
Workgroup: Network Working Group

Internet-Draft: draft-xu-savax-data-03

Published: 21 November 2022

Intended Status: Informational

Expires: 25 May 2023

Authors: K. Xu

Tsinghua University

J. Wu

Tsinghua University

X. Wang

Tsinghua University

Y. Guo

Tsinghua University

Data Plane of Inter-Domain Source Address Validation Architecture

Abstract

Because the Internet forwards packets according to the IP

destination address, packet forwarding typically takes place without

inspection of the source address and malicious attacks have been

launched using spoofed source addresses. The inter-domain source

address validation architecture is an effort to enhance the Internet

by using state machine to generate consistent tags. When

communicating between two end hosts at different ADs of IPv6

network, tags will be added to the packets to identify the

authenticity of the IPv6 source address.

This memo focus on the data plane of the SAVA-X mechanism.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 May 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology and Abbreviation

3. State Machine Mechanism

4. Tag

4.1. Tag Generation Algorithm

4.1.1. Pseudo-Random Number Algorithm

4.1.2. Hash Chain Algorithm

4.2. Tag Update

5. Packet Processing at AER

5.1. Port Classification

5.2. Source Address Validation

5.3. Packet Classification

5.4. Tag Addition

5.5. Tag Verification

5.6. Tag Replacement

6. Packet Signature

7. MTU Consideration

8. Security Consideration

9. IANA Considerations

10. Acknowledgements

11. Normative References

Authors' Addresses

1. Introduction

The Inter-Domain Source Address Validation (SAVA-X) mechanism

establishes a trust alliance among Address Domains (AD), maintains a

one-to-one state machine among ADs, generates a consistent tag, and

deploys the tag to the ADs' border router (AER). The AER of the

source AD adds a tag to identify the identity of the AD to the

packet originating from one AD and sinking in another AD. The AER of

the destination AD verifies the source address by validating the

correctness of the tag to determine whether it is a packet with a

forged source address.

In the process of packet forwarding, if the source address and the

destination address of this packet both are addresses in the trust

alliance, however the tag is not added or incorrectly added, AER of

the destination AD determines that the source address is forged and

¶

¶

https://trustee.ietf.org/license-info

directly discards this packet. The destination AD forwards the

packet directly for packets whose source address is an address

outside the trust alliance.

This document mainly studies the relevant specifications of the data

plane of the inter-domain source address validation architecture

mechanism between ADs, which will protect IPv6 networks from being

forged source address. You could see [RFC8200] for more details

about IPv6. It stipulates the state machine, tag generation and

update, tag processing in AER, and packet signature Its promotion

and application can realize the standardization of the data plane in

the SAVA-X to facilitate the related equipment developed by

different manufacturers and organizations to cooperate to accomplish

the inter-domain source address validation jointly.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119, BCP 14

[RFC2119] and indicate requirement levels for compliant CoAP

implementations.

2. Terminology and Abbreviation

Abbreviation Description

AD

Address Domain, the unit of a trust alliance, which is

an address set consisting of all IPv6 addresses

corresponding to an IPv6 address prefix.

TA
Trust Alliance, the IPv6 network that uses the SAVA-X

mechanism.

ACS

AD Control Server, the server that matains state

machine with other ACS and distribute information to

AER.

AER
AD border router, which is placed at the boundary of an

AD of STA.

ADID The identity of an AD.

ADID_Rec The record of a number of an AD.

ARI_Rec The record with relavent information of an AD or STA.

API_Rec The record of prefix of an AD or STA.

SM
State Machine, which is maintained by a pair of ACS to

generate tags.

Tag
The authentic identification of source address of a

packet.

Table 1

3. State Machine Mechanism

In SAVA-X, state machine mechanism is used to generate, update, and

manage the tags.

¶

¶

¶

¶

State:

Tag:

Algorithm Box:

Trigger:

Transition:

Generation:

Figure 1: State machine mechanism.

S_n and S_(n+1) represent the current state and next state

of the SM respectively.

Tag_n is generated in the progress of state transiting from

S_n to S_(n+1).

A-Box is Alogorithm Box. It is used to transite the

State and generate the tag. It takes the current State as the

input and the following State and current tag as the output. The

algorithm box consists of two parts: one is the transition

function transit(), S_(n+1) = transit(S_n); the second is the

function generate() to generate tags. Tag_n = generate(S_n).

Algorithm box (A-Box) is the core of state machine. It determines

the data structure of state and tag, the specific mode of state

machine implementation, as well as its security and complexity.

It is used to trig the transition of State.

It reprents the progress of state transiting from S_n

to S_(n+1).

It reprents the progress of calculating the current tag

from current State.

4. Tag

4.1. Tag Generation Algorithm

There are two ways to generate tags: pseudo-random number algorithm

and hash chain algorithm.

4.1.1. Pseudo-Random Number Algorithm

In the pseudo-random number generation algorithm, an initial number

or stringis usually used as the "seed", which corresponds to the

initial state of the state machine. Using seeds, a pseudo-random

number sequence is generated as a tag sequence through some

 +------+ +-------+ +---------+

 | S_n | triger | A-Box | transition | S_(n+1) |

 | |------------->| |------------------->| |

 +------+ +-------+ +---------+

 | generation

 |

 v

 +-------+

 | Tag_n |

 +-------+

¶

¶

¶

¶

¶

¶

¶

algorithm. Next, we would take KISS (keep it simple stub), a pseudo-

random number generation algorithm, as an example to introduce how

to apply it to the state machine mechanism. For the algorithm

details of KISS, you could refer to the following reference pseudo

code:

Figure 2: KISS99: Pseudo-random number generatation

In this algorithm, State S can be expressed as (x, y, z, c). The

algorithm box is KISS(). After each calculation, the state undergoes

a transition from S_n to S_(n+1), that is, the four variables x, y,

z and c are all changed. At the same time, a pseudo-rng number (x +

y + z) is generated.

As the state machine shown above, the initial state is S_0 =

(123456789, 362436000, 521288629, 7654321). In fact, the initial

state can be arbitrarily selected by the algorithm shown below:

Figure 3: KISS99: Initial state selection

The basic design goal of pseudo-random number generation algorithm

is mainly long cycle and pretty distribution, however, without or

little consideration of safety factors. The backstepping security

and prediction ability of KISS algorithm have not been proved.

¶

/* Seed variables */

uint x = 123456789,y = 362436000,z = 521288629,c = 7654321;

uint KISS(){

 const ulong a = 698769069UL;

 ulong t;

 x = 69069*x+12345;

 y ^= (y<<13); y ^= (y>>17); y ^= (y<<5);

 t = a*z+c; c = (t>>32);

 z=cast(uint)t;

 return x+y+z;

}

¶

¶

void init_KISS() {

 x = devrand();

 while (!(y = devrand())); /* y must not be zero */

 z = devrand();

 /* Don't really need to seed c as well

 but if you really want to... */

 c = devrand() % 698769069; /* Should be less than 698769069 */

}

¶

4.1.2. Hash Chain Algorithm

For the design of hash chain based tag generating algorithm, one can

see S/Key in [RFC1760]. In the S/Key system, there is an encryption

end and an authentication end. The encryption end generates an

initial state W, and then uses some hash algorithm H() to iterate on

W to obtain a string sequence: H_0(W), H_1(W), ..., H_N(W), where

H_n(W) represents the iterative operation of H() on W n times,

H_0(W) = W. The state sequence {S} is defined as the reverse order

of the hash chain, that is, S_n = H_(N-n)(W). For example, the

initial state S_0 = H_N(W) and the final state S_N = H_0(W) = W, so

the transfer function transit() is repsented as the invere H().

Different from the KISS pseudo-random number generation algorithm

mentioned in the previous section, in the hash chain, the tag is the

state itself, that is, the output and input of generate() are

consistent, and Tag_n = S_n. In the following discussion, S_n is

temporarily used instead of Tag_n for the convenience of expression.

The encryption end sends the initial state S_0 to the verification

end, and maintains S_1 ~ S_n, which is also the tag sequence used.

The encryption end sends S_(n+1) to the verification end every time.

The verification end uses the S_n maintained by itself to verify the

tag correctness of the encryption end by calculating S_(n+1) =

transit(S_n). As explained above, transit() is the inversion of H().

In practice, a secure hash algorithm is usually used as H(), such as

SHA-256. For these hash algorithms, it is easy to calculate H(), but

it is difficult to calculate the inversion of H(). Therefore, the

actual operation is as follows: after receiving S_(n+1), the

verification end calculates whether H(S_(n+1)) is equal to S_n. If

it is equal, the verification is successful, otherwise it fails.

Hash chain algorithm has high security. It can prevent backstepping

and prediction well. Not only the attacker can't backstep or

predict, but also the verification end cannot do that. The

disadvantage of hash chain algorithm is that before using tags, the

encryption end needs to calculate all tag sequences, and then send

the last of the sequence to the verification end as the initial

state. At the same time, the encryption end needs to save a complete

tag sequence, although it can be deleted after each tag is used up.

The cost of storage of hash chain algorithm can not be ignored

4.2. Tag Update

After the state machine is enabled, the source AD uses the initial

state S_0 to transfer to the state S_1 through the algorithm box,

and generates the tag Tag_1. In the subsequent state transition

interval, the AER of the source AD uses the same tag, Tag_1, to add

to the message sent from this AD to the destination AD. The source

AD does not transfer from the state S_1 to the state S_2 until the

¶

¶

¶

transition interval passes, and starts to use tag Tag_2. In this

cycle, the state sequence S_1 ~ S_N and tag sequence Tag_1 ~ TAG_N

are experienced, in which Tag_1 ~ Tag_N are used as tags in turn and

added to the message by the source AER. Similarly, the destination

AER uses the same state machine to calculate the tag sequence, so as

to verify the tag in the message. If the source AD and the

destination AD can ensure the synchronization of the state machine,

it would guarantee the synchronization of the tags. So the tags can

be verified correctly.

Each state machine has an activation time and an Expiration Time.

After the expiration time comes, the current state machine is

deactivated. If a new state machine is available, the new state

machine will be used and performs the same label verification

process.

5. Packet Processing at AER

SAVA-X does not require the intermediate router to recognize and

process the SAVA-X option, which we will described at Section 9, as

long as the intermediate router correctly implements the extension

header and option processing method described in IPv6 protocol

[RFC8200]. The intermediate router could correctly forward the

packet regardless of its specific content even if it does not

recognize the SAVA-X option well.

The border router, AER, needs to handle tag correctly. The AER of

the source AD judges whether the IPv6 destination address belongs to

the trust alliance. If no, the packet will be forwarded directly. If

yes, the AER continues to judge the hierarchical relationship

between the the source AD and the member ADs to which the packet's

destination IP address belongs. If the source AD and the destination

AD are under the same sub-trust alliance, the AER would add the tag

between the two ADs, otherwise add the AD_V tag.

Note that the packet will not be processed at other AERs in the sub-

trust alliance.

At the AER of the boundary of sub-trust alliance, the packet is

classified according to the IPv6 destination address. If the

destination address is not within the trust alliance, it will be

forwarded directly. If the destination address belongs to this sub-

trust alliance, it will be classified according to the source IP

address. If the source address also belongs to this sub-trust

alliance, it will be forwarded directly. If the source address does

not belong to this sub-trust alliance, the AER needs to verify the

sub-trust alliance tag and replace it with the AD_V tag in this sub-

trust alliance for following forwarding. If the destination IP

address of packet belongs to other sub-trust alliance, it SHALL be

¶

¶

¶

¶

¶

classified according to the source address. If the source address

belongs to this sub-trust alliance, verify the AD_V tag. If

consistent, replace with sub-trust alliance tag. If the source

address is not in this sub-trust alliance, it will be forwarded

directly. Otherwise, the packet will be discarded.

The AER of the destination AD classifies packet according to the

source address of the packet to be forwarded to determine whether it

originates from a member AD. If yes, enter the label check.

Otherwise it will be forwarded directly. Tag verification process:

if the tag carried by the packet is consistent with the tag used by

the source AD, remove the tag and forward the packet. Otherwise the

packet will be discarded.

5.1. Port Classification

In order to classify packets correctly to complete tag addition,

inspection and packet forwarding, it is necessary to classify the

ports (interfaces) of AER. Any connected port of AER must belong to

and only belong to the following types of ports:

Ingress Port: Connect to the port of non-SAVA-X router in this

AD. Generally connected to IGP router in the domain.

Egress Port: Connect to other AD ports.

Trust Port: Connect to the port of SAVA-X router in this AD.

5.2. Source Address Validation

In SAVA-X, AER must check the source address of the packet. Only the

packet passing the check will be subject to the Section 5.3 step,

and the packet using the fake source IP address will be discarded.

The source address is checked using the ingress filtering method.

AER only checks the source address according to the following three

rules:

The packet entering an AER from the Ingress Port SHALL only carry

the source address prefix belonging to this AD.

The packet entering an AER from the Egress Port SHALL NOT carry

the source address prefix belonging to this AD.

Packets entering an AER from Trust Port are not checked.

The prefix of IP address owned by one AD SHALL be configured by the

administrator or obtained from the control plane, and deployed to

AER by ACS of this AD.

¶

¶

¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

¶

5.3. Packet Classification

It SHALL be classified after the packet entering an AER passes the

source address validation. There are three types of packets: packets

that SHOULD be taged, packets that SHOULD check tags, and other

messages. The judgment rules of the three packets are as follows:

Packets entering AER from Ingress Port. If the source address

belongs to this AD and the IPv6 destination address belongs to

another AD in the same sub-trust alliance, tag must be added. If

the source IP address belongs to another AD in the same sub-trust

alliance and the IPv6 destination address belongs to another sub-

trust alliances, the tag must be verified and replaced with the

sub-trust alliance tag. Other packets are forwarded directly.

Packets entering AER from the Egress Port. Tag must be checked if

the source address belongs to another AD in the same sub-trust

alliance and the IPv6 destination address belongs to this AD. If

the source address belongs to other sub-trust alliance and the

IPv6 destination address belongs to another AD in the same sub-

trust alliance, the tag must be checked and replaced. And other

packets can be forwarded directly.

Packets entering AER from Trust Port. These packets SHOULD be

forwarded directly.

The relationship between IP address and ADs SHALL be obtained from

the control plane and deployed to the AER by the ACS of the AD. When

the SAVA-X option of the packet received from the progress port

carries the active AD number, you can skip the "mapping from address

to AD number" process and directly use the AD number carried in the

message.

5.4. Tag Addition

AER SHOULD add destination option header and add SAVA-X option into

the packet according to the requirements of IETF [RFC8200].

According to [RFC8200], the destination option header SHOULD be

filled so that its length is an integer multiple of 8 bytes,

including the Next Hader and Hdr Ext Len fields of the destination

option header, the Next Header and Payload Length fields of the IPv6

packet header, and the upper protocol header (such as TCP, UDP,

etc.). If it is necessary, AER SHOULD recalculate the Checksum

field.

¶

*

¶

*

¶

*

¶

¶

¶

¶

5.5. Tag Verification

AER will process the first option with Option Type equals to the

binary code of 00111011 in the destination header. We would talk

more about that at Section 9.

If the packet does not contain destination option header or

SAVA-X option. the packet SHOULD be discarded.

If the packet contains SAVA-X option but the parameters or tag

are incorrect, the packet SHOULD be discarded.

If the packet contains SAVA-X option, and the parameters and

tag are correct, AER must replace the tag or remove the tag

when needed before forwarding the message.

In the following scenarios, the tag needs to be removed. If there

are only SAVA-X option, Pad1 and PadN options in the destination

option header of the message, AER SHOULD remove the whole

destination option header. If there are other options besides SAVA-X

option, Pad1 and PadN option in the destination option header, AER

SHOULD remove SAVA-X option and adjust the alignment of other

options according to the relevant protocols of IPv6. In order to

removing the sava-x option, the destination option header may also

be filled, or some Pad1 and PadN may be removed, to make its length

be multiple of 8 bytes. At the same time, the Next Header field and

Payload Length field deployed in the IPv6 message header, and the

Checksum field of the upper protocol header (such as TCP, UDP, etc.)

SHALL be rewritten as necessary.

5.6. Tag Replacement

Tag needs to be replaced when packet pass through different sub-

trust alliance. Tag replacement needs to be done on the AER of the

boundary address domain of the sub-trust alliance. This feature is

not necessary to realize on the AER of each non-boundary address

domain in the sub-trust alliance.

When packet is arrieved at the AER of the sub-trust alliance

boundary, it is classified according to the destination address.

If the destination address does not belong to the trust

alliance, it will be forwarded directly.

If the destination address belongs to this sub-trust alliance,

it will be classified according to the source address of the

packet.

If the source address also belongs to this sub-trust

alliance, the packet will be forwarded directly.

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

1.

¶

2.

¶

*

¶

If the source address does not belong to this sub-trust

alliance, AER should verify the sub-trust alliance tag and

replace it with the AD_V tag in this sub-trust alliance for

forwarding.

If the destination address of the packet belongs to other sub-

trust alliance, it shall be classified according to the source

address.

If the source address belongs to this sub-trust alliance,

AER should verify the AD_V tag and replace the tag with sub-

trust alliance tag when it is consistent.

If the source address is not in this sub-trust alliance, it

will be forwarded directly.

Otherwise, the packet will be discarded.

Alliance tag will be used when the packet crosses the upper AD which

is at the higher level of source AD and destination AD. Alliance tag

is the tag maintained between the source AD corresponding to the AD

in the parent AD and the destination AD corresponding to the address

domain in the parent AD.

6. Packet Signature

It is difficult to accurately synchronize time among the trust

alliance members. So we propose a shared time slice, which means

that there are two tags effecting at the same time in a period of

time. But it may suffer from replay attack. Therefore, a packet

signature mechanism is proposed to prevent replay attack and concel

the original tag.

Tag is time-dependent. The state machine triggers state transition

by time and generates a new tag. In a short period of time, all data

packets are labeled with the same tag. Moreover, due to the subtle

differences in time synchronization, both old and new tags can be

used for this short period of time, so attackers can reuse tags for

replay attack by simply copying tags.

The packet signature mechanism joins 8-bit part of the payload in

the packet and the tags generated by the state machine. And then it

calculates hash value with parameters above to achieve the effect of

packet by packet signature and resist the attackers reuse of tags.

Its processing flow is shown below.

*

¶

3.

¶

*

¶

*

¶

4. ¶

¶

¶

¶

¶

Packet by Packet Signature:

Lev:

Len:

Reserved:

Hash value of original tag, source

address and destination address and first 8-bit of payload,

credible level and credible prefix length.

2-bit of credible level.

7-bit of credible prefix length.

23-bit of reserved field. 0 will be padded.

Firstly, it takes the source address, destination address and the

first 8-bit of the data part of the data packet from the data

packet, joins them in the way of (src-ip, dst-ip, first 8-bit of

payload), and then joins the tag generated by the state machine at

this time, the credible level of the SAVA architecture adopted by

this AD and the length of the credible prefix to hash the

concatenated string with the hash algorithm to get a new message

digest. Then it is reduced to 32-bit packet signature by clipping

and folding algorithm. The AER adds the 32-bit packet signature

together with the 2-bit credible level and the 7-bit credible prefix

length to the SAVA-X option, fills the option into 64-bit, and

forwards it. At the AER of the destination AD, the same splicing and

the same hash operation are performed to verify whether the

generated string is consistent with the signature of the data

packet. If they are consistent, they are forwarded. Otherwise, it is

considered that the source address is forged and the data packet is

discarded.

Due to the problem of time synchronization, when both old and new

tags are valid, both old and new tags need to be verified. As long

as one of them passes the verification, the packet should be

forwarded. The original tag generated by the state machine will not

appear in the packet. The attackers does not know the tag generated

by the state machine at this time, so they can not forge the packet

signature in the same way, which ensures the security of the data

communication plane.

7. MTU Consideration

As the AER adds an option to the packet, the length of this packet

is increasing, causing the MTU problem. This problem could taken

place in source AER or the link between source AER and destination

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Packet by Packet Signature |

 +-+

 |Lev|Len| Reserved |

 +-+

¶

¶

¶

¶

¶

¶

¶

Option Type:

Opt Data Len:

AER. If it occurs on the source AER, the source AER returns the ICMP

message of "packet too big" to the source host and informs the host

to reduce the packet size. Othewise, if it occurs on other links

from the source AER to the destination AER, which means the packet

size exceeds the MTU of other links from the source AER to the

destination AER after adding the tag, the corresponding router will

return the ICMP message of "packet too big" to the source host.

However, after the source host adjusts its own MTU, the problem MAY

still exists because the root cause is AER causing packet size

exceeding MTU, and the host does not know it. This problem can be

solved by the following two methods. First, the MTU of the external

link is set to 1280 at the source AER as this is the minimum value

of MTU under IPv6. Then the MTU of the source host end will be set

to the minimum value of MTU subtracting the maximum value of SAVA-X

option. This method can solve the problem, but it greatly limits the

packet size and wastes the available MTU. The second is to monitor

the ICMP message of "packet too big" sent to the host in the domain

at the source AER. If such a message is monitored, the expected MTU

value in the message minus the maximum value of SAVA-X option will

be forwarded. This method makes good use of MTU value to a certain

extent, but it causes a large monitoring cost.

8. Security Consideration

This present memo doesnot find any security problem.

9. IANA Considerations

SAVA-X is designed for IPv6 enabled networks. It takes a destination

option, SAVA-X option, header to carry the Tag. We recommend to use

00111011, i.e. 59, for SAVA-X option. Here we give our SAVA-X option

format in use.

8-bit field. The destination option type of SAVA-X =

59.

8-bit field. The bytes length of SAVA-X option. Its

value is 2 + LenOfAI + (TagLen + 1), where LenOfAI is 2 when AI

Type is 1, or 4 when AI Type is 2, or 0 default.

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Option Type | Opt Data Len |Tag Len|AI Type| Reserved |

 +-+

 ~ TAG ~

 +-+

 ~ Additional Information ~

 +-+

¶

¶

¶

Tag Len:

AI Type:

Reserverd:

TAG:

Additional Information:

[RFC1760]

[RFC2119]

[RFC5210]

[RFC8200]

4-bit field. The bytes length of TAG equals to (Tag Len +

1) * 8, e.g. if Tag Len = 7, it means SAVA-X uses 64 bits long

TAG. It guarantees the length of TAG would be an integral

multiple of 8 bits. The maximum length of TAG is 128 bits and the

minimum length of TAG is 32 bits.

4-bit field. The type of Additional Information. 0 for no

Additional Information, 1 for 16-bit long Additional Information

and 2 for 32-bit long Additional Information. Others are not

assigned.

These bits are not used now and must be zero.

Variable-length field The actual tag, its length is determined

by Tag Len field.

As defined in AI Type field.

10. Acknowledgements

Much of the content of this document is the expansion of the IETF

[RFC5210] in inter-domain level. Thanks to the effort of pioneers.

11. Normative References

Haller, N., "The S/KEY One-Time Password System", RFC

1760, DOI 10.17487/RFC1760, February 1995, <https://

www.rfc-editor.org/info/rfc1760>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Wu, J., Bi, J., Li, X., Ren, G., Xu, K., and M. Williams,

"A Source Address Validation Architecture (SAVA) Testbed

and Deployment Experience", RFC 5210, DOI 10.17487/

RFC5210, June 2008, <https://www.rfc-editor.org/info/

rfc5210>.

Deering, S., Hinden, R., and RFC Publisher, "Internet

Protocol, Version 6 (IPv6) Specification", STD 86, RFC

8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-

editor.org/info/rfc8200>.

Authors' Addresses

Ke Xu

Computer Science, Tsinghua University

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc1760
https://www.rfc-editor.org/info/rfc1760
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5210
https://www.rfc-editor.org/info/rfc5210
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200

Qinghuayuan street, Haidian District

Beijing

100084

China

Email: xuke@tsinghua.edu.cn

Jianping Wu

Computer Science, Tsinghua University

Qinghuayuan street, Haidian District

Beijing

100084

China

Email: jianping@cernet.edu.cn

Xiaoliang Wang

Computer Science, Tsinghua University

Qinghuayuan street, Haidian District

Beijing

100084

China

Email: wangxiaoliang0623@foxmail.com

Yangfei Guo

Institute for Network Sciences and Cyberspace, Tsinghua University

Qinghuayuan street, Haidian District

Beijing

100084

China

Email: guoyangfei@zgclab.edu.cn

mailto:xuke@tsinghua.edu.cn
mailto:jianping@cernet.edu.cn
mailto:wangxiaoliang0623@foxmail.com
mailto:guoyangfei@zgclab.edu.cn

	Data Plane of Inter-Domain Source Address Validation Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Abbreviation
	3. State Machine Mechanism
	4. Tag
	4.1. Tag Generation Algorithm
	4.1.1. Pseudo-Random Number Algorithm
	4.1.2. Hash Chain Algorithm

	4.2. Tag Update

	5. Packet Processing at AER
	5.1. Port Classification
	5.2. Source Address Validation
	5.3. Packet Classification
	5.4. Tag Addition
	5.5. Tag Verification
	5.6. Tag Replacement

	6. Packet Signature
	7. MTU Consideration
	8. Security Consideration
	9. IANA Considerations
	10. Acknowledgements
	11. Normative References
	Authors' Addresses

