case that the first
 selected receiver endpoint or the endpoint pointed to by the handle
 is found unreachable. Instead, the sender's ASAP layer shall notify
 its upper layer about the unreachability with an Error.Indication
 and any unsent data.

ASAP_SEND_TO_LAST: 0x0004

 This option requests the sender's ASAP layer to send the message to
 the same receiver endpoint in the named group that the previous
 message was sent to.

ASAP_SEND_TOALL: 0x0008

 When sending by name, this option directs the sender's ASAP layer to
 send a copy of the message to all the endpoints, except for the
 sender itself, in that named group.

ASAP_SEND_TOSELF: 0x0010.

 This option only applies in combination with ASAP_SEND_TOALL option.
 It permits the sender's ASAP layer also deliver a copy of the
 message to itself (i.e., loopback).

ASAP_SCTP_BUNDLE: 0x0100

 This option allows the local SCTP transport layer to bundle the
 outbound messages whenever possible into bigger datagrams before
 transmitting them onto the network.

ASAP_SCTP_NO_BUNDLE: 0x0200

 This option disallows the local SCTP transport layer to bundle
 outbound messages.

ASAP_SCTP_HB_ON: 0x0400

 This option instructs the local SCTP transport layer to turn on
 heartbeat on the SCTP association indicated by the
 destinationAddress parameter.

ASAP_SCTP_HB_OFF: 0x0800

 This option instructs the local SCTP transport layer to turn off
 heartbeat on the SCTP association indicated by the
 destinationAddress parameter.

ASAP_SCTP_UNORDER: 0x1000
 This option instructs the SCTP transport layer to send the current
 message using un-ordered delivery.

2.1.6 Data.Received Notification

Format: data.received(messageReceived, sizeOfMessage, senderAddress,
 typeOfAddress)

When a new user message is received, the ASAP layer of the receiver
uses this notification to pass the message to its upper layer.

Along with the message being passed, the ASAP layer of the receiver
should also indicate to its upper layer the message sender's
address. The sender's address can be in the form of either an SCTP
association id, or a ASAP endpoint handle.

 A) If the name translation local cache is implemented at the receiver's
 ASAP layer, a reverse mapping from the sender's IP address to the
 endpoint name should be performed and if the mapping is
 successful, the sender's ASAP endpoint handle should be
 constructed and passed in the senderAddress field.

 B) If there is no local cache or the reverse mapping is not
 successful, the SCTP association handle should be passed in
 the senderAddress field.

2.1.7 Error.Report Notification

Format: error.report(destinationAddress, typeOfAddress,
 failedMessage, sizeOfMessage)

An error.report should be generated to notify the ASAP user about
failed message delivery as well as other abnormalities (see Section
2.2.3 for details).

The destinationAddress and typeOfAddress together indicates to whom
the message was originally sent. The address type can be either a ASAP
endpoint handle, association id, or a transport address.

The original message (or the first portion of it if the message is
too big) and its size should be passed in the failedMessage and
sizeOfMessage fields, respectively.

2.2 ASAP Layer <-> SCTP: Primitives and Notifications

This section gives a brief description on some SCTP notifications and
primitives that the ASAP layer uses. See Section 9 in [??] for more
information on SCTP primitives and notifications.

2.2.1 SCTP SEND Primitive

Basic Format:

 SEND(association id, buffer address, byte count, options)
 -> result

The outbound message will be held in the buffer when this primitive is
invoked. The ASAP layer shall identify the SCTP association which
connects to the intended destination and fill in the 'association id'.

The options field will hold the options destined to the SCTP transport
layer (see 2.??).

The returned 'result' can indicate whether there is any local error
executing the primitive.

2.2.2 SCTP RECEIVE Primitive

Basic Format:

 RECEIVE(association id, buffer address, buffer size)
 -> byte count

This primitive reads the first user message out from SCTP in-queue if
there is one available, and put the it into the specified buffer. The

size of the message read, in octets, will also be returned.

2.2.3 SCTP SET.PRIMARY Primitive

Basic Format:

 SET.PRIMARY(association id, destination transport address)
 -> result

This can be used to instructs the SCTP to use the specified
destination transport address as the new primary destination address
for sending messages.

2.2.4 SCTP DATA.ARRIVE Notification

SCTP layer invokes this notification when a user message is
successfully received and ready for retrieval. This shall prompt the
ASAP layer to invoke the RECEIVE primitive to get the data (see
2.2.2??).

2.2.5 SCTP SEND.FAILURE Notification

If a message can not be delivered to the specified association id
for any reason, SCTP will invoke this notification to notify ASAP.

In response, the ASAP shall take the following steps:

A) If the message was originally sent by name or handle and with
 option ASAP_SEND_FAILOVER set, retransmit the message to an
 alternate endpoint of the same name if one exists in the named
 group. The proper server pooling policy shall be followed if more than one
 alternates exist in the group.

B) If no alternate exists or option ASAP_SEND_FAILOVER is not set when
 the message was originally sent, generate an Error.report to
 report the failure to the ASAP user.

2.2.6 SCTP COMMUNICATION.LOST Notification

When SCTP loses communication to an endpoint completely or detects
that the remote endpoint has performed an abort or graceful shutdown
operation, it invokes this notification to notify ASAP layer.

When handling this notification ASAP shall report this event to its
ENRP server via an ENDPOINT_UNREACHABLE message with the severity
level set to NORMAL_REPORT (see 3.??).

If local mapping cache is implemented, the ASAP layer should also mark

the endpoint as unreachable in its local cache. And if all the
endpoints in that named group are marked as unreachable, the ASAP layer
should remove the named group from its local cache.

2.2.7 SCTP NETWORK.STATUS.CHANGE Notification

The SCTP sends this notification to the ASAP layer when the
reachability status of a transport address of a specific SCTP
association has changed.

If the local mapping cache is supported, the ASAP layer, upon
reception of this notification, should look up the information of
this endpoint in its local cache and record the reachability change.

If the address in question becomes unreachable and is the primary
address of the association, the ASAP layer MAY also elect a new primary
for this association by invoking the SET.PRIMARY primitive (Section
2.2.3??).

If the local cache is not support or the reverse look up does not
succeed, ASAP takes no action.

2.4 Examples

2.4.1 Send to an Unknown Name

This example shows the event sequence when the user of ASAP endpoint 1
(EP1) sends message "hello world" to a name which is not in the
local mapping cache (assuming local caching is supported).

 ENRP Server EP1 new-name:EP2
 | | |
 | +---+ |
 | | 1 | |
 | 2. NAME_RESOLUTION +---+ |
 |<----------------------------------| |
 | +---+ |
 | | 3 | |
 | 4. NAME_RESOLUTION_REPONSE +---+ |
 |---------------------------------->| |
 | +---+ |
 | | 5 | |
 | +---+ 6. "hello" |
 | |----------------->|
 | | |

 1) The user at EP1 invokes:

 data.send("new-name", name-type, "hello", 5 0);

 The ASAP layer, in response, looks up the name "new-name" in its
 local cache but fails to find it.
 2) The ASAP layer of EP1 queues the message, and sends a NAME_RESOLUTION
 request to the ENRP server asking for all information about
 "new-name".
 3) A T1-ENRPrequest timer is started while the ASAP layer is waiting
 for the response from the ENRP server.
 4) The ENRP Server responds to the query with a NAME_RESOLUTION_REPONSE
message
 that contains all the information about "new-name".
 5) ASAP at EP1 cancels the T1-ENRPrequest timer and populate its
 local cache with information on "new-name".
 6) Based on the server pooling policy of "new-name", ASAP at EP1 selects the
 receiver (EP2), sets up, if necessary, an SCTP association
 towards EP2 (explicitly or implicitly), and send out "hello"
 message.

2.4.2 Send to a Cached Name

This shows the event sequence when the ASAP user at EP1 sends another
message to the "new-name".

 ENRP Server EP1 new-name:EP2
 | | |
 | +---+ |
 | | 1 | |
 | +---+ 2. "hello world 2" |
 | |------------------------->|
 | | |

 1) The user at EP1 invokes:

 data.request("new-name", name-type, "hello world 2", 13, 0);

 The ASAP layer, in response, looks up the name "new-name" in its
 local cache and find the mapping information.
 2) Based on the server pooling policy of "new-name", ASAP at EP1 selects the
 receiver (assume EP2 is selected again), and send out "hello
 world 2" message (assume the SCTP association is already set up).

2.5 Handle ASAP to ENRP Communication Failures

Three types of failure may occur when the ASAP layer at an endpoint
tries to communicate with the ENRP server:

 A) SCTP send failure
 B) T1-ENRPrequest timer expiration
 C) Registration failure

Registration failure is discussed in section 2.1.1??.

2.5.1 SCTP Send Failure

This indicates that the SCTP layer failed to deliver a message sent to
the ENRP server. In other words, the ENRP server is currently
unreachable.

In such a case, the ASAP layer should not re-send the failed
message. Instead, it should discard the failed message and start the
ENRP server hunt procedure as described in Section 3.1.2.3??.

2.5.2 T1-ENRPrequest Timer Expiration

When a T1-ENRPrequest timer expires, the ASAP should re-send the
original request to the ENRP server and re-start the T1-ENRPrequest
timer. In parallel, a SERVER_HUNT message should be issued per
Section 3.1.2.3??.

This should be repeated up to 'max-request-retransmit' times. After
that, an Error.Report notification should be generated to inform the
ASAP user and the ENRP request message associated with the timer should
be discarded.

2.5.3 Handle ENDPOINT_KEEP_ALIVE Messages

At times, a ASAP endpoint may receive ENDPOINT_KEEP_ALIVE messages
(see section 3.1.2.1?) from the ENRP server. This message requires no
response and should be silently discarded by the ASAP layer. However,
each time when an ENDPOINT_KEEP_ALIVE is received, the endpoint should
update its home ENRP server to the sender of the latest Keep Alive
message.

3. Message Summary

All messages as well as their fields described below shall be in
Network Byte Order during transmission. For fields with a length
bigger than 4 octets, a number in a pair of parentheses may follow the
filed name to indicate the length of the field in number of octets.

3.1 Endpoint Entry

This field is used to represent a ASAP endpoint and the associated

information, such as its transport address(es), load control, and
other operational status information.

The field is defined to support endpoint with up to 8 different
transport addresses.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | IP address #0 |
 +-------------------------------+-------------------------------+
 | IP address #1 |
 +-------------------------------+-------------------------------+
 \ \ \ \
 / / / /
 \ \ \ \
 +-------------------------------+-------------------------------+
 | IP address #7 |
 +-------------------------------+-------------------------------+
 | SCTP Port | Padding |
 +-------------------------------+-------------------------------+
 | Server Pooling Policy | Policy Value |
 +---------------+---------------+---------------+---------------+

The size of the endpoint entry is 40 octets.

3.2 REGISTRATION message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x3 |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+
 | |
 | endpoint entry (40) |
 | |
 +-------------------------------+-------------------------------+

The endpoint name field specifies the name to be registered, that
shall be composed of up to 32 characters. The endpoint entry field
shall be filled in by the registrant endpoint to declare its transport
addresses, server pooling policy and value, and other operation preferences.

3.3 DEREGISTRATION message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x4 |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+
 | |
 | endpoint entry (40) |
 | |
 +-------------------------------+-------------------------------+

The endpoint sending the DEREGISTRATION shall fill in the name and the
endpoint entry in order to allow the ENRP server to verify the identity
of the endpoint.

3.4 REGISTRATION_RESPONSE message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x5 |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+
 | Result = (see below) |
 +-------------------------------+-------------------------------+
 | Requested action = (see below) |
 +-------------------------------+-------------------------------+
 | |
 | endpoint entry (40) |
 | |
 +-------------------------------+-------------------------------+

In response to a REGISTRATION, the 'Requested action' field shall be
set to 0x0, and the 'Result' field shall take the following values:
 0x0 -- registration granted
 0x1 -- registration rejected

In response to a DEREGISTRATION, the 'Requested action' field shall be
set to 0x1, and the 'Result' field shall take the following values:
 0x2 -- de-registration granted
 0x3 -- de-registration rejected: endpoint not found
 0x4 -- de-registration rejected: other failures.

endpoint entry shall be filled in for verification purposes.

3.5 NAME_RESOLUTION message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x1 |
 +-------------------------------+-------------------------------+
 | |
 | requested name (32) |
 | |
 +-------------------------------+-------------------------------+

3.6 NAME_RESOLUTION_RESPONSE message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x2 |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+
 | number of entries = n (see below) |
 +-------------------------------+-------------------------------+
 | |
 | endpoint entry 1 (40) |
 | |

 +-------------------------------+-------------------------------+
 / /
 \ \
 / /
 +-------------------------------+-------------------------------+
 | |
 | endpoint entry n (40) |
 | |
 +-------------------------------+-------------------------------+

3.7 NAME_UNKNOWN message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x0 |
 +-------------------------------+-------------------------------+
 | |
 | requested name (32) |
 | |
 +-------------------------------+-------------------------------+

3.8 UPDATE_POLICY_VALUE message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x11 |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+
 | |
 | endpoint entry (40) |
 | |
 +-------------------------------+-------------------------------+
 | New policy value |
 +-------------------------------+-------------------------------+

3.9 ENDPOINT_KEEP_ALIVE message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0x6 |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+

3.10 ENDPOINT_UNREACHABLE message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0xa |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+
 | Endpoint IP address |
 +-------------------------------+-------------------------------+
 | Endpoint's SCTP port | padding |
 +-------------------------------+-------------------------------+
 | Type of severity (see below) |
 +-------------------------------+-------------------------------+

The 'Endpoint name' is not required to be filled in for this message,
however the IP address and SCTP port number of the endpoint must be
supplied in the message.

'Type of severity' shall take one of the following values:

 0x0 --- NORMAL_REPORT: warning to the server.
 0x1 --- FINAL_REPORT: the specified endpoint must be removed by the
 server immediately.
3.11 SERVER_HUNT message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0xb |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+
 | criticality (see below) |
 +-------------------------------+-------------------------------+

The 'criticality' field shall take one of the following values:
 0x1 --- LOW_CRITICALITY
 0x2 --- MED_CRITICALITY
 0x3 --- HIGH_CRITICALITY

3.12 SERVER_HUNT_RESPONSE message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ENRP endpoint message identifier #1 = 0x18038688 |
 +-------------------------------+-------------------------------+
 | ENRP endpoint message identifier #2 = 0x77734683 |
 +-------------------------------+-------------------------------+
 | Type = 0xc |
 +-------------------------------+-------------------------------+
 | |
 | Endpoint name (32) |
 | |
 +-------------------------------+-------------------------------+

4. Variables, Time Values, and Thresholds

The following is a summary of the variables, time values, and pre-set
thresholds used in ASAP and ENRP protocol.

4.1 Variables

Endpoint-report-failures --- per endpoint; keeps the number of
endpoint-unreachable reports concerning this endpoint.

Endpoint-sanity-failures --- per endpoint; keeps the number of failed
sanity message send attempts concerning this endpoint.

Peer-server-last-heard --- per peer server; a time stamp on when the

last message was received from this peer server.

4.2 Time values

Endpoint-sanity-cycle --- the period for a home ENRP server to start a
new round of endpoint sanity check.

Peer-heartbeat-cycle ---the period for an ENRP server to send out a
heart heat message.

T1-ENRPrequest - A timer started when a request is sent by ASAP to the
ENRP server (providing application information is queued). Normally set
to 15 seconds.

T2-registration - A timer started when sending a registration request
to the local ENRP server, normally set to 30 seconds.

T3-registration-reattempt - If the registration cycle does not complete
this timer is begun to restart the registration process. Normal value
for this timer is 10 minutes.

T4-reregistration - This timer is started after successful registration
into the ASAP name space and is used to cause a re-registration at a
periodic interval. This timer is normally set to 10 minutes.

4.3 Thresholds

Max-endpoint-sanity-failures --- pre-set threshold for
Endpoint-sanity-failures.

Max-endpoint-report-failures --- pre-set threshold for
Endpoint-report-failures.

Max-time-last-heard --- pre-set threshold for Peer-last-heard.

Max-time-no-response --- pre-set threshold for a peer server to answer
a PEER_PRESENCE message with reply required.

Timeout-registration --- pre-set threshold; how long an endpoint will
wait for the REGISTRATION_RESPONSE from its home ENRP server.

Timeout-server-hunt --- pre-set threshold; how long an endpoint will
wait for the REGISTRATION_RESPONSE from its home ENRP server.

num-of-serverhunts - The current count of server hunt messages that
have been transmitted.

registration-count - The current count of attempted registrations.

max-reg-attempt - The maximum number of registration attempts to be

made before a server hunt is issued.

max-request-retransmit - The maximum number of attempts to be made
when requesting information from the local ENRP server before
a server hunt is issued.

5. References

[SCTP] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and, V. Paxson, "Stream
Control Transmission Protocol," <RFC 2960>, October 2000.

[ENRP] Q. Xie, R. R. Stewart "Endpoint Name Resolution Protocol",
draft-xie-rserpool-enrp-00.txt, work in progress.

6. Acknowledgements

 The authors wish to thank John Loughney, Lyndon Ong, and
 Maureen Stillman and many others for their invaluable comments.

7. Authors' Addresses

 Randall R. Stewart
 24 Burning Bush Trail.
 Crystal Lake, IL 60012
 USA

 Phone: +1-815-477-2127
 EMail: rrs@cisco.com

 Qiaobing Xie
 Motorola, Inc.
 1501 W. Shure Drive, #2309
 Arlington Heights, IL 60004
 USA

 Phone: +1-847-632-3028
 EMail: qxie1@email.mot.com

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/draft-xie-rserpool-enrp-00.txt

