
Workgroup: Network Working Group

Internet-Draft: draft-xu-savax-protocol-03

Published: 21 November 2022

Intended Status: Informational

Expires: 25 May 2023

Authors: K. Xu

Tsinghua University

J. Wu

Tsinghua University

X. Wang

Tsinghua University

Y. Guo

Tsinghua University

Communication Protocol Between the AD Control Server and the AD Edge

Router of Inter-Domain Source Address Validation Architecture

Abstract

Because the Internet forwards packets according to the IP

destination address, packet forwarding typically takes place without

inspection of the source address and malicious attacks have been

launched using spoofed source addresses. The inter-domain source

address validation architecture is an effort to enhance the Internet

by using state machine to generate consistent tags. When

communicating between two end hosts at different ADs of IPv6

network, tags will be added to the packets to identify the

authenticity of the IPv6 source address.

This memo focus on the packet formats and processing flow of the

SAVA-X mechanism.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 May 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology and Abbreviation

3. Communication Protocol Format

4. ACS-ACS Communication Protocol

4.1. Announcement, Query and Response of State Machine

Information

4.1.1. State Machine Information Announcement

4.1.2. State Machine Information Request

4.2. Request and Response of Diagnose Information

5. ACS-AER Communication Protocol

5.1. Deployment, Request and Response of AD Registration

information

5.1.1. Deployment of AD Registration Information

5.1.2. Request of AD Registration Information

5.1.3. Reponse of AD Registration Information

5.2. Deployment, Request and Reply of AD Prefix Information

5.2.1. Deployment of AD Prefix Information

5.2.2. Request of AD Prefix Information

5.2.3. Response of AD Prefix Information

5.3. Deployment, Request and Response of State Machine

Information

5.3.1. Deployment of State Machine Information

5.3.2. Request of State Machine Information

5.3.3. Response of State Machine Information

5.4. Request and Response of Keep-alive Information

5.4.1. Request of Keep-alive Information

5.4.2. Response of Keep-alive Information

6. Deployment of Tag Information

7. Security Consideration

8. IANA Consideration

9. Acknowledgements

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

¶

https://trustee.ietf.org/license-info

1. Introduction

The Inter-Domain Source Address Validation Architecture (SAVA-X)

mechanism establishes a trust alliance among Address Domains (AD),

maintains a one-to-one state machine among ADs, generates a

consistent tag, and deploys the tag to the ADs' border router (AER).

The AER of the source AD adds a tag to identify the identity of the

AD to the packet originating from one AD and sinking in another AD.

The AER of the destination AD verifies the source address by

validating the correctness of the tag to determine whether it is a

packet with a forged source address.

In the process of packet forwarding, if the source address and the

destination address of this packet both are addresses in the trust

alliance, however the tag is not added or incorrectly added, AER of

the destination AD determines that the source address is forged and

directly discards this packet. The destination AD forwards the

packet directly for packets whose source address is an address

outside the trust alliance.

This document mainly studies the relevant specifications of the data

plane of the inter-domain source address validation architecture

mechanism between ADs, which will protect IPv6 networks from being

forged source address. You could see [RFC8200] for more details

about IPv6. It stipulates the state machine, tag generation and

update, tag processing in AER, and packet signature Its promotion

and application can realize the standardization of the data plane in

the SAVA-X to facilitate the related equipment developed by

different manufacturers and organizations to cooperate to accomplish

the inter-domain source address validation jointly.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119, BCP 14

[RFC2119] and indicate requirement levels for compliant CoAP

implementations.

2. Terminology and Abbreviation

Abbreviation Description

AD

Address Domain, the unit of a trust alliance, which is

an address set consisting of all IPv6 addresses

corresponding to an IPv6 address prefix.

TA
Trust Alliance, the IPv6 network that uses the SAVA-X

mechanism.

ACS

AD Control Server, the server that matains state

machine with other ACS and distribute information to

AER.

AER

¶

¶

¶

¶

Version:

Alliance:

I Type:

Abbreviation Description

AD border router, which is placed at the boundary of an

AD of STA.

ADID The identity of an AD.

ADID_Rec The record of a number of an AD.

ARI_Rec The record with relavent information of an AD or STA.

API_Rec The record of prefix of an AD or STA.

SM
State Machine, which is maintained by a pair of ACS to

generate tags.

SMI_Rec The record of the state machine information.

Tag
The authentic identification of source address of a

packet.

Table 1

3. Communication Protocol Format

Every AD should be placed at least one ACS, which is mainly

responsible for maintaining the relationship between ADs of the

trust alliance, establishing connections with other ACS, maintaining

the synchronous state machine, and sending the generated tags to the

AER. TCP is used for communicating between ACS-ACS and ACS-AER.

8-bit, the current version=0b1 of SAVA-X.

8-bit, the sub-trust alliance number.

4-bit, Information type, 0 for G_REF_INFO, 1 for

AD_REG_INFO, 2 for AD_PREFIX_INFO, 3 for STATE_MACHINE_INFO, 4

for DIAGNOSIS_INFO, 5 for RUNNING_STATE_INFO, 6 for

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Version | Alliance | I Type| S Type| Operation |

 +-+

 | Total Length |

 +-+

 | Number of Records |

 +-+

 | Transaction Number |

 +-+

 | Acknowledgement Number |

 +-+

 ~ Data ~

 +-+

¶

¶

¶

S Type:

Operation:

Total Length:

Number of Records:

Transaction Number:

Acknowledgement Number:

Data:

STRATEGY_INFO, 7 for ALIVE_INFO, 8 for TAG_INFO, 9 for

ALLI_TAG_INFO, 10 for AD_V_TAG_INFO and others are unassigned.

4-bit, Session type, 1 for ANNOUNCEMENT or DEPLOYMENT, 2

for REQUEST, 3 for REQUEST_ALL, 4 for ACK, 5 for NAK, 6 for AACK,

7 for ANAK, 8 for RACK, 9 for RNAK and others are unassigned.

8-bit, the first 3 bits means for whether RENEW Type or

not. First bit: 0 for non-RENEW packet, 1 for RENEW packet.

Second bit: 0 for the first non-RENEW packet, 1 for the first

RENEW packet. Third bit: 0 for the last non-RENEW packet, 1 for

the last RENEW packet.

32-bit, the length of this packet: from Version to

Data.

32-bit, he records in Data.

32-bit, this is the identification of a

publication, query or response, and the value should increase

monotonically. And different I Types MUST have its own

Transaction Number. Through this field, ACS can locate which

information has been resolved wrongly and corrected it.

32-bit, it is only be filled when S Type is

ACK, NAK, AACK, ANAK, RACK or RNAK. Otherwise it is should be

filled as 0.

Variable-length field. I Type and S Type specifies data

jointly.

When S Type is ANNOUNCEMENT:

If I Type = AD_REG_INFO, Data field SHOULD be one or more

ARI_Rec.

If I Type = AD_PREFIX_INFO, Data field SHOULD be one or more

API_Rec.

If I Type = STATE_MACHINE_INFO, Data field SHOULD be one or more

SMI_Rec.

If I Type = TAG_INFO, ALLI_TAG_INFO or AD_V_TAG_INFO, Data field

SHOULD be one or more TAG_Rec.

When S Type is REQUEST or REQUEST_ALL:

If I Type = REG_INFO, Data field SHOULD be one or more ADID_Rec.

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

If I Type = AD_PREFIX_INFO, Data field SHOULD be none or one or

more ADID_Rec.

If I Type = STATE_MACHINE_INFO, Data field SHOULD be none or one

or more ADID_Rec.

If I Type = DIAGNOSE_INFO, Data field SHOULD be a 32-bit diagnose

reqeust code.

If I Type = ALIVE_INFO, Data field SHOULD be none.

When S Type is ACK, AACK or RACK:

If I Type = REG_INFO, Data field SHOULD be one or more ARI_Rec.

If I Type = AD_PREFIX_INFO, Data field SHOULD be one or more

API_Rec.

If I Type = STATE_MACHINE_INFO, Data field SHOULD be one or more

SMI_Rec.

If I Type = DIAGNOSE_INFO, Data field SHOULD be one 32-bit

diagnose response code.

If I Type = ALIVE_INFO, Data field SHOULD be none.

When S Type is NAK, ANAK or RNAK, Data field SHOULD be one 32-bit

error code:

1 for parameters are wrong which means the packet cannot resolve

correctly.

2 for member AD(s) in request packet does not exist in the

designative sub-trust alliance.

3 for algorithm for State Machine set by source ACS cannot

support by the destination ACS.

4. ACS-ACS Communication Protocol

Since the blockchain is adopted in SAVA-X to maintain the

information of the trust alliance, ACS can query the address domain

information of relevant ADes of the trust alliance and the AD prefix

information corresponding to the address domain from the blockchain.

4.1. Announcement, Query and Response of State Machine Information

State machine information record (SMI_Rec) represents the packet

format used when state machine is negotiated between different

ordered pairs of ADs. When an ordered pair of ADs is negotiating the

*

¶

*

¶

*

¶

* ¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

¶

Action:

Source ADID_Rec:

Destination ADID_Rec:

State Mathine ID:

Algorithm:

state machine, ACS of AD with smaller ADID initiates the

communication and ACS of AD with larger ADID uses SMI_Rec determines

the information to be used, such as initial state, tag generation

algorithm, state transition interval, etc. Compared to ARI_Rec and

API_Rec,SMI_Rec also needs an Expiring Time in addition to the

Effecting Time. Expiration Time stands when the negotiated state

machine is no longer valid.

8-bit, 1 for add or update this SMI_Rec.

Variable-length field. Refer to ADID_Rec

[SAVA-X-Control].

Variable-length field. Refer to ADID_Rec in

[SAVA-X-Control].

32-bit, the ID used to identify the state

machine, which is unique to a specific ordered AD pair and grows

monotonically in use. It is used to distinguish the sequence

before and after the generation of multiple state machines.

16-bit, algorithm used in A-Box. 1 for KISS-99 32-bit, 2

for KISS-99 64-bit Joint, 3 for OTP-2289 MD5 and others are

unassigned.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+

 | Action |

 +-+

 | Source ADID_Rec |

 +-+

 | Destination ADID_Rec |

 +-+

 | State Mathine ID |

 +-+

 | Algorithm | IS Length |

 +-+

 ~ Initial State ~

 +-+

 | Transition Interval |

 +-+

 | Effecting Time |

 | |

 +-+

 | Expiring Time |

 | |

 +-+

¶

¶

¶

¶

¶

¶

IS Length:

Initial State:

Transition Interval:

Effecting Time:

Expiring Time:

16-bit, the length of Initial State field.

Variable-length field, the length of this filed is

determined by IS Length.

32-bit, the milliseconds of interval of state

transition.

64-bit, when this field is 0, it means this State

Machine should be enabled after the last State Machine expired.

64-bit, the end of this State Machine.

4.1.1. State Machine Information Announcement

State machine information announcement (SM_INFO-Announce) is sent

from source ACS to destination ACS. Source ACS fills in the

following values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type SM_INFO

S Type ANNOUNCEMENT

Operation

NULL: source ACS updates part of the state

machines information to destination ACS. RENEW:

source ACS updates all the state machines

information to destination ACS.

Total Length The length of this message.

Number of

Records
The number of SMI_Recs in Data field.

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out where I Type is SM_INFO and ACS would

keep it increasing monotonic.

Acknowledgement

Number
0

Data One or more SMI_Recs.

Table 2

All SMI_Recs in Data field should have an unique SM_ID. When Action

is ADD and SM_ID bigger than current used SM_ID, ACS should add the

state machine defined in SMI_Rec. When Action is ADD and SM_ID

equals to current used SM_ID, ACS should modify the state machine

defined in SMI_Rec. Only Transition Interval and Expiring Time can

be modified. Other SMI_Rec should be discarded and destination ACS

should send a NAK message to source ACS.

¶

¶

¶

¶

¶

¶

¶

When receiving a non-RENEW packet, if it cannot resolve this

message, destination ACS should send a NAK message to source ACS.

When destination ACS can resolve the packet correctly, it SHOULD:

Compare the Transaction Number in this packet with Transaction

Number received from the same ACS before. Otherwise,

destination ACS would discard this packet and send a SM_INFO-

Request to request the lastest information of state machine.

SM_INFO-Request is defined at Section 4.1.2. If bigger,

destination ACS WOULD:

Accept every SMI_Rec and process them as following: - If the

SM_ID in SMI_Rec equals to current used SM_ID, destination ACS

would update the current used SM_ID. - If the SM_ID in SMI_Rec

bigger than current used SM_ID, destination ACS would add this

state machine to its following used state machine list.

And then destination ACS will send an SM_INFO-AACK message to

source ACS.

When receiving a RENEW packet, if it cannot resolve this message,

destination ACS should send a SM_INFO-ANAK message to source ACS.

When destination ACS can resolve the packet correctly, it SHOULD:

Compare the Transaction Number in this packet with Transaction

Number received from the same ACS before. Otherwise,

destination ACS would discard this packet and send a SM_INFO-

Request to request the lastest information of state machine. If

bigger, destination ACS WOULD:

Accept every SMI_Rec and process them as following: - If the

SM_ID in SMI_Rec equals to current used SM_ID, destination ACS

would update the current used SM_ID. - If the SM_ID in SMI_Rec

bigger than current used SM_ID, destination ACS would add this

state machine to its following used state machine list.

Especially, state machines will be removed right now when they

are not listed in the SMI_Recs but they are in using.

And then destination ACS will send an SM_INFO-AACK message to

source ACS.

There are two types of reply of SM_INFO-Annouce message. That is

SM_INFO-AACK representing affirmative acknowledgement and SM_INFO-

ANAK representing negative acknowledgement. These are sent from

destination ACS to source ACS. The mainly part of packet is filled

by destination ACS as follows:

Field Value

Version 1

¶

1.

¶

2.

¶

3.

¶

¶

1.

¶

2.

¶

3.

¶

¶

Field Value

Alliance The sub-trust alliance number.

I Type SM_INFO

S Type
AACK if it is affirmative acknowledgement or ANAK

if it is negative acknowledgement.

Operation NULL

Total Length The length of this message.

Number of

Records
0

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out where I Type is SM_INFO and ACS would keep

it increasing monotonic.

Acknowledgement

Number

The Transaction Number of the response

corresponding request.

Data
S Type = AACK: None. S Type = ANAK: a 32-bit error

code defined in Section 3.

Table 3

Nothing needs to do when source ACS receives an SM_INFO-AACK message

while it should regenerate a new state machine and announces to

destination ACS when source ACS receives an SM_INFO-ANAK message.

4.1.2. State Machine Information Request

State machine information request (SM_INFO-Request) is sent from

source ACS to destination ACS. Source ACS fills in the following

values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type SM_INFO

S Type REQUEST

Operation
NULL: announce all state machine information to

source ACS.

Total Length The length of this message.

Number of

Records
0

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out where I Type is SM_INFO and ACS would

keep it increasing monotonic.

Acknowledgement

Number
0

Data None

Table 4

¶

¶

When source ACS receives a SM_INFO-Request message, it would send a

SM_INFO-RNAK message to destination ACS if some fields are wrong.

Otherwise, source ACS would send an SM_INFO-RACK message to

destination ACS and process this SM_INFO-Request message. Source ACS

should compare the Transaction Number in this message with

Transaction Number received from the same destination ACS before.

Otherwise, source ACS would discard this packet. If bigger, source

ACS would send an SM_INFO-RACK message to destination ACS.

There are two types of reply of SM_INFO-Request message, i.e.

SM_INFO-RACK representing affirmative acknowledgement and SM_INFO-

RNAK representing negative acknowledgement. These are sent from

source ACS to destination ACS. The mainly part of packet is filled

by source ACS as follows: I Type is SM_INFO. S Type is RACK if it is

affirmative acknowledgement or RNAK if it is negative

acknowledgement. Operation is NULL. When S Type is RACK, Data field

is a few of SMI_Recs. When S Type is RNAK, Data field is a 32-bit

error code.

When receiving a SM_INFO-RACK message, if it cannot resolve this

message, destination ACS should send a SM_INFO-Request message to

source ACS to acquire another state machine. When destination ACS

can resolve the message correctly, it SHOULD:

Compare the Transaction Number in this packet with Transaction

Number received from the same source ACS before. Otherwise,

destination ACS would discard this packet and send a SM_INFO-

Request to request the lastest information of state machine. If

bigger, destination ACS WOULD:

Accept every SMI_Rec and process them as following: - If the

SM_ID in SMI_Rec equals to current used SM_ID, destination ACS

would update the current used SM_ID. - If the SM_ID in SMI_Rec

bigger than current used SM_ID, destination ACS would add this

state machine to its following used state machine list.

And then destination ACS will send an SM_INFO-AACK message to

source ACS.

When receiving a SM_INFO-RNAK message, if it cannot resolve this

message, destination ACS should send a SM_INFO-Request message to

source ACS to acquire new state machine. When destination ACS can

resolve the message correctly, it SHOULD compare the Transaction

Number in this packet with Transaction Number received from the same

source ACS before. Otherwise, destination ACS would discard this

packet and send a SM_INFO-Request to request the lastest information

of state machine. If bigger, destination ACS WOULD send a new

correct SM_INFO-Request message to source ACS.

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

4.2. Request and Response of Diagnose Information

Sent by destination ACS, request of diagnose information (DIAG_INFO-

Request) is used to require the source ACS to check its

configuration and source AERs' settings. Source ACS will response

with its result. Destination ACS fills in the following values for

each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type DIAG_INFO

S Type REQUEST

Operation NULL

Total Length The length of this message.

Number of

Records
0

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out where I Type is DIAG_INFO and ACS would

keep it increasing monotonic.

Acknowledgement

Number
0

Data a 32-bit error code defined below.

Table 5

Response of diagnose information (DIAG_INFO-Response) replys from

source ACS to destination ACS.

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type DIAG_INFO

S Type ACK

Operation NULL

Total Length The length of this message.

Number of

Records
0

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out where I Type is DIAG_INFO and ACS would

keep it increasing monotonic.

Acknowledgement

Number

The Transaction Number of the response

corresponding request.

Data a 32-bit error code defined below.

Table 6

¶

¶

Before it sends the DIAG_INFO-Request message, the destination ACS

should check its own configuration and gurantee they are correct.

If it receives a DIAG_INFO-Request message, the source ACS would

check the communication with its own AER whether correct or not.

If it's wrong, source ACS would reply a DIAG_INFO-Response

message in which its Data filed is filled with 2 for fault

cannot be repaired and alarm to administrator to deal with this

problem.

If it's right, source ACS would RENEW all the registration

information, prefix information and state machine information

to its all AERs. After that, source ACS will reply a DIAG_INFO-

Response message in which its Data filed is filled with 1 for

all runs correctly after repairing.

5. ACS-AER Communication Protocol

ACS would periodically deploy AD registration information, AD prefix

information, and state machine information of relevant ADes to its

all AERs to guarantee all information are latest. And ACS also would

deploy the tag information to its all AERs periodically.

5.1. Deployment, Request and Response of AD Registration information

5.1.1. Deployment of AD Registration Information

After connecting with AER, ACS deploys the AD Registration

Information (REG_INFO-Deploy) to AER peroidically. I Type is

REG_INFO. S Type is Announcement. Operation is NULL when some ADes'

information are joined, left or updated and Operation is RENEW when

all ADes' information are deployed. Acknowledgement is 0. Data field

is one or more ARI_Rec.

It should be noted that when there are two ARI_Recs in Data fields

responding to the same AD, one may effect right now and the other

effects after passing Effecting Time. When AER receives this

message, all of them should be restored in the trust alliance list

and AER MUST process them orderly. Since the protocol processes the

records in sequence, it is required that the ARI_Rec effecting at

the current time for the same member AD should appear in front of

another updating ARI_Rec.

When receiving a non-RENEW packet, if it cannot resolve this

message, AER could send a REG_INFO-Request message to acquire the

latest AD registration information.

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

When AER can resolve this message correctly, it SHOULD:

Compare the Transaction Number in this packet with Transaction

Number received from the same ACS before. If bigger, AER WOULD

accept every ARI_Rec and process them as follows. Otherwise,

AER would discard this packet and send a REG_INFO-RequestAll

message to acquire the lastest information of AD registration

information.

Process every ARI_Rec: - If Action is ADD and the record does

not exist in its maintained trust alliance list, AER would add

this record to its trust alliance list. - If Action is ADD and

the record exists in its maintained trust alliance list but ACS

Address is changed, AER would add this record to its trust

alliance list and delete original record after passing

Effecting Time in this ARI_Rec. - If Action is ADD and the

record exists in its maintained trust alliance list and ACS

Address is not changed, AER would do nothing. - If Action is

DEL and the record exists in its maintained trust alliance

list, AER would remove this record from its trust alliance list

after passing Effecting Time in this ARI_Rec.

If a change is made in step 2, the update should take effect

after passing the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than the current time or is

all 0, it will take effect immediately.

AER acts as following when receiving a RENEW packet. When ACS

initiates RENEW, it would send a RENEW meesge with which the first

bit of Operation field is 1. The second bit of Operation field

identifies the begin of a procedure of RENEW and the third bit of

Operation field identifies the end of a procedure of RENEW. ACS MUST

NOT send a RENEW packet with which the first bit of Operation field

is 0 in RENEWing. AER MUST process this procedure of RENEW after

received all RENEW packets.

When AER can resolve this packet correctly, it SHOULD:

Compare the Transaction Number in this packet with Transaction

Number received from the same ACS before. If bigger, AER would

accept every ARI_Rec and process them as follows. Otherwise,

AER would discard this packet and send a REG_INFO-RequestAll

message to acquire the lastest information of AD registration

information.

Process every ARI_Rec: - If the record does not exist in its

maintained trust alliance list, AER would add this record to

its trust alliance list. - If the record exists in its

maintained trust alliance list but ACS Address is changed, AER

¶

1.

¶

2.

¶

3.

¶

¶

¶

1.

¶

2.

would add this record to its trust alliance list and delete

original record after passing Effecting Time in this ARI_Rec. -

If the record exists in its maintained trust alliance list and

ACS Address is not changed, AER would do nothing. - If there

are some records in the original trust alliance list that do

not appear in the Data field during this RENEW process, they

will be deleted immediately.

If a change is made in step 2, the update should take effect

after passing the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than the current time or is

all 0, it will take effect immediately.

5.1.2. Request of AD Registration Information

The request is sent by AER to ACS. There are two types of request of

AD Registration Information message. When querying the information

of all member ADs of the trust alliance, the type is REG_INFO-

RequestAll and REG_INFO-Request is used when querying the

information of partial member ADs of the trust alliance.

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type REG_INFO

S Type
REQUEST: for querying partial member ADs and S

Type is REQUEST_ALL: for querying all member ADs.

Operation NULL

Total Length The length of this message.

Number of

Records

S Type = REQUEST: the number of ADID_Recs in Data

field. S Type = REQUEST_ALL: 0.

Transaction

Number

The last Transaction Number add 1. AER would

maintain a global Transaction Number for packets

sent out to ACS where I Type is REG_INFO and AER

would keep it increasing monotonic.

Acknowledgement

Number
0

Data
S Type = REQUEST: one or more ADID_Recs. S Type =

REQUEST_ALL: None.

Table 7

When processing REG_INFO-Request(ALL) message, ACS would reply

REG_INFO-NAK to AER if it holds some fields are wrong. For example,

AER requests one ARI_Rec that does not exist. Otherwise, REG_INFO-

ACK message will be replyed. ACS WOULD process as follows:

ACS SHOULD compare the Transaction Number in this packet with

Transaction Number received from the same AER before. If

¶

3.

¶

¶

¶

1.

bigger, ACS would process as step 2. Otherwise, AER WOULD

discard this packet and send a REG_INFO-NAK message to AER.

ACS processes every ADID_Rec. If the AD exists in its

maintained trust alliance list, ACS would mark this record as

"Reply". Otherwise ACS would mark this record as "Negative

Reply". Especially, all records would be marked with "Reply"

when Operation field is REQUEST_ALL.

If any case in step 2 is marked with "Negative Reply", ACS

would construct a REG_INFO-NAK message to reply to the AER.

Otherwise, a REG_INFO-ACK message is constructed to reply the

AD registration information of all members marked with "Reply"

to the AER.

5.1.3. Reponse of AD Registration Information

AD registration information response includs two types. That is

REG_INFO-ACK and REG_INFO-NAK. ACS will reply to AER according to

the request of registration information sent by AER to ACS.

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type REG_INFO

S Type
ACK: representing affirmative acknowledgement. NAK:

representing negative acknowledgement.

Operation
NULL: REG_INFO-Request message. RENEW: REG_INFO-

RequestAll.

Total Length The length of this message.

Number of

Records

S Type = ACK: the number of ARI_Recs in Data field.

S Type = REQUEST_ALL: 0.

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out to AER where I Type is REG_INFO and ACS

would keep it increasing monotonic.

Acknowledgement

Number

The Transaction Number of the response

corresponding request.

Data

S Type = ACK: one or more ARI_Recs. S Type = NAK: a

32-bit error code defined at Section 3. There is no

boundary identification between these ARI_Recs,

which requires that the implementation of the

protocol can process each record sequentially until

the end of this message.

Table 8

It should be noted that when there are two ARI_Recs in Data fields

responding to the same AD, one may effect right now and the other

effects after passing Effecting Time. When AER receives this

¶

2.

¶

3.

¶

¶

message, all of them should be restored in the trust alliance list

and AER MUST process them orderly. Since the protocol processes the

records in sequence, it is required that the ARI_Rec effecting at

the current time for the same member AD should appear in front of

another updating ARI_Rec.

When receiving a non-RENEW REG_INFO-ACK message, if it holds that

some fields are wrong, AER could send a REG_INFO-RequestAll message

to acquire the latest AD registration information. Otherwise, AER

would act as follows.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number received from the same ACS before. If

bigger, AER would process them as follows. Otherwise, AER would

discard this packet and send a REG_INFO-RequestAll message to

acquire the lastest information of AD registration information.

AER WOULD processes every ARI_Rec: - If Action is ADD and the

record does not exist in its maintained trust alliance list,

AER would add this record to its trust alliance list. - If

Action is ADD and the record exists in its maintained trust

alliance list but ACS Address is changed, AER would add this

record to its trust alliance list and delete original record

after passing Effecting Time in this ARI_Rec. - If Action is

ADD and the record exists in its maintained trust alliance list

and ACS Address is not changed, AER would do nothing. - If

Action is DEL and the record exists in its maintained trust

alliance list, AER would remove this record from its trust

alliance list after passing Effecting Time in this ARI_Rec.

If a change is made in step 2, the update should take effect

after passing the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than the current time or is

all 0, it will take effect immediately.

AER acts as following when receiving a RENEW REG_INFO-ACK message.

When ACS initiates RENEW, it would send a RENEW meesge with which

the first bit of Operation field is 1. The second bit of Operation

field identifies the begin of a procedure of RENEW and the third bit

of Operation field identifies the end of a procedure of RENEW. ACS

MUST NOT send a RENEW packet with which the first bit of Operation

field is 0 in RENEWing. AER MUST process this procedure of RENEW

after received all RENEW packets.

When AER can resolve this packet correctly, it SHOULD:

Compare the Transaction Number in this packet with Transaction

Number received from the same ACS before. If bigger, AER would

accept every ARI_Rec and process them as step 2. Otherwise, AER

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

1.

would discard this packet and send a REG_INFO-RequestAll

message to acquire the lastest information of AD registration

information.

Process every ARI_Rec: - If the record does not exist in its

maintained trust alliance list, AER would add this record to

its trust alliance list. - If the record exists in its

maintained trust alliance list but ACS Address is changed, AER

would add this record to its trust alliance list and delete

original record after passing Effecting Time in this ARI_Rec. -

If the record exists in its maintained trust alliance list and

ACS Address is not changed, AER would do nothing. -If there are

some records in the original trust alliance list that do not

appear in the Data field during this RENEW process, they will

be deleted immediately.

If a change is made in step 2, the update should take effect

after passing the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than the current time or is

all 0, it will take effect immediately.

When AER receives an REG_INFO-NAK message, it could send a REG_INFO-

RequestAll message to ACS to acquire the latest AD registration

information.

5.2. Deployment, Request and Reply of AD Prefix Information

5.2.1. Deployment of AD Prefix Information

AD prefix information deployment (PFX_INFO-Deploy) is sent from ACS

to AER. ACS fills in the following values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type AD_PREFIX_INFO

S Type DEPLOYMENT

Operation

NULL: to publish partial update information of

member ADs' prefix. RENEW: to publish all member

ADs' prefix.

Total Length The length of this message.

Number of

Records
The number of API_Recs in Data field.

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out to AER where I Type is AD_PREFIX_INFO and

ACS would keep it increasing monotonic.

Acknowledgement

Number
0

¶

2.

¶

3.

¶

¶

¶

Field Value

Data

One or more API_Recs. There is no boundary

identification between these API_Recs, which

requires that the implementation of the protocol

can process each record sequentially until the end

of this message.

Table 9

It should be noted that when there are two ARI_Recs in Data fields

responding to the same AD, one may effect right now and the other is

update message for ADD or DEL effecting after the Effecting Time.

For example, if the current time is 5 and there are two records

corresponding to the prefix P, in which the Effecting Time of record

R1 is 1, the action is ADD, the Effecting Time of record R2 is 7 and

the action is DEL, then it indicates that the prefix P is currently

valid effective from time 1 and becomes invalid at time 7. When ACS

or AER receives this message, all of them should be restored in the

database and ACS should send them all when deploying. Since the

protocol processes the records in sequence, it is required that the

API_Rec effecting at the current time for the same member AD should

appear in front of another updating API_Rec.

When receiving a non-RENEW PFX_INFO-Deploy message, if it holds that

some fields are wrong, for example, it requires to delete a API_Rec

that does not exist or to add some prefix that is conflict with

other member ADs, AER could send a request message to acquire the

latest AD prefix information. Otherwise, AER would act as follows.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number received from the same ACS before. If

bigger, AER WOULD process them as step 2. Otherwise, AER would

discard this packet and send a PFX_INFO-RequestAll message to

acquire the lastest information of AD prefix information.

AER processes every API_Rec: - If Action is ADD and the record

does not exist in its maintained prefix list, AER would add

this record to its prefix list. - If Action is ADD and the

record exists in its maintained prefix list, AER would do

nothing. - If Action is DEL and the record exists in its

maintained prefix list, AER would remove this record from its

prefix list after Effecting Time.

If a change is made in step 2, the update should take effect

after the Effecting Time, which acts on the data plane. If the

Effecting Time is earlier than the current time or is all 0, it

will take effect immediately.

AER acts as following when receiving a RENEW PFX_INFO-Deploy

message. When ACS initiates RENEW, it would send a RENEW meesge with

¶

¶

1.

¶

2.

¶

3.

¶

which the first bit of Operation field is 1. The second bit of

Operation field identifies the begin of a procedure of RENEW and the

third bit of Operation field identifies the end of a procedure of

RENEW. ACS MUST NOT send a RENEW packet with which the first bit of

Operation field is 0 in RENEWing. AER SHOULD uniformly process all

packets in this RENEW process after receiving all RENEW packets.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number received from the same ACS before. If

bigger, AER WOULD process as step 2. Otherwise, AER would

discard this message and send a PFX_INFO-RequestAll message to

acquire the lastest information of AD prefix information.

AER processes every API_Rec: - If the record does not exist in

its maintained prefix list, AER would add this record to its

trust alliance list. - If the record exists in its maintained

prefix list, AER would do nothing. - If there are some records

in the original prefix list that do not appear in the Data

field during this RENEW process, these records will be deleted

immediately.

If a change is made in step 2, the update should take effect

after passing the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than the current time or is

all 0, it will take effect immediately.

5.2.2. Request of AD Prefix Information

AD prefix information request (PFX_INFO-RequestAll) is sent from AER

to ACS to query some member ADs', including itself, all latest AD

prefix information.

AER fills in the following values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type AD_PREFIX_INFO

S Type
REQUEST_ALL: querying from ACS the latest AD prefix

information of all member ADs.

Operation NULL

Total Length The length of this message.

Number of

Records
0

Transaction

Number

The last Transaction Number add 1. AER would

maintain a global Transaction Number for packets

sent out to ACS where I Type is AD_PREFIX_INFO and

AER would keep it increasing monotonic.

0

¶

1.

¶

2.

¶

3.

¶

¶

¶

Field Value

Acknowledgement

Number

Data None

Table 10

When receiving a PFX_INFO-RequestAll message, if it holds that some

fields are wrong, ACS could send a PFX_INFO-NAK. Otherwise, ACS

would act as follows. The specific construction methods of PFX_INFO-

ACK and PFX_INFO-NAK are described in Section 5.2.3.

ACS SHOULD compare the Transaction Number in this packet with

Transaction Number whose I Type is PFX_INFO received from the

same AER before. If bigger, ACS WOULD process them as step 2.

Otherwise, ACS would discard this packet and send a PFX_INFO-

NAK message.

ACS processes every ADID_Rec. If AD exists in the maintained

trust alliance list, ACS would mark this record as "Reply".

Otherwise, ACS wourld mark this rocord as "Negative Reply".

Particularly, all records are marked with "Reply" when S Type

is REQUEST_ALL.

If any case in step 2 is marked with "Negative Reply", ACS

would construct a PFX_INFO-NAK message to reply to the AER.

Otherwise, a PFX_INFO-ACK message is constructed to reply the

AD prefix information of all members marked with "Reply" to the

AER.

5.2.3. Response of AD Prefix Information

AD prefix information response includs two types. That is PFX_INFO-

ACK and PFX_INFO-NAK. According to the request sent by AER, if some

fields are wrong, ACS will reply NAK, in which the error code is

"parameter error". If a non-existent member AD is queried, the error

code is "the requested member AD does not exist", which defined as

before will not be repeated. The following mainly introduces

PFX_INFO-ACK response. ACS fills in the following values for each

field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type AD_PREFIX_INFO

S Type
ACK: representing affirmative acknowledgement. NAK:

representing negative acknowledgement.

Operation
RENEW: replying the latest AD prefix information to

AER.

Total Length The length of this message.

¶

1.

¶

2.

¶

3.

¶

¶

Field Value

Number of

Records

S Type = ACK: the number of API_Rec in Data field.

S Type = NAK: 0

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out to AER where I Type is AD_PREFIX_INFO and

ACS would keep it increasing monotonic.

Acknowledgement

Number

The Transaction Number of the response

corresponding request.

Data

S Type = ACK: One or more latest requested API_Rec.

S Type = NAK: a 32-bit error code defined in

Section 3. There is no boundary identification

between these API_Recs, which requires that the

implementation of the protocol can process each

record sequentially until the end of this message.

Table 11

When receiving a non-RENEW PFX_INFO-ACK message which is the

positive reply to the request of AD prefix sent from ACS to AER, if

it holds that some fields are wrong, AER could send a request

message to acquire the latest AD prefix information. Otherwise, AER

would act as follows.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number whose I Type is PFX_INFO received from the

same ACS before. If bigger, AER would process them as follows.

Otherwise, AER would discard this packet and send REG_INFO-

RequestAll and PFX_INFO-RequestAll messages to acquire the

lastest information.

AER processes every API_Rec: - If Action is ADD and the record

does not exist in its maintained prefix list, AER would add

this record to its prefix list. - If Action is ADD and the

record exists in its maintained prefix list, AER would do

nothing. - If Action is DEL and the record exists in its

maintained prefix list, AER would remove this record from its

prefix list after Effecting Time.

If a change is made in step 2, the update should take effect

after the Effecting Time, which acts on the data plane. If the

Effecting Time is earlier than the current time or is all 0, it

will take effect immediately.

AER acts as following when receiving a RENEW PFX_INFO-ACK message.

When ACS initiates RENEW process, it would send a RENEW meesge with

which the first bit of Operation field is 1. The second bit of

Operation field identifies the begin of a procedure of RENEW and the

third bit of Operation field identifies the end of a procedure of

RENEW. ACS MUST NOT send a RENEW packet with which the first bit of

¶

1.

¶

2.

¶

3.

¶

Operation field is 0 in RENEW process. AER SHOULD uniformly process

all packets in this RENEW process after receiving all RENEW packets.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number whose I Type is PFX_INFO received from the

same ACS before. If bigger, AER WOULD process as step 2.

Otherwise, AER would discard this message and send REG_INFO-

RequestAll and PFX_INFO-RequestAll messages to acquire the

lastest information.

AER processes every API_Rec. All Action in API_Recs is ADD

during RENEW process. - If the record does not exist in its

maintained prefix list, AER would add this record to its trust

alliance list. - If the record exists in its maintained prefix

list, AER would do nothing. - If there are some records in the

original prefix list that do not appear in the Data field

during this RENEW process, these records will be deleted

immediately.

If a change is made in step 2, the update message should take

effect after the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than current time or is all 0,

it will take effect immediately.

When AER receives an PFX_INFO-NAK message, it could send REG_INFO-

RequestAll and PFX_INFO-RequestAll messages to ACS to acquire the

latest AD registration information and AD prefix information.

5.3. Deployment, Request and Response of State Machine Information

5.3.1. Deployment of State Machine Information

State machine information deployment (SM_INFO-Deploy) is sent from

ACS to AER. ACS fills in the following values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type SM_INFO

S Type DEPLOYMENT

Operation

NULL: to publish the partial update of state

machine maintained by the pair of this AD and

another AD and Operation is RENEW: to publish

wholesome update of state machine maintained by the

pair of this AD and another AD.

Total Length The length of this message.

Number of

Records
The number of SMI_Recs in Data field

¶

1.

¶

2.

¶

3.

¶

¶

¶

Field Value

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent out to AER where I Type is SM_INFO and ACS

would keep it increasing monotonic.

Acknowledgement

Number
0

Data

One or more SMI_Recs. There is no boundary

identification between these ARI_Recs, which

requires that the implementation of the protocol

can process each record sequentially until the end

of this message.

Table 12

It should be noted that state machine is responding to a ordered AD

pair. The state machine information mastered by ACS includes the

state machine information from this AD to another member AD, and the

state machine information from another member AD to this AD. When

ACS deployment is partially updated, only some changed or newly

added state machines are deployed. When ACS deploys the update of

RENEW message, it is necessary to deploy all existing and updated

information. For the same ordered AD pair, there cannot be two or

more SMI_Recs using the same SM_ID in Data field. In addition, there

are two actions for SMI_Rec: one is to add a SM whose SM_ID is

bigger than current using state machine. The second is to modify an

existing state machine whose SM_ID equals to current using state

machine. Both of them are using Action ADD. Here we requires only

Transition Interval and Expiring Time can be updated.

When receiving a non-RENEW SM_INFO-Deploy message sent from ACS to

AER, if it holds that some fields are wrong, for example, Action is

DEL or SM_ID is smaller than current state machine in using, AER

could send a request message to acquire the latest information.

Otherwise, AER would act as follows.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number whose I Type is SM_INFO received from the

same ACS before. If bigger, AER WOULD process them as step 2.

Otherwise, AER would discard this packet and send REG_INFO-

RequestAll and request messages to acquire the lastest

information.

AER processes every SMI_Rec: - If SM_ID equals to the current

using state machine, AER should update the state machine in

use. - If SM_ID bigger than the current using state machine,

AER should add this state machine to its list.

If a change is made in step 2, the update message should take

effect after the Effecting Time, which acts on the data plane.

¶

¶

1.

¶

2.

¶

3.

If the Effecting Time is earlier than the current time or is

all 0, it will take effect immediately.

AER acts as following when receiving a RENEW SM_INFO-Deploy message.

When ACS initiates RENEW process, it would send a RENEW meesge with

which the first bit of Operation field is 1. The second bit of

Operation field identifies the begin of a procedure of RENEW and the

third bit of Operation field identifies the end of a procedure of

RENEW. ACS MUST NOT send a RENEW packet with which the first bit of

Operation field is 0 in RENEW process. AER SHOULD uniformly process

all packets in this RENEW process after receiving all RENEW packets.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number whose I Type is SM_INFO received from the

same ACS before. If bigger, AER WOULD process as step 2.

Otherwise, AER would discard this message and send a request

messages to acquire the lastest information.

AER processes every SMI_Rec. - If SM_ID equals to the current

using state machine, AER should update the state machine in

use. - If SM_ID bigger than the current using state machine,

AER should add this state machine to its list. - If there are

some records of state machines in use that do not appear in the

Data field during this RENEW process, these state machines will

be deleted immediately.

If a change is made in step 2, the update message should take

effect after the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than current time or is all 0,

it will take effect immediately.

5.3.2. Request of State Machine Information

State machine information request (SM_INFO-Request) is sent from AER

to ACS. AER fills in the following values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type SM_INFO

S Type

REQUEST: querying the state machines maintained by

the pair of this AD to another member AD and vice

versa. These member ADs are specified by ADID_Rec

defined in Data field. REQUEST_ALL: querying all

state machines maintained by this AD with other

member ADs.

Operation NULL

Total Length The length of this message.

¶

¶

1.

¶

2.

¶

3.

¶

¶

Field Value

Number of

Records

S Type = REQUEST: the number of ADID_Rec in Data

field. S Type = REQUEST_ALL: 0.

Transaction

Number

The last Transaction Number add 1. AER would

maintain a global Transaction Number for packets

sent out to ACS where I Type is SM_INFO and AER

would keep it increasing monotonic.

Acknowledgement

Number
0

Data

S Type = REQUEST: One or more ADID_Recs. S Type =

REQUEST_ALL: none. There is no boundary

identification between these ADID_Recs, which

requires that the implementation of the protocol

can process each record sequentially until the end

of this message.

Table 13

For example, let this AD is AD1. When any ADID_Rec including in Data

field, defined as AD2, it means that AER will request the SM(AD1,

AD2) and SM(AD2, AD1). When ACS replies, it will reply these two

state machines both.

When receiving a SM_INFO-Request(All) message, if it holds that some

fields are wrong, ACS could send a PFX_INFO-NAK. Otherwise, ACS

would act as follows. The specific construction methods of SM_INFO-

ACK and SM_INFO-NAK are described in secion 3.2.3.3.

ACS SHOULD compare the Transaction Number in this packet with

Transaction Number whose I Type is SM_INFO received from the

same AER before. If bigger, ACS WOULD process them as step 2.

Otherwise, ACS would discard this packet and send a SM_INFO-NAK

message.

ACS processes every ADID_Rec. If AD exists in the maintained

trust alliance list, ACS would mark this record as "Reply".

Otherwise, ACS wourld mark this rocord as "Negative Reply".

Particularly, all records are marked with "Reply" when S Type

is REQUEST_ALL.

If any case in step 2 is marked with "Negative Reply", ACS

would construct a SM_INFO-NAK message to reply to the AER.

Otherwise, a SM_INFO-ACK message is constructed to reply the

state machine information of all members marked with "Reply" to

the AER.

¶

¶

1.

¶

2.

¶

3.

¶

5.3.3. Response of State Machine Information

State machine information response includs two types. That is

SM_INFO-ACK and SM_INFO-NAK. Both of them are sent from ACS to AER.

ACS fills in the following values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type SM_INFO

S Type
ACK: representing affirmative acknowledgement. NAK:

representing negative acknowledgement.

Operation
RENEW: replying the latest state machine

information to AER.

Total Length The length of this message.

Number of

Records

S Type = ACK: the number of SMI_Recs in Data field.

S Type = NAK: 0.

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent to AER where I Type is SM_INFO and would keep

it increasing monotonic.

Acknowledgement

Number

The Transaction Number of the response

corresponding request.

Data

S Type = ACK: one or more latest requested SMI_Rec.

S Type = NAK: a 32-bit error code defined in

Section 3. There is no boundary identification

between these ADID_Recs, which requires that the

implementation of the protocol can process each

record sequentially until the end of this message.

Table 14

When receiving a non-RENEW SM_INFO-ACK message which is the positive

reply to the request of AD prefix sent from ACS to AER, if it holds

that some fields are wrong, AER could send a request message to

acquire the latest state machine information. Otherwise, AER would

act as follows. 1. AER SHOULD compare the Transaction Number in this

packet with Transaction Number whose I Type is PFX_INFO received

from the same ACS before. If bigger, AER WOULD process them as step

2. Otherwise, AER would discard this packet and send a SM_INFO-

RequestAll message to acquire the lastest information. 2. AER

processes every SMI_Rec: - If SM_ID equals to the current using

state machine, AER should update the state machine in use. - If

SM_ID bigger than the current using state machine, AER should add

this state machine to its list. 3. If a change is made in step 2,

the update should take effect after the Effecting Time, which acts

on the data plane. If the Effecting Time is earlier than the current

time or is all 0, it will take effect immediately.

¶

¶

AER acts as following when receiving a RENEW SM_INFO-ACK message.

When ACS initiates RENEW process, it would send a RENEW meesge with

which the first bit of Operation field is 1. The second bit of

Operation field identifies the begin of a procedure of RENEW and the

third bit of Operation field identifies the end of a procedure of

RENEW. ACS MUST NOT send a RENEW packet with which the first bit of

Operation field is 0 in RENEW process. AER SHOULD uniformly process

all packets in this RENEW process after receiving all RENEW packets.

AER SHOULD compare the Transaction Number in this packet with

Transaction Number whose I Type is SM_INFO received from the

same ACS before. If bigger, AER WOULD process as step 2.

Otherwise, AER would discard this message and send a SM_INFO-

RequestAll message to acquire the lastest information.

AER processes every API_Rec. All Action in API_Recs is ADD

during RENEW process. - If SM_ID equals to the current using

state machine, AER should update the state machine in use. - If

SM_ID bigger than the current using state machine, AER should

add this state machine to its list. - If there are some records

of state machines in use that do not appear in the Data field

during this RENEW process, these state machines will be deleted

immediately.

If a change is made in step 2, the update message should take

effect after the Effecting Time, which acts on the data plane.

If the Effecting Time is earlier than current time or is all 0,

it will take effect immediately.

When AER receives an SM_INFO-NAK message, it could send a SM_INFO-

RequestAll message to ACS to acquire the latest state machine

information.

5.4. Request and Response of Keep-alive Information

In SAVA-X, ACS will periodically send Keep-alive request to query

the availability of AER in SAVA-X mechanism.

5.4.1. Request of Keep-alive Information

Keep-alive information request (ALIVE_INFO-Request) is sent by ACS

to test the viability of AER. AER would reply to ACS when receiving

a ALIVE_INFO-Request message. ACS considers that AER has gone wrong

if it does not receive a response from AER within 60 seconds and ACS

notifies the AD administrator of the failure information by email.

ACS would keep sending ALIVE_INFO-Request to the fault AER at the

same time. The filling values of each field in ACS request are as

follows:

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type ALIVE_INFO

S Type REQUEST

Operation NULL

Total Length The length of this message.

Number of

Records
0

Transaction

Number

The last Transaction Number add 1. ACS would

maintain a global Transaction Number for packets

sent to AER where I Type is ALIVE_INFO and would

keep it increasing monotonic.

Acknowledgement

Number
0

Data None

Table 15

ACS considers that AER has gone wrong if it does not receive a

response from AER within 60 seconds and ACS notifies the AD

administrator of the failure information by email. ACS would

consider that AER has recovered from failure when AER reply to the

request correctly. ACS performs the following steps to update AER:

Keep time synchronization between AER and ACS.

Deploy AD registration information, AD prefix information and

state machine information to AER by the way of RENEW message.

5.4.2. Response of Keep-alive Information

Keep-alive information response (ALIVE_INFO-Response) is sent by AER

to reply the ALIVE_INFO-Request message.

In response to ALIVE_INFO-Request, AER fills in the following values

for each field in the response:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type ALIVE_INFO

S Type ACK

Operation NULL

Total Length The length of this message.

Number of

Records
0

Transaction

Number

The last Transaction Number add 1. AER would

maintain a global Transaction Number for packets

¶

1. ¶

2.

¶

¶

¶

Action:

Source ADID_Rec:

Destination ADID_Rec:

Tag Len:

Field Value

sent to ACS where I Type is ALIVE_INFO and would

keep it increasing monotonic.

Acknowledgement

Number
0

Data None

Table 16

6. Deployment of Tag Information

Tag information deployment (TAG_INFO-Deploy) is sent from ACS to AER

and AER would add, verify and remove the tag to packet. When using

sub trust alliance level tags and AD_V tags, the primary address

domain ACS needs to distribute these two tags to the ACS of the

boundary address domain first, and then the boundary address domain

ACS will distribute these tags to their respective address domains'

AERs. The sub trust alliance tag is used in the data plane to cross

different address domain levels. The AD_V tag is used in the data

plane when it is sent from the current address domain to the

boundary address domain. Standard TAG_INFO is used in the data plane

at the same level and under the same direct parent address field.

The three types of tags use the same message format as follows.

8-bit filed. 1 for add (ADD=1) and 2 for delete (DEL=2).

Variable-length field. Refer to ADID_Rec in

[SAVA-X-Control].

Variable-length field. Refer to ADID_Rec.

The length of TAG. The equation for calculation is (Tag

Len + 1) * 8 bits. The length of TAG MUST be multiple times of 8

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+

 | Action |

 +-+

 | Source ADID_Rec |

 +-+

 | Destination ADID_Rec |

 +-+

 | Tag Len |

 +-+

 ~ TAG ~

 +-+

 | Transition Interval |

 +-+

¶

¶

¶

¶

TAG:

Transition Interval:

bits. The maximum length is 128 bits and the minimum length is 32

bits. So the minimum of Tag Len is 0011.

Variable-length field. The actual Tag or packet signature.

32-bit, the milliseconds of interval of state

transition.

When ACS announce tag to ACS or AER, it fills in the following

values for each field:

Field Value

Version 1

Alliance The sub-trust alliance number.

I Type TAG_INFO, ALLI_TAG_INFO or AD_V_TAG_INFO

S Type ANNOUNCEMENT

Operation NULL

Total Length The length of this message.

Number of

Records
The number of TAG_Rec in Data field.

Transaction

Number

ACS would maintain a global Transaction Number for

packets sent to ACS or AER where I Type is TAG_INFO

and would keep it increasing monotonic.

Acknowledgement Number is 0.

Acknowledgement

Number
0

Data

One or more TAG_Recs. There is no boundary

identification between these records, which

requires that the implementation of the protocol

can process each record sequentially until the end

of this message.

Table 17

7. Security Consideration

This present memo doesnot find any security problem.

8. IANA Consideration

There are two tcp ports, 23160 and 23161, are used in implementing

SAVA-X mechanism. Port 23160 is used for the communication between

ACS and ACS. Port 23161 is used for the communication between ACS

and AER.

9. Acknowledgements

Much of the content of this document is the expansion of the IETF

[RFC5210] in inter-domain level. Thanks to the effort of pioneers.

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC5210]

[RFC8200]

[SAVA-X-Control]

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Wu, J., Bi, J., Li, X., Ren, G., Xu, K., and M. Williams,

"A Source Address Validation Architecture (SAVA) Testbed

and Deployment Experience", RFC 5210, DOI 10.17487/

RFC5210, June 2008, <https://www.rfc-editor.org/info/

rfc5210>.

Deering, S., Hinden, R., and RFC Publisher, "Internet

Protocol, Version 6 (IPv6) Specification", STD 86, RFC

8200, DOI 10.17487/RFC8200, July 2017, <https://www.rfc-

editor.org/info/rfc8200>.

10.2. Informative References

Computer Science, Computer Science, and Institute

for Network Sciences and Cyberspace, "Control Plane of

Inter-Domain Source Address Validation Architecture",

2021.

Authors' Addresses

Ke Xu

Computer Science, Tsinghua University

Qinghuayuan street, Haidian District

Beijing

100084

China

Email: xuke@tsinghua.edu.cn

Jianping Wu

Computer Science, Tsinghua University

Qinghuayuan street, Haidian District

Beijing

100084

China

Email: jianping@cernet.edu.cn

Xiaoliang Wang

Computer Science, Tsinghua University

Qinghuayuan street, Haidian District

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5210
https://www.rfc-editor.org/info/rfc5210
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
mailto:xuke@tsinghua.edu.cn
mailto:jianping@cernet.edu.cn

Beijing

100084

China

Email: wangxiaoliang0623@foxmail.com

Yangfei Guo

Institute for Network Sciences and Cyberspace, Tsinghua University

Qinghuayuan street, Haidian District

Beijing

100084

China

Email: guoyangfei@zgclab.edu.cn

mailto:wangxiaoliang0623@foxmail.com
mailto:guoyangfei@zgclab.edu.cn

	Communication Protocol Between the AD Control Server and the AD Edge Router of Inter-Domain Source Address Validation Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Abbreviation
	3. Communication Protocol Format
	4. ACS-ACS Communication Protocol
	4.1. Announcement, Query and Response of State Machine Information
	4.1.1. State Machine Information Announcement
	4.1.2. State Machine Information Request

	4.2. Request and Response of Diagnose Information

	5. ACS-AER Communication Protocol
	5.1. Deployment, Request and Response of AD Registration information
	5.1.1. Deployment of AD Registration Information
	5.1.2. Request of AD Registration Information
	5.1.3. Reponse of AD Registration Information

	5.2. Deployment, Request and Reply of AD Prefix Information
	5.2.1. Deployment of AD Prefix Information
	5.2.2. Request of AD Prefix Information
	5.2.3. Response of AD Prefix Information

	5.3. Deployment, Request and Response of State Machine Information
	5.3.1. Deployment of State Machine Information
	5.3.2. Request of State Machine Information
	5.3.3. Response of State Machine Information

	5.4. Request and Response of Keep-alive Information
	5.4.1. Request of Keep-alive Information
	5.4.2. Response of Keep-alive Information

	6. Deployment of Tag Information
	7. Security Consideration
	8. IANA Consideration
	9. Acknowledgements
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

