
Workgroup: I2NSF Working Group

Internet-Draft:

draft-yang-i2nsf-security-policy-

translation-12

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: J. Jeong, Ed.

Sungkyunkwan University

P. Lingga

Sungkyunkwan University

J. Yang

Sungkyunkwan University

J. Kim

Sungkyunkwan University

Guidelines for Security Policy Translation in Interface to Network

Security Functions

Abstract

This document proposes the guidelines for security policy

translation in Interface to Network Security Functions (I2NSF)

Framework. When I2NSF User delivers a high-level security policy for

a security service, Security Policy Translator in Security

Controller translates it into a low-level security policy for

Network Security Functions (NSFs). For this security policy

translation, this document specifies the relation between a high-

level security policy based on the Consumer-Facing Interface YANG

data model and a low-level security policy based on the NSF-Facing

Interface YANG data model. Also, it describes an architecture of a

security policy translator along with an NSF database, and the

process of security policy translation with the NSF database.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Necessity for Security Policy Translator

4. Relation between Consumer-Facing Interface and NSF-Facing

Interface YANG Data Models

4.1. The CFI and NFI Top-Level YANG Trees Comparison

4.2. The CFI and NFI Rule-Level YANG Trees Comparison

4.2.1. The CFI and NFI Event YANG Data Models Comparison

4.2.2. The CFI and NFI Condition YANG Data Models Comparison

4.2.3. The CFI and NFI Action YANG Data Models Comparison

5. Design of Security Policy Translator

5.1. Overall Structure of Security Policy Translator

5.2. DFA-based Data Extractor

5.2.1. Design of DFA-based Data Extractor

5.2.2. Example Scenario for Data Extractor

5.3. Data Converter

5.3.1. Role of Data Converter

5.3.2. NSF Database

5.3.3. Data Conversion in Data Converter

5.3.4. Data Model Mapper

5.3.5. Policy Provisioning

5.4. Policy Generator

6. Implementation Considerations

6.1. Data Model Auto-adaptation

6.2. Data Conversion

6.3. Policy Provisioning

7. Features of Security Policy Translator Design

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

¶

¶

https://trustee.ietf.org/license-info

Appendix A. Mapping Information for Data Conversion

Appendix B. Acknowledgments

Appendix C. Contributors

Appendix D. Changes from draft-yang-i2nsf-security-policy-

translation-11

Authors' Addresses

1. Introduction

This document proposes the guidelines for security policy

translation in Interface to Network Security Functions (I2NSF)

Framework [RFC8329]. First of all, this document explains the

necessity of a security policy translator (shortly called policy

translator) in the I2NSF framework.

The policy translator resides in Security Controller in the I2NSF

framework and translates a high-level security policy to a low-level

security policy for Network Security Functions (NSFs). A high-level

policy is specified by I2NSF User in the I2NSF framework and is

delivered to Security Controller via Consumer-Facing Interface

[I-D.ietf-i2nsf-consumer-facing-interface-dm]. It is translated into

a low-level policy by Policy Translator in Security Controller and

is delivered to NSFs to execute the rules corresponding to the low-

level policy via NSF-Facing Interface

[I-D.ietf-i2nsf-nsf-facing-interface-dm].

2. Terminology

This document uses the terminology specified in [RFC8329].

3. Necessity for Security Policy Translator

Security Controller acts as a coordinator between I2NSF User and

NSFs. Also, Security Controller has capability information of NSFs

that are registered via Registration Interface

[I-D.ietf-i2nsf-registration-interface-dm] by Developer's Management

System [RFC8329]. As a coordinator, Security Controller needs to

generate a low-level policy in the form of security rules intended

by the high-level policy, which can be understood by the

corresponding NSFs.

The high-level and low-level security policies are specified by YANG

data model [RFC7950] with the delivery using either NETCONF

[RFC6241] or RESTCONF [RFC8040]. The translation from a high-level

security policy to the corresponding low-level security policy will

be able to rapidly elevate I2NSF in real-world deployment. A rule in

a high-level policy can include a broad target object, such as

employees in a company for a security service (e.g., firewall and

web filter). Such employees may be from human resource (HR)

department, software engineering department, and advertisement

¶

¶

¶

¶

department. A keyword of employee needs to be mapped to these

employees from various departments. This mapping needs to be handled

by a security policy translator in a flexible way while

understanding the intention of a policy specification. Let us

consider the following two policies:

Block my son's computers from malicious websites.

Drop packets from the IP address 192.0.2.0/24 to malicious1 and

malicious2.

The above two sentences are examples of policies for blocking

malicious websites. Both policies are for the same operation.

However, NSF cannot understand the first policy, because the policy

does not have any specified information for NSF. To set up the

policy at an NSF, the NSF MUST receive at least the source IP

address and website address for an operation. It means that the

first sentence is NOT compatible for an NSF policy. Conversely, when

I2NSF Users request a security policy to the system, they never make

a security policy like the second example. For generating a security

policy like the second sentence, the user MUST know that the NSF

needs to receive the specified information, source IP address and

website address. It means that the user understands the NSF

professionally, but there are not many professional users in a small

size of company or at a residential area. In conclusion, the I2NSF

User prefers to issue a security policy in the first sentence, but

an NSF will require the same policy as the second sentence with

specific information. Therefore, an advanced translation scheme of

security policy is REQUIRED in I2NSF.

This document proposes an approach using Automata theory [Automata]

for the policy translation, such as Deterministic Finite Automaton

(DFA). Note that Automata theory is the foundation of programming

language and compiler. Thus, with this approach, I2NSF User can

easily specify a high-level security policy that will be enforced

into the corresponding NSFs with a compatibly low-level security

policy with the help of Security Policy Translator. Also, for easy

management, a modularized translator structure is proposed.

4. Relation between Consumer-Facing Interface and NSF-Facing Interface

YANG Data Models

The Consumer-Facing Interface (CFI) YANG data model

[I-D.ietf-i2nsf-consumer-facing-interface-dm] and NSF-Facing

Interface (NFI) YANG data model

[I-D.ietf-i2nsf-nsf-facing-interface-dm] are two data models

designed with different objectives in mind. The CFI is designed to

be used by someone with little knowledge of network security can

configure the NSFs by specifying the required information, their

¶

* ¶

*

¶

¶

¶

data types, and encoding schemes as a high-level policy. The NFI is

designed to provide detailed security policy configuration for the

NSFs as a low-level policy that can be used by the NSFs to deploy

security services. But even with the distinct objectives for the

data models, the attributes between the two data models are

constructed to have a relation for the purpose of automation. Thus,

this section provides the information of the relationship between

the attributes in the CFI and NFI YANG data model.

4.1. The CFI and NFI Top-Level YANG Trees Comparison

Figure 1: The CFI and NFI Top-Level YANG Trees

Figure 1 shows the top-level of the CFI and NFI YANG Trees. The CFI

and NFI top-level provides the basic security policy information

such as name of a policy, language tag, and resolution-strategy.

Both data models also provide list of rules to be executed to

perform the network security services.

The differences of the top-level data models are default action and

priority usage are not provided in CFI YANG data model. This is

because the philosophy of CFI, i.e., To make CFI as simple as

¶

Consumer-Facing Interface (CFI):

module: ietf-i2nsf-cfi-policy

 +--rw i2nsf-cfi-policy* [name]

 +--rw name string

 +--rw language? string

 +--rw resolution-strategy? identityref

 +--rw rules* [name]

 | ...

 +--rw endpoint-groups

 | ...

 +--rw threat-prevention

 ...

NSF-Facing Interface (NFI):

module: ietf-i2nsf-policy-rule-for-nsf

 +--rw i2nsf-security-policy* [name]

 +--rw name string

 +--rw language? string

 +--rw priority-usage? identityref

 +--rw resolution-strategy? identityref

 +--rw default-action? identityref

 +--rw rules* [name]

 | ...

 +--rw rule-group

 ...

¶

possible for the user. But this attributes can be given by the

Security Controller with a default value in the translation process.

Another important distinct point is CFI YANG data model also

provides endpoint groups and threat prevention to register high-

level information (e.g., mapping a user to an IP address) to the

database for high-level configuration that can be used to translate

the high-level policy into the low-level policy.

4.2. The CFI and NFI Rule-Level YANG Trees Comparison

Figure 2: The CFI and NFI Rule-Level YANG Trees

Figure 2 shows the rule-level YANG trees of the CFI and NFI YANG

Trees. Similarly to the top-level YANG data model, the long-

connection is not provided in the CFI YANG data model to simplify

the data model for the user configuration. This value can also be

added using a default value in the Security Controller for the low-

level security policy.

In term of similarity, the CFI and NFI YANG data model provides the

basic rule information such as the unique name the priority value

¶

Consumer-Facing Interface (CFI):

 +--rw rules* [name]

 | +--rw name string

 | +--rw priority? uint8

 | +--rw event

 | | ...

 | +--rw condition

 | | ...

 | +--rw action

 | ...

NSF-Facing Interface (NFI):

 +--rw rules* [name]

 | +--rw name string

 | +--rw description? string

 | +--rw priority? uint8

 | +--rw enable? boolean

 | +--rw long-connection

 | | +--rw enable? boolean

 | | +--rw duration? uint32

 | +--rw event

 | | ...

 | +--rw condition

 | | ...

 | +--rw action

 | ...

¶

for the rules. Both data models utilize the Event-Condition-Action

(ECA) policy rule described in Section 3.1 of the

[I-D.ietf-i2nsf-capability-data-model].

4.2.1. The CFI and NFI Event YANG Data Models Comparison

Figure 3: The CFI and NFI Event YANG Trees

As shown in Figure 3, CFI and NFI YANG data models have the almost

same structures for Event except for description in NFI. The

description is optional because it contains human-readable text for

the description of an event.

4.2.2. The CFI and NFI Condition YANG Data Models Comparison

¶

 Consumer-Facing Interface (CFI):

 | +--rw event

 | | +--rw system-event* identityref

 | | +--rw system-alarm* identityref

 NSF-Facing Interface (NFI):

 | +--rw event

 | | +--rw description? string

 | | +--rw system-event* identityref

 | | +--rw system-alarm* identityref

¶

Consumer-Facing Interface (CFI):

| +--rw condition

| | +--rw firewall

| | | +--rw source* union

| | | +--rw destination* union

| | | +--rw transport-layer-protocol? identityref

| | | +--rw range-port-number

| | | | +--rw start-port-number? inet:port-number

| | | | +--rw end-port-number? inet:port-number

| | | +--rw icmp

| | | +--rw message* identityref

| | +--rw ddos

| | | +--rw rate-limit

| | | +--rw packet-rate-threshold? uint64

| | | +--rw byte-rate-threshold? uint64

| | | +--rw flow-rate-threshold? uint64

| | +--rw anti-virus

| | | +--rw exception-files* string

| | +--rw payload

| | | +--rw content*

 -> /i2nsf-cfi-policy/threat-prevention/payload-content/name

| | +--rw url-category

| | | +--rw url-name?

 -> /i2nsf-cfi-policy/endpoint-groups/url-group/name

| | +--rw voice

| | | +--rw source-id* string

| | | +--rw destination-id* string

| | | +--rw user-agent* string

| | +--rw context

| | | +--rw time

| | | | +--rw start-date-time? yang:date-and-time

| | | | +--rw end-date-time? yang:date-and-time

| | | | +--rw period

| | | | | +--rw start-time? time

| | | | | +--rw end-time? time

| | | | | +--rw day* day

| | | | | +--rw date* int32

| | | | | +--rw month* string

| | | | +--rw frequency? enumeration

| | | +--rw application

| | | | +--rw protocol* identityref

| | | +--rw device-type

| | | | +--rw device* identityref

| | | +--rw users

| | | | +--rw user* [id]

| | | | | +--rw id uint32

| | | | | +--rw name? string

| | | | +--rw group* [id]

| | | | +--rw id uint32

| | | | +--rw name? string

| | | +--rw geographic-location

| | | +--rw source*

 -> /i2nsf-cfi-policy/endpoint-groups/location-group/name

| | | +--rw destination*

 -> /i2nsf-cfi-policy/endpoint-groups/location-group/name

| | +--rw threat-feed

| | +--rw name*

 -> /i2nsf-cfi-policy/threat-prevention/threat-feed-list/name

NSF-Facing Interface:

 | +--rw condition

 | | +--rw description? string

 | | +--rw layer-2* [destination-mac-address source-mac-address

 ethertype]

 | | | +--rw description? string

 | | | +--rw destination-mac-address yang:mac-address

 | | | +--rw destination-mac-address-mask? yang:mac-address

 | | | +--rw source-mac-address yang:mac-address

 | | | +--rw source-mac-address-mask? yang:mac-address

 | | | +--rw ethertype eth:ethertype

 | | +--rw (layer-3)?

 | | | +--:(ipv4)

 | | | | +--rw ipv4

 | | | | +--rw description? string

 | | | | +--rw dscp? inet:dscp

 | | | | +--rw ecn? uint8

 | | | | +--rw length? uint16

 | | | | +--rw ttl? uint8

 | | | | +--rw protocol? uint8

 | | | | +--rw ihl? uint8

 | | | | +--rw flags? bits

 | | | | +--rw offset? uint16

 | | | | +--rw identification? uint16

 | | | | +--rw (destination-network)?

 | | | | | +--:(destination-ipv4-network)

 | | | | | | +--rw destination-ipv4-network?

 inet:ipv4-prefix

 | | | | | +--:(destination-ipv4-range)

 | | | | | +--rw destination-ipv4-range* [start end]

 | | | | | +--rw start inet:ipv4-address-no-zone

 | | | | | +--rw end inet:ipv4-address-no-zone

 | | | | +--rw (source-network)?

 | | | | +--:(source-ipv4-network)

 | | | | | +--rw source-ipv4-network? inet:ipv4-prefix

 | | | | +--:(source-ipv4-range)

 | | | | +--rw source-ipv4-range* [start end]

 | | | | +--rw start inet:ipv4-address-no-zone

 | | | | +--rw end inet:ipv4-address-no-zone

 | | | +--:(ipv6)

 | | | +--rw ipv6

 | | | +--rw description? string

 | | | +--rw dscp? inet:dscp

 | | | +--rw ecn? uint8

 | | | +--rw length? uint16

 | | | +--rw ttl? uint8

 | | | +--rw protocol? uint8

 | | | +--rw (destination-network)?

 | | | | +--:(destination-ipv6-network)

 | | | | | +--rw destination-ipv6-network?

 inet:ipv6-prefix

 | | | | +--:(destination-ipv6-range)

 | | | | +--rw destination-ipv6-range* [start end]

 | | | | +--rw start inet:ipv6-address-no-zone

 | | | | +--rw end inet:ipv6-address-no-zone

 | | | +--rw (source-network)?

 | | | | +--:(source-ipv6-network)

 | | | | | +--rw source-ipv6-network? inet:ipv6-prefix

 | | | | +--:(source-ipv6-range)

 | | | | +--rw source-ipv6-range* [start end]

 | | | | +--rw start inet:ipv6-address-no-zone

 | | | | +--rw end inet:ipv6-address-no-zone

 | | | +--rw flow-label? inet:ipv6-flow-label

 | | +--rw (layer-4)?

 | | | +--:(tcp)

 | | | | +--rw tcp

 | | | | +--rw description? string

 | | | | +--rw source-port-number

 | | | | | +--rw (source-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw destination-port-number

 | | | | | +--rw (destination-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw sequence-number? uint32

 | | | | +--rw acknowledgement-number? uint32

 | | | | +--rw data-offset? uint8

 | | | | +--rw reserved? uint8

 | | | | +--rw flags? bits

 | | | | +--rw window-size? uint16

 | | | | +--rw urgent-pointer? uint16

 | | | | +--rw options? binary

 | | | +--:(udp)

 | | | | +--rw udp

 | | | | +--rw description? string

 | | | | +--rw source-port-number

 | | | | | +--rw (source-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw destination-port-number

 | | | | | +--rw (destination-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw length? uint16

 | | | +--:(sctp)

 | | | | +--rw sctp

 | | | | +--rw description? string

 | | | | +--rw source-port-number

 | | | | | +--rw (source-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw destination-port-number

 | | | | | +--rw (destination-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw chunk-type* uint8

 | | | | +--rw chunk-length? uint16

 | | | +--:(dccp)

 | | | | +--rw dccp

 | | | | +--rw description? string

 | | | | +--rw source-port-number

 | | | | | +--rw (source-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw destination-port-number

 | | | | | +--rw (destination-port)?

 | | | | | +--:(range-or-operator)

 | | | | | | +--rw (port-range-or-operator)?

 | | | | | | +--:(range)

 | | | | | | | +--rw lower-port inet:port-number

 | | | | | | | +--rw upper-port inet:port-number

 | | | | | | +--:(operator)

 | | | | | | +--rw operator? operator

 | | | | | | +--rw port inet:port-number

 | | | | | +--:(port-list)

 | | | | | +--rw port-numbers* [start end]

 | | | | | +--rw start inet:port-number

 | | | | | +--rw end inet:port-number

 | | | | +--rw service-code* uint32

 | | | | +--rw type* uint8

 | | | | +--rw data-offset? uint8

 | | | +--:(icmp)

 | | | +--rw icmp

 | | | +--rw description? string

 | | | +--rw version? enumeration

 | | | +--rw type? uint8

 | | | +--rw code? uint8

 | | | +--rw rest-of-header? binary

 | | +--rw url-category

 | | | +--rw description? string

 | | | +--rw pre-defined* string

 | | | +--rw user-defined* string

 | | +--rw voice

 | | | +--rw description? string

 | | | +--rw source-voice-id* string

 | | | +--rw destination-voice-id* string

 | | | +--rw user-agent* string

 | | +--rw ddos

 | | | +--rw description? string

 | | | +--rw alert-packet-rate? uint32

 | | | +--rw alert-flow-rate? uint32

 | | | +--rw alert-byte-rate? uint32

 | | +--rw anti-virus

 | | | +--rw profile* string

 | | | +--rw exception-files* string

 | | +--rw payload

 | | | +--rw description? string

 | | | +--rw content* binary

 | | +--rw context

 | | +--rw description? string

 | | +--rw time

 | | | +--rw start-date-time? yang:date-and-time

 | | | +--rw end-date-time? yang:date-and-time

 | | | +--rw period

 | | | | +--rw start-time? time

 | | | | +--rw end-time? time

 | | | | +--rw day* day

 | | | | +--rw date* int8

 | | | | +--rw month* string

 | | | +--rw frequency? enumeration

 | | +--rw application

 | | | +--rw description? string

 | | | +--rw protocol* identityref

 | | +--rw device-type

 | | | +--rw description? string

 | | | +--rw device* identityref

 | | +--rw users

 | | | +--rw description? string

 | | | +--rw user* [id]

 | | | | +--rw id uint32

 | | | | +--rw name? string

 | | | +--rw group* [id]

 | | | +--rw id uint32

 | | | +--rw name? string

 | | +--rw geographic-location

 | | +--rw description? string

 | | +--rw source* string

 | | +--rw destination* string

Figure 4: The CFI and NFI Condition YANG Trees

Figure 4 shows CFI and NFI Condition YANG Trees. It shows a

different way to manipulate the Access Control Lists (ACLs) for the

CFI and NFI YANG data models. The CFI aims at an easy security

policy configuration, thus only provides a simple and most often

needed fields in ACls, i.e., source and destination address (IPv4 or

IPv6), type of transport protocol, source and destination port

numbers, type of application protocol, and ICMP type and code.

While, the NFI imports from [RFC8519] to provide a detailed

configuration of packet header.

Additionally, both data models provide configuration for advanced

network security functions such as DDoS, Antivirus, Payload (DPI),

URL Filtering, and Voice Filtering conditions. The difference is

that in CFI some of the information (name, value) for configuration

is saved into a database in Security Controller for easy

configuration. The configuration can be done by using the key name

that holds the corresponding value.

The YANG data models also has context condition that can be one to

one mapped, such as time condition to define the active period of a

rule or geographic location condition to filter traffic from/to a

certain region that can be mapped into the source and destination IP

(IPv4 or IPv6) addresses based on the database provided.

4.2.3. The CFI and NFI Action YANG Data Models Comparison

¶

¶

¶

Figure 5: The CFI and NFI Action YANG Trees

Figure 4 shows CFI and NFI Action YANG Trees. The action in CFI YANG

data model is separated into primary-action and secondary-action.

Primary action is the Ingress and Egress action (i.e., pass, drop,

reject, rate-limit, mirror, invoke-signaling, tunnel-encapsulation,

forwarding, and transformation) in the NFI YANG data model. The

secondary-action is the log-action to log the rule that has been

triggered by a packet/flow or log the packet/flow that triggered the

rule. The NFI also can specify the action as packet or flow action

depending on the capability of the NSF.

In NFI YANG data model, the advanced action is used to activate the

Service Function Chaining (SFC) to apply multiple NSFs on network

traffics. This does not exist in CFI as the CFI is used to provide a

high-level action. The action of a certain policy in CFI may require

multiple NSFs (e.g., a URL filtering with firewall) as a single NSF

may not have the capability to handle the security policy. Thus, the

SFC of those NSFs is handled by NFI.

5. Design of Security Policy Translator

Commonly used security policies are created as XML (Extensible

Markup Language) [XML] files. A popular way to change the format of

an XML file is to use an XSLT (Extensible Stylesheet Language

Transformation) [XSLT] document. XSLT is an XML-based language to

transform an input XML file into another output XML file. However,

 Consumer-Facing Interface (CFI):

 +--rw action

 | +--rw primary-action

 | | +--rw action? identityref

 | +--rw secondary-action

 | +--rw log-action? identityref

 NSF-Facing Interface (NFI):

 | +--rw action

 | +--rw description? string

 | +--rw packet-action

 | | +--rw ingress-action? identityref

 | | +--rw egress-action? identityref

 | | +--rw log-action? identityref

 | +--rw flow-action

 | | +--rw ingress-action? identityref

 | | +--rw egress-action? identityref

 | | +--rw log-action? identityref

 | +--rw advanced-action

 | +--rw content-security-control* identityref

 | +--rw attack-mitigation-control* identityref

¶

¶

the use of XSLT makes it difficult to manage the security policy

translator and to handle the registration of new capabilities of

NSFs. With the necessity for a security policy translator, this

document describes a security policy translator based on Automata

theory.

5.1. Overall Structure of Security Policy Translator

¶

Figure 6: The Overall Design of Security Policy Translator

Figure 6 shows the overall design for Security Policy Translator in

Security Controller. There are four main components for Security

 +--+

 | I2NSF User |

 +------------------------+-------------------------+

 | Consumer-Facing Interface

 |

 High-level Security Policy

 |

 Security Controller V

 +------------------------+--------------------------------+

 | Security Policy | |

 | Translator V |

 | +---------------------+----------------------------++ |

 | | | | |

 | | V | |

 | | +-------+--------+ +----------+ | |

 | | | DFA-based | |Data Model| | |

 | | | Data Extractor | | Mapper | | |

 | | +-------+--------+ +----------+ | |

 | | Extracted Data from | Mapping | | |

 | | High-Level Policy V Model V | |

 | | +-----+-----+ +--------+ | |

 | | | Data |<--------->| NSF DB | | |

 | | | Converter | +--------+ | |

 | | +-----+-----+ | |

 | | | Required Data for | |

 | | V Target NSFs | |

 | | +--------+---------+ | |

 | | | Policy Generator | | |

 | | +--------+---------+ | |

 | | | | |

 | | V | |

 | +---------------------+-----------------------------+ |

 | | |

 | V |

 +------------------------+--------------------------------+

 | NSF-Facing Interface

 |

 Low-level Security Policy

 |

 V

 +------------------------+-------------------------+

 | NSF(s) |

 +--+

Policy Translator: Data Extractor, Data Converter, Policy Generator,

and Data Model Mapper.

Extractor is a DFA-based module for extracting data from a high-

level policy which I2NSF User delivered via Consumer-Facing

Interface. Data Model Mapper creates a mapping model for mapping the

elements between Consumer-Facing Interface and NSF-Facing Interface.

Data Converter converts the extracted data to the capabilities of

target NSFs for a low-level policy. It refers to an NSF Database

(DB) in order to convert an abstract subject or object into the

corresponding concrete subject or object (e.g., IP address and

website URL). Policy Generator generates a low-level policy which

will execute the NSF capabilities from Converter.

5.2. DFA-based Data Extractor

5.2.1. Design of DFA-based Data Extractor

Figure 7: DFA Architecture of Data Extractor

Figure 7 shows a design for Data Extractor in the security policy

translator. If a high-level policy contains data along the

hierarchical structure of the standard Consumer-Facing Interface

YANG data model [I-D.ietf-i2nsf-consumer-facing-interface-dm], data

can be easily extracted using the state transition machine, such as

DFA. The extracted data can be processed and used by an NSF to

understand it. Extractor can be constructed by designing a DFA with

the same hierarchical structure as a YANG data model.

¶

¶

 +----------+

 | accepter |

 +----------+

 | ^

 <tag 1>| |</tag 1>

 v |

 +--+

 | middle 1 |

 +--+

 | ^ | ^ | ^

 <tag 2>| |</tag 2> <tag 3>| |</tag 3> ... <tag n>| |</tag n>

 v | v | v |

 +-------------+ +-------------+ +-------------+

 | extractor 1 | | extractor 2 | ... | extractor m |

 +-------------+ +-------------+ +-------------+

 data:1 data:2 data:m

¶

After constructing a DFA, Data Extractor can extract all of data in

the entered high-level policy by using state transitions. Also, the

DFA can easily detect the grammar errors of the high-level policy.

The extracting algorithm of Data Extractor is as follows:

Start from the 'accepter' state.

Read the next tag from the high-level policy.

Transit to the corresponding state.

If the current state is in 'extractor', extract the

corresponding data, and then go back to step 2.

If the current state is in 'middle', go back to step 2.

If there is no possible transition and arrived at 'accepter'

state, the policy has no grammar error. Otherwise, there is a

grammar error, so stop the process with failure.

5.2.2. Example Scenario for Data Extractor

Figure 8: The Example of High-level Policy

¶

1. ¶

2. ¶

3. ¶

4.

¶

5. ¶

6.

¶

 <i2nsf-cfi-policy

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-cfi-policy">

 <name>block_web_security_policy</name>

 <rules>

 <name>block_web</name>

 <condition>

 <firewall-condition>

 <source>Son's_PC</source>

 <firewall-condition>

 <url-condition>

 <url-name>malicious_websites</url-name>

 </url-condition>

 </condition>

 <actions>

 <primary-action>

 <action>drop</action>

 </primary-action>

 </actions>

 </rules>

 </i2nsf-cfi-policy>

Figure 9: The Example of Data Extractor

 +----------+

 | accepter |

 +----------+

 | ^

 <i2nsf-cfi-policy>| |</i2nsf-cfi-policy>

 v |

 +--+

 | middle 1 |

 +--+

 | ^ | ^

 <name>| |</name> | |

 v | | |

 +-------------+ <rules> | | </rules>

 | extractor 1 | | |

 +-------------+ | |

 block_web_security | |

 _policy v |

 +--+

 | middle 2 |

 +--+

 | ^ | ^ | ^

 <name>| |</name> <condition>| | <condition> <actions>| |</actions>

 v | v | v |

 +-------------+ +--------------------------+ +-------------+

 | extractor 2 | | middle 3 | | middle 6 |

 +-------------+ +--------------------------+ +-------------+

 block_web | ^ | ^ | ^

 | | <url- | |</url- | |

 | | condition>| | conition> | |

 | | | | | |

 <firewall- | |</firewall- | | <primary-| |</primary

 condition>| | condition> | | action>| | action>

 v | v | v |

 +-------------+ +-------------+ +-------------+

 | middle 4 | | middle 5 | | middle 7 |

 +-------------+ +-------------+ +-------------+

 | ^ | ^ | ^

 <source>| |</source> <url- | |</url- <action>| |</action>

 | | name>| | name> | |

 v | v | v |

 +-------------+ +-------------+ +-------------+

 | extractor 3 | | extractor 4 | | extractor 5 |

 +-------------+ +-------------+ +-------------+

 Son's_PC malicious_websites drop

To explain the Data Extractor process by referring to an example

scenario, assume that Security Controller received a high-level

policy for a web-filtering as shown in Figure 8. Then we can

construct DFA-based Data Extractor by using the design as shown in

Figure 7. Figure 9 shows the architecture of Data Extractor that is

based on the architecture in Figure 7 along with the input high-

level policy in Figure 8. Data Extractor can automatically extract

all of data in the high-level policy according to the following

process:

Start from the 'accepter' state.

Read the first opening tag called '<i2nsf-cfi-policy>', and

transit to the 'middle 1' state.

Read the second opening tag called '<name>', and transit to the

'extractor 1' state.

The current state is an 'extractor' state. Extract the data of

'name' field called 'block_web_security_policy'.

Read the second closing tag called '</name>', and go back to

the 'middle 1' state.

Read the third opening tag called '<rules>', and transit to the

'middle 2' state.

Read the fourth opening tag called '<name>', and transit to the

'extractor 2' state.

The current state is an 'extractor' state. Extract the data of

'name' field called 'block_web'.

Read the fourth closing tag called '</name>', and go back to

the 'middle 2' state.

Read the fifth opening tag called '<condition>', and transit to

the 'middle 3' state.

Read the sixth opening tag called '<firewall-condition>', and

transit to the 'middle 4' state.

Read the seventh opening tag called '<source>', and transit to

the 'extractor 3' state.

The current state is an 'extractor' state. Extract the data of

'source' field called 'Son's_PC'.

Read the seventh closing tag called '</source>', and go back to

the 'middle 4' state.

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

9.

¶

10.

¶

11.

¶

12.

¶

13.

¶

14.

¶

Read the sixth closing tag called '</firewall-condition>', and

go back to the 'middle 3' state.

Read the eight opening tag called '<url-condition>', and

transit to the 'middle 5' state.

Read the ninth opening tag called '<url-name>', and transit to

the 'extractor 4' state.

The current state is an 'extractor' state. Extract the data of

'url-name' field called 'malicious_websites'.

Read the ninth closing tag called '</url-name>', and go back to

the 'middle 5' state.

Read the eight closing tag called '</url-condition>', and go

back to the 'middle 3' state.

Read the fifth closing tag called '</condition>', and go back

to the 'middle 2' state.

Read the tenth opening tag called '<actions>', and transit to

the 'middle 6' state.

Read the eleventh opening tag called '<primary-action>', and

transit to the 'middle 7' state.

Read the twelfth opening tag called '<action>', and transit to

the 'extractor 5' state.

The current state is an 'extractor' state. Extract the data of

'action' field called 'drop'.

Read the twelfth closing tag called '</action>', and go back to

the 'middle 7' state.

Read the eleventh closing tag called '</primary-action>', and

go back to the 'middle 6' state.

Read the tenth closing tag called '</actions>', and go back to

the 'middle 2' state.

Read the third closing tag called '</rules>', and go back to

the 'middle 2' state.

Read the first closing tag called '</i2nsf-cfi-policy>', and go

back to the 'accepter' state.

15.

¶

16.

¶

17.

¶

18.

¶

19.

¶

20.

¶

21.

¶

22.

¶

23.

¶

24.

¶

25.

¶

26.

¶

27.

¶

28.

¶

29.

¶

30.

¶

There is no further possible transition, and the state is

finally on 'accepter' state. There is no grammar error in

Figure 8 so the scanning for data extraction is finished.

The above process is constructed by an extracting algorithm. After

finishing all the steps of the above process, Data Extractor can

extract all of data in Figure 8, 'block_web_security_policy',

'block_malicious', 'Son's_PC', 'malicious_websites', and 'drop'.

Since the translator is modularized into a DFA structure, a visual

understanding is feasible. Also, the performance of Data Extractor

is excellent compared to one-to-one searching of data for a

particular field. In addition, the management is efficient because

the DFA completely follows the hierarchy of Consumer-Facing

Interface. If I2NSF User wants to modify the data model of a high-

level policy, it only needs to change the connection of the relevant

DFA node.

5.3. Data Converter

5.3.1. Role of Data Converter

Every NSF has its own unique capabilities. The capabilities of an

NSF are registered into Security Controller by a Developer's

Management System, which manages the NSF, via Registration

Interface. Therefore, Security Controller already has all

information about the capabilities of NSFs. This means that Security

Controller can find target NSFs with only the data (e.g., subject

and object for a security policy) of the high-level policy by

comparing the extracted data with all capabilities of each NSF. This

search process for appropriate NSFs is called by policy

provisioning, and it eliminates the need for I2NSF User to specify

the target NSFs explicitly in a high-level security policy.

Data Converter selects target NSFs and converts the extracted data

into the capabilities of selected NSFs. If Security Controller uses

this data convertor, it can provide the policy provisioning function

to I2NSF User automatically. Thus, the translator design provides

big benefits to the I2NSF Framework.

5.3.2. NSF Database

The NSF Database contains all the information needed to convert

high-level policy data to low-level policy data. The contents of NSF

Database are classified as the following two: "endpoint information"

and "NSF capability information".

The first is "endpoint information". Endpoint information is

necessary to convert an abstract high-level policy data such as

Son's_PC and malicious_websites to a specific low-level policy data

31.

¶

¶

¶

¶

¶

¶

such as 192.0.2.0/24 and malicious1, respectively. In the high-level

policy, the range of endpoints for applying security policy MUST be

provided abstractly. Thus, endpoint information is needed to specify

the abstracted high-level policy data. Endpoint information is

provided by I2NSF User as the high-level policy through Consumer-

Facing Interface, and Security Controller builds NSF Database based

on received information.

The second is "NSF capability information". Since capability is

information that allows NSF to know what features it can support,

NSF capability information is used in policy provisioning process to

search the appropriate NSFs through the security policy. NSF

capability information is provided by Developer's Management System

(DMS) through Registration Interface, and Security Controller builds

NSF Database based on received information. In addition, if the NSF

sends monitoring information such as initiating information to

Security Controller through NSF-Facing Interface, Security

Controller can modify NSF Database accordingly.

¶

¶

 NSF Capability Information Endpoint Information

 +-------------------+ has convert +------------------+

 | NSF +||---+ +-------||+ Endpoint |

 +-------------------+ | | +------------------+

 | *nsf_id (INT) | | | | *end_id (INT) |

 | nsf_name (STRING)| | | | keyword (STRING) |

 | inbound (INT) | | | +------------------+

 | outbound (INT) | | |

 | bandwidth (INT) | | |

 | activated (BOOL) | | |

 +-------------------+ | |

 +---------------+ | +---------------------+

 /|\ +------||+ Mapping Information |

 +--------------------+ has | +---------------------+

 | Capability +||---+ | | *element_id (INT) |

 +--------------------+ | | | element_name(STR) |

 | *capa_id (INT) | | | | element_map (STR) |

 | capa_name (STRING)| | | +---------------------+

 | capa_index (INT) | | |

 +--------------------+ | |

 /|\ /|\

 +-----------------------+

 | Field |

 +-----------------------+

 | *field_id (INT) |

 | field_name (STRING) |

 | field_index (INT) |

 | mapped_data (STRING) |

 +-----------------------+

Figure 10: Entity-Relationship Diagram of NSF Database

Figure 10 shows an Entity-Relationship Diagram (ERD) of NSF Database

designed to include both endpoint information received from I2NSF

User and NSF capability information received from DMS. By designing

the NSF database based on the ERD, all the information necessary for

security policy translation can be stored, and the network system

administrator can manage the NSF database efficiently.

ERD was expressed by using Crow's Foot notation. Crow's Foot

notation represents a relationship between entities as a line and

represents the cardinality of the relationship as a symbol at both

ends of the line. Attributes prefixed with * are key values of each

entity. A link with two vertical lines represents one-to-one

mapping, and a bird-shaped link represents one-to-many mapping. An

NSF entity stores the NSF name (nsf_name), NSF specification

(inbound, outbound, bandwidth), and NSF activation (activated). A

Capability entity stores the capability name (capa_name) and the

index of the capability field in a Registration Interface YANG data

model (capa_index). An Endpoint entity stores the keyword of

abstract data conversion from I2NSF User (keyword). A Field entity

stores the field name (field_name), the index of the field index in

an NSF-Facing Interface YANG data model, and converted data by

referring to the Endpoint entity and a 'convert' relationship.

5.3.3. Data Conversion in Data Converter

¶

¶

Figure 11: Example of Data Conversion

Figure 11 shows an example for describing a data conversion in Data

Converter. High-level policy data MUST be converted into low-level

policy data which are compatible with NSFs. If a system

administrator attaches a database to Data Converter, it can convert

contents by referring to the database with SQL queries. Data

conversion in Figure 11 is based on the following list:

'Policy Name' and 'Rule Name' fields do NOT need the conversion.

'Source' field SHOULD be converted into an IPv4 addresses.

'URL Name' field SHOULD be converted into a URL list of malicious

websites.

 High-level Low-level

 Policy Data Policy Data

+---------------+ +------------------------------+

| Policy Name | | Policy Name |

| +-----------+ | The same value | +-------------------------+ |

| | block_web |-|------------------->|->|block_web_security_policy| |

| | _security | | | +-------------------------+ |

| | _policy | | | |

| +-----------+ | | |

| | | |

| Rule Name | | Rule Name |

| +-----------+ | The same value | +-------------------------+ |

| | block_web |-|------------------->|->| block_web | |

| +-----------+ | | +-------------------------+ |

| | | |

| Source | Conversion into | Source IPv4 Range |

| +-----------+ | User's IP address | +-------------------------+ |

| | Son's_PC |-|------------------->|->| 192.0.2.0/24 | |

| +-----------+ | | +-------------------------+ |

| | | |

| URL Name | Conversion into | URL - User Defined |

| +-----------+ | malicious websites | +-------------------------+ |

| | malicious |-|------------------->|->| [malicious1, | |

| | _websites | | | | malicious2] | |

| +-----------+ | | +-------------------------+ |

| | | |

| Action | Conversion into | Action |

| +-----------+ | NSF Capability | +-----------+ |

| | drop |-|------------------->|->|drop/reject| |

| +-----------+ | | +-----------+ |

+---------------+ +------------------------------+

¶

* ¶

* ¶

*

¶

'Action' field SHOULD be converted into the corresponding

action(s) in NSF capabilities.

5.3.4. Data Model Mapper

When translating a policy, the mapping between each element of the

data models are necessary to properly convert the data. The Data

Model Mapper create a mapping model between the elements in

Consumer-Facing Interface YANG data model and NSF-Facing Interface

YANG data model. Each element in the Consumer-Facing Interface

Policy Data Model has at least one or more corresponding element in

NSF-Facing Interface Data Model.

*

¶

¶

 Consumer-Facing Interface NSF-Facing Interface

 YANG data model YANG data model

 | |

 V V

 +---------+-------------------------------+------+

 | | Data Model Mapper | |

 | | | |

 | | +-------------------------+ | |

 | +->| Convert as a Tree Graph |<-+ |

 | +------------+------------+ |

 | | |

 | v |

 | +----------------------------+ |

 | | Calculate each element | |

 | | Tree Edit Distance | |

 | | between the CFI and NFI | |

 | +--------------+-------------+ |

 | | |

 | v |

 | +-------------------------+ |

 | | Get the elements with | |

 | | smallest distance as | |

 | | the candidates | |

 | +-------------------------+ |

 | | |

 +-------------------------+----------------------+

 |

 V

 Data Model Mapping Information

Note

CFI: Consumer-Facing Interface

NFI: NSF-Facing Interface

Figure 12: Data Model Mapping

Figure 12 shows the automatic mapping method for I2NSF Security

Policy Translator. The automatic mapping is helpful as the CFI and

NFI YANG data models can be extended. The automatic mapper uses the

CFI and NFI YANG data models as inputs. The process the Data Model

and converts it into a Tree Graph. Tree Graph is used to proces the

Data Model as a Tree instead of individual elements. Then the Data

Model Mapper calculates the Tree Edit Distance between each element

in Consumer-Facing Interface and each element in NSF-Facing

Interface. The Tree Edit Distance can be calculated with an

algorithm, e.g., Zhang-Shasha algorithm [Zhang-Shasha], with the

calculation should start from the root of the tree.

The Zhang-Shasha calculates the distance by three operations:

Insert: Inserting a node or element

Delete: Deleting a node or element

Change: Change the label of a node or element to another

The insert and delete operations are a simple of adding/deleting a

node or element with the length of the label of the node. The change

operation must be calculated between the label of the element to

produce the distance. There are methods to calculate this, such as

Levenshtein Distance, Cosine Similarity, or Sequence Matching. For

this data model mapper, cosine similarity should be the best choice

as it measures the similarity between words. The data models have

similarity between words and it can helps in calculating as minimum

distance as possible.

When the minimum distance is obtained, the NSF-Facing Interface

element is saved as the candidates for mapping the Consumer-Facing

Interface element. This information should be saved to the NSF

Database for the Data Converter.

Do note that the proper mapping can be achieved because the

similarity between the Consumer-Facing Interface and NSF-Facing

Interface. An extension created for the Consumer-Facing Interface

and NSF-Facing Interface should keep the close similarity

relationship between the data models to be able to produce the

mapping model information automatically.

The proper mapping between CFI YANG data model and NFI YANG data

model provided in [I-D.ietf-i2nsf-consumer-facing-interface-dm] and

[I-D.ietf-i2nsf-nsf-facing-interface-dm], respectively, can be seen

in Appendix A.

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

5.3.4.1. Handling of Default Values for a Low-level Security Policy

Attributes in NFI YANG data model provide detailed configuration for

NSFs to handle thorough examination for security services in a

network. Some of the attributes in the NFI YANG data model can be

given directly after the mapping translation from a high-level

policy. But the CFI YANG data model is designed to be used easily by

an I2NSF User, hence some attributes cannot be mapped directly to

the attributes in the NFI YANG data model.

To accommodate such attributes that cannot be given by the direct

translation from the CFI YANG data model, default values can be

used. For example, the attribute "default-action" in the NFI YANG

data model cannot be configured by the CFI YANG data model. A

firewall usually drops packets by default to make sure that only

permitted packets are allowed to pass through to the network. So,

the default value for the attribute "default-action" will be a

"drop" action. This can be done in the implementation of the

translation so that the attribute can be given a default value.

The default value for different NSFs can be different depending on

the type of service it offers. A typical firewall may use the

default-value "drop" for the "default-action" attribute, but an

antivirus may use a default-value "pass" for "default-action" to

make sure that only the detected viruses are blocked. Other types of

firewalls may also use different default values for the "default-

action". Thus, the actual default values that are given to the NSFs

are out of the scope of this document.

5.3.5. Policy Provisioning

¶

¶

¶

Figure 13: Example of Policy Provisioning

Generator searches for proper NSFs which can cover all of

capabilities in the high-level policy. Generator searches for target

NSFs by comparing only NSF capabilities which is registered by

Vendor Management System. This process is called by "policy

provisioning" because Generator finds proper NSFs by using only the

policy. If target NSFs are found by using other data which is not

included in a user's policy, it means that the user already knows

the specific knowledge of an NSF in the I2NSF Framework. Figure 13

shows an example of policy provisioning. In this example, log-keeper

NSF and web-filter NSF are selected for covering capabilities in the

 Log-keeper Low-level Web-filter

 NSF Policy Data NSF

+-------------------+ +--------------------+ +-------------------+

| Policy Name | | Policy Name | | Policy Name |

| +--------------+ | | +--------------+ | | +--------------+ |

| | block_web |<-|<-|<-| block_web |->|->|->| block_web | |

| | _security | | | | _security | | | | _security | |

| | _policy | | | | _policy | | | | _policy | |

| +--------------+ | | +--------------+ | | +--------------+ |

| | | | | |

| Rule Name | | Rule Name | | Rule Name |

| +--------------+ | | +--------------+ | | +--------------+ |

| | block_web |<-|<-|<-| block_web |->|->|->| block_web | |

| +--------------+ | | +--------------+ | | +--------------+ |

| | | | | |

| Source IPv4 | | Source IPv4 | | Source IPv4 |

| +--------------+ | | +--------------+ | | +--------------+ |

| | 192.0.2.0/24 |<-|<-|<-| 192.0.2.0/24 |->|->|->| 192.0.2.0/24 | |

| +--------------+ | | +--------------+ | | +--------------+ |

| | | | | |

| | | URL - User Defined | | URL - User Defined|

| | | +--------------+ | | +--------------+ |

| | | | [malicious1, |->|->|->| [malicious1, | |

| | | | malicious2] | | | | malicious2] | |

| | | +--------------+ | | +--------------+ |

| | | | | |

| Log Action | | Log Action | | |

| +--------------+ | | +--------------+ | | |

| | True |<-|<-|<-| True | | | |

| +--------------+ | | +--------------+ | | |

+-------------------+ | | | |

 | Action | | Action |

 | +--------------+ | | +--------------+ |

 | | Drop |->|->|->| Drop/Reject | |

 | +--------------+ | | +--------------+ |

 +--------------------+ +-------------------+

security policy. All of capabilities can be covered by two selected

NSFs.

5.4. Policy Generator

Generator makes low-level security policies for each target NSF with

the extracted data. The low-level security policy can be produced in

the form of XML or JSON. Libray such as PyangBind [PyangBind] for

Python can be used to parse the NFI YANG data model to produce an

XML or JSON form automatically.

Figure 14: Policy Generator Architecture

Figure 14 shows the architecture of the Policy Generator. First,

PyangBind library generates a Python class hierarchy from an input

of the NFI YANG data model. This allows low-level data instances

from the Data Converter (Section 5.3) to be inserted into the NFI

Python Class. To get the appropriate attributes, the low-level data

is paired with the attributes received from the Data Model Mapper

¶

¶

 +--+

 | Policy Generator |

 | |

 | +------------+ +-----------+ +-------------+ |

 | | Low-level | Pair | Low-Level | | NFI YANG | |

 | | Attributes |<---->| Data | | Data Model | |

 | +-----+------+ +-----+-----+ +-------+-----+ |

 | | | | |

 | | | | |

 | +---------+---------+ | |

 | | | |

 | | | |

 | v v |

 | +---------------+ +------------+ |

 | | NFI Python |<------------| PyangBind | |

 | | Class | +------------+ |

 | +-------+-------+ |

 | | |

 | | |

 | v |

 | +---------------+ |

 | | Low-level | |

 | | Policy | |

 | | (XML or JSON) | |

 | +---------------+ |

 | |

 +--+

(Section 5.3.4). The filled entry can then be encoded into an XML or

JSON form automatically by PyangBind.

Figure 15 shows an XML example of a low-level policy generated by

the translator.

Figure 15: Example of Low-Level Policy

6. Implementation Considerations

The implementation considerations in this document include the

following three: "data model auto-adaptation", "data conversion",

and "policy provisioning".

6.1. Data Model Auto-adaptation

Security Controller which acts as an intermediary entity MUST

process the data according to the data model of the connected

interfaces. However, the data model can be changed flexibly

depending on the situation, and Security Controller may adapt to the

change of the data model. Therefore, Security Controller can be

implemented for convenience so that the security policy translator

can easily adapt to the change of the data model.

The translator constructs and uses the DFA to adapt to the Consumer-

Facing Interface Data Model. The DFA starts from the root node of

the YANG tree and expands operations by changing the state according

to the input. Based on the YANG data model, a container node is

¶

¶

 <i2nsf-security-policy>

 <name>block_web_security_policy</name>

 <rules>

 <name>block_web</name>

 <condition>

 <ipv4>

 <ipv4>

 <source-ipv4-network>192.0.2.0/24</source-ipv4-network>

 </ipv4>

 </ipv4>

 <url-category>

 <user-defined>malicious1</user-defined>

 <user-defined>malicious2</user-defined>

 </url-category>

 </condition>

 <action>

 <packet-action>drop</packet-action>

 </action>

 </rules>

 </i2nsf-security-policy>

¶

¶

defined as a middle state and a leaf node is defined as an extractor

node. After that, if the nodes are connected in the same way as the

hierarchical structure of the data model, Security Controller can

automatically construct the DFA. Therefore, the DFA can be

conveniently built by investigating the link structure using the

stack through a Depth-First Search, starting from the root node.

The Policy Generator uses PyangBind to construct the hierarchy of

the NFI YANG data model into a Python class. This allows an XML or

JSON form to be generated automatically even with updates of the NFI

YANG data model. Thus, the security policy translator is able to

auto-adapt to the NFI YANG data model.

6.2. Data Conversion

Security Controller requires the ability to materialize the abstract

data in the high-level security policy and forward it to NSFs.

Security Controller can receive endpoint information as keywords

through the high-level security policy. At this time, if the

endpoint information corresponding to the keyword is mapped and the

query is transmitted to the NSF Database, the NSF Database can be

conveniently registered with necessary information for data

conversion. When a policy tries to establish a policy through the

keyword, Security Controller searches for the details corresponding

to the keyword registered in the NSF Database and converts the

keyword into appropriate and specific data.

6.3. Policy Provisioning

This document states that a policy provisioning function is

necessary to enable an I2NSF User without expert security knowledge

to create policies. Policy provisioning is determined by the

capability of the NSF. If the information about an NSF's capability

for a policy is available to Security Controller, the probability of

the selection of an appropriate NSF may increase.

Most importantly, selected NSFs may be able to perform all

capabilities in the security policy. This document recommends the

study of policy provisioning algorithms that are highly efficient

and can satisfy all capabilities in the security policy.

7. Features of Security Policy Translator Design

First, by showing a visualized translator structure, the security

manager can handle various policy changes. Translator can be shown

by visualizing DFA so that the manager can easily understand the

structure of Security Policy Translator.

Second, if it only keeps the hierarchy of the data model, an I2NSF

User can freely create high-level policies. In the case of DFA, data

¶

¶

¶

¶

¶

¶

[RFC7950]

[RFC8040]

[RFC6241]

extraction can be performed in the same way even if the order of

input is changed. The design of the security policy translator is

more flexible than the existing method that works by keeping the

tag's position and order exactly.

Third, the structure of Security Policy Translator can be updated

even while Security Policy Translator is operating. Because Security

Policy Translator is modularized, the translator can adapt to

changes in an NSF's capabilities while the I2NSF framework is

running. The function of changing the translator's structure can be

provided through the Registration Interface

[I-D.ietf-i2nsf-registration-interface-dm].

8. Security Considerations

The data saved in the database used by the translation process MUST

be kept securely. Some of the data used to convert the data from the

high-level security policy to the corresponding low-level security

policy may be considered private, e.g., IP addresses mapped to

users. And also, alterated data in the database can cause a

mistranslation and create a vulnerability in the network security

that can be utilized by the attacker.

The configuration and its delivery MUST follow the security

considerations discussed in

[I-D.ietf-i2nsf-consumer-facing-interface-dm] and

[I-D.ietf-i2nsf-nsf-facing-interface-dm].

9. IANA Considerations

This document does not require any IANA actions.

10. References

10.1. Normative References

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040

[RFC8329]

[I-D.ietf-i2nsf-consumer-facing-interface-dm]

[I-D.ietf-i2nsf-nsf-facing-interface-dm]

[I-D.ietf-i2nsf-registration-interface-dm]

[I-D.ietf-i2nsf-capability-data-model]

[RFC8519]

[Automata]

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R.

Kumar, "Framework for Interface to Network Security

Functions", RFC 8329, DOI 10.17487/RFC8329, February

2018, <https://www.rfc-editor.org/info/rfc8329>.

Jeong, J. P., Chung, C., Ahn, T., Kumar, R., and S.

Hares, "I2NSF Consumer-Facing Interface YANG Data Model",

Work in Progress, Internet-Draft, draft-ietf-i2nsf-

consumer-facing-interface-dm-23, 8 August 2022, <https://

www.ietf.org/archive/id/draft-ietf-i2nsf-consumer-facing-

interface-dm-23.txt>.

Kim, J. T., Jeong, J. P.,

Park, J., Hares, S., and Q. Lin, "I2NSF Network Security

Function-Facing Interface YANG Data Model", Work in

Progress, Internet-Draft, draft-ietf-i2nsf-nsf-facing-

interface-dm-29, 1 June 2022, <https://www.ietf.org/

archive/id/draft-ietf-i2nsf-nsf-facing-interface-

dm-29.txt>.

Hyun, S., Jeong, J. P.,

Roh, T., Wi, S., and J. Park, "I2NSF Registration

Interface YANG Data Model for NSF Capability

Registration", Work in Progress, Internet-Draft, draft-

ietf-i2nsf-registration-interface-dm-21, 8 September

2022, <https://www.ietf.org/archive/id/draft-ietf-i2nsf-

registration-interface-dm-21.txt>.

Hares, S., Jeong, J. P., Kim, J. T., Moskowitz, R., and

Q. Lin, "I2NSF Capability YANG Data Model", Work in

Progress, Internet-Draft, draft-ietf-i2nsf-capability-

data-model-32, 23 May 2022, <https://www.ietf.org/

archive/id/draft-ietf-i2nsf-capability-data-

model-32.txt>.

10.2. Informative References

Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,

"YANG Data Model for Network Access Control Lists

(ACLs)", RFC 8519, DOI 10.17487/RFC8519, March 2019,

<https://www.rfc-editor.org/info/rfc8519>.

Peter, L., "Formal Languages and Automata, 6th Edition",

January 2016.

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8329
https://www.ietf.org/archive/id/draft-ietf-i2nsf-consumer-facing-interface-dm-23.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-consumer-facing-interface-dm-23.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-consumer-facing-interface-dm-23.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-nsf-facing-interface-dm-29.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-nsf-facing-interface-dm-29.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-nsf-facing-interface-dm-29.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-registration-interface-dm-21.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-registration-interface-dm-21.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-capability-data-model-32.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-capability-data-model-32.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-capability-data-model-32.txt
https://www.rfc-editor.org/info/rfc8519

[Zhang-Shasha]

[PyangBind]

[XML]

[XSLT]

Zhang, K. and D. Shasha, "Simple Fast Algorithms for

the Editing Distance Between Trees and Related Problems",

SIAM J. Comput. https://www.researchgate.net/publication/

220618233_Simple_Fast_Algorithms_for_the_Editing_Distance

_Between_Trees_and_Related_Problems, 1989.

Shakir, R., "PyangBind", PyangBind https://github.com/

robshakir/pyangbind, 2018.

W3C, "On Views and XML (Extensible Markup Language)",

June 1999.

W3C, "Extensible Stylesheet Language Transformations

(XSLT) Version 1.0", November 1999.

Appendix A. Mapping Information for Data Conversion

Figure 16 shows a mapping list of data fields between Consumer-

Facing Interface YANG data model and NSF-Facing Interface YANG data

model. Figure 16 describes the process of passing the data value to

the appropriate data field of the Data Model in detail after the

data conversion.¶

#policy name mapping

/consumer-facing/i2nsf-cfi-policy/name

 -> mapping: /nsf-facing/i2nsf-security-policy

 /name

#rule name mapping

/consumer-facing/i2nsf-cfi-policy/rules/name

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/name

#time mapping

/consumer-facing/i2nsf-cfi-policy/

/rules/event/time/start-date-time

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/event/time/start-date-time

/consumer-facing/i2nsf-cfi-policy/

/rules/event/time/end-date-time

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/event/time/end-date-time

/consumer-facing/i2nsf-cfi-policy/

/rules/event/time/period/day

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/event/time/period/day

/consumer-facing/i2nsf-cfi-policy/

/rules/event/time/period/date

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/event/time/period/date

/consumer-facing/i2nsf-cfi-policy/

/rules/event/time/period/month

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/event/time/period/month

/consumer-facing/i2nsf-cfi-policy/

/rules/event/time/frequency

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/event/time/frequency

#firewall-condition source target reference and mapping

/consumer-facing/i2nsf-cfi-policy/rules/condition

/firewall-condition/source

 -> reference: /consumer-facing/policy

 /endpoint-group/user-group/name

 -> reference: /consumer-facing/policy

 /endpoint-group/device-group/name

 -> extract: /consumer-facing/policy

 /endpoint-group/user-group/mac-address

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ethernet

 /source-mac-address

 -> extract: /consumer-facing/policy

 /endpoint-group/user-group/ip-address

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /source-ipv4-network

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /source-ipv4-range

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv6

 /source-ipv6-network

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv6

 /source-ipv6-range

#firewall-condition destination target reference and mapping

/consumer-facing/i2nsf-cfi-policy/rule/condition

/firewall-condition/destination

 -> reference: /consumer-facing/policy

 /endpoint-group/user-group/name

 -> reference: /consumer-facing/policy

 /endpoint-group/device-group/name

 -> extract: /consumer-facing/policy

 /endpoint-group/user-group/mac-address

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ethernet

 /destination-mac-address

 -> extract: /consumer-facing/policy

 /endpoint-group/user-group/ip-address

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /destination-ipv4-network

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /destination-ipv4-range

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv6

 /destination-ipv6-network

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv6

 /destination-ipv6-range

#ddos-condition threshold mapping

/consumer-facing/i2nsf-cfi-policy/rules/condition

/ddos-condition/packet-rate-threshold

 -> mapping: /nsf-facing/i2nsf-security-policy/rules/condition

 /ddos/alert-packet-rate

/consumer-facing/i2nsf-cfi-policy/rules/condition

/ddos-condition/packet-byte-threshold

 -> mapping: /nsf-facing/i2nsf-security-policy/rules/condition

 /ddos/alert-byte-rate

/consumer-facing/i2nsf-cfi-policy/rules/condition

/ddos-condition/flow-rate-threshold

 -> mapping: /nsf-facing/i2nsf-security-policy/rules/condition

 /ddos/alert-flow-rate

#payload-condition mapping

/consumer-facing/i2nsf-cfi-policy/rules/condition

/payload-condition/content

 -> reference: /consumer-facing/i2nsf-cfi-policy

 /threat-prevention/payload-content/name

 -> extract: /consumer-facing/i2nsf-cfi-policy

 /threat-prevention/payload-content/content

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/payload/content

#voice-condition mapping

/consumer-facing/i2nsf-cfi-policy/rules/condition

/voice-condition/source-id

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/voice

 /source-voice-id

/consumer-facing/i2nsf-cfi-policy/rules/condition

/voice-condition/destination-id

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/voice

 /destination-voice-id

/consumer-facing/i2nsf-cfi-policy/rules/condition

/voice-condition/user-agent

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/voice

 /user-agent

#geographic-location mapping

/consumer-facing/i2nsf-cfi-policy/rules/condition/context

/geographic-location/source

 -> reference: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/location-group/name

 -> extract: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/location-group

 /geo-ip-ipv4/ipv4-address

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /source-ipv4-network

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /source-ipv4-range

 -> extract: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/location-group

 /continent

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/context

 /geographic-location/source

/consumer-facing/i2nsf-cfi-policy/rules/condition/context

/geographic-location/destination

 -> reference: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/location-group/name

 -> extract: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/location-group

 /geo-ip-ipv4/ipv4-address

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /destination-ipv4-network

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/ipv4

 /destination-ipv4-range

 -> extract: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/location-group

 /continent

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/context

 /geographic-location/destination

#url-condition mapping

/consumer-facing/i2nsf-cfi-policy/rules/condition

/url-condition/url-name

 -> reference: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/url-group/name

 -> extract: /consumer-facing/i2nsf-cfi-policy

 /endpoint-groups/url-group/url

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/url-category

 /pre-defined

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/condition/url-category

 /user-defined

#rule action name mapping

/consumer-facing/i2nsf-cfi-policy/rules/actions/primary-action

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/action

 /packet-action/ingress-action

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/action

 /packet-action/egress-action

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/action

 /advanced-action/content-security-control

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/action

 /advanced-action/attack-mitigation-control

/consumer-facing/i2nsf-cfi-policy/rules/actions/secondary-action

 -> mapping: /nsf-facing/i2nsf-security-policy

 /rules/action/packet-action/log-action

Figure 16: Mapping Information for Data Conversion

The mapping list shown in the Figure 16 shows all mapped components.

This data list should be saved into the NSF Database to provide the

mapping information for converting the data. It is important to

produce the list automatically as the Consumer-Facing Interface and

NSF-Facing Interface can be extended anytime by vendors according to

the provided NSF. The Data Model Mapper in Security Policy

Translator should be used to produce the mapping model information

automatically.

Appendix B. Acknowledgments

This document is a product by the I2NSF Working Group (WG) including

WG Chairs (i.e., Linda Dunbar and Yoav Nir) and Diego Lopez. This

document took advantage of the review and comments from the

following experts: Roman Danyliw and Tom Petch. The authors

sincerely appreciate their sincere efforts and kind help.

This work was supported by Institute of Information & Communications

Technology Planning & Evaluation (IITP) grant funded by the Korea

MSIT (Ministry of Science and ICT) (2020-0-00395, Standard

Development of Blockchain based Network Management Automation

Technology). This work was supported in part by the IITP

(R-20160222-002755, Cloud based Security Intelligence Technology

Development for the Customized Security Service Provisioning). This

work was supported in part by the MSIT under the Information

Technology Research Center (ITRC) support program

(IITP-2022-2017-0-01633) supervised by the IITP.

Appendix C. Contributors

The following are co-authors of this document:

Chaehong Chung - Department of Electrical and Computer Engineering,

Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon, Gyeonggi-do

16419, Republic of Korea, EMail: darkhong@skku.edu

Jung-Soo Park - Electronics and Telecommunications Research

Institute, 218 Gajeong-Ro, Yuseong-Gu, Daejeon, 34129, Republic of

Korea, EMail: pjs@etri.re.kr

Younghan Kim - School of Electronic Engineering, Soongsil

University, 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of

Korea, EMail: younghak@ssu.ac.kr

¶

¶

¶

¶

¶

¶

¶

Appendix D. Changes from draft-yang-i2nsf-security-policy-

translation-11

The following changes are made from draft-yang-i2nsf-security-

policy-translation-11:

The XML examples are updated to use the IPv4 address blocks

reserved for documentantion, i.e., 10.0.0.0/24 to 192.0.2.0/24.

The high-level YANG tree is updated using the latest version of

[I-D.ietf-i2nsf-consumer-facing-interface-dm].

The reference of RFC6020 is updated to [RFC7950].

Section 8 is updated with new security consideration.

Authors' Addresses

Jaehoon Paul Jeong (editor)

Department of Computer Science and Engineering

Sungkyunkwan University

2066 Seobu-Ro, Jangan-Gu

Suwon

Gyeonggi-Do

16419

Republic of Korea

Phone: +82 31 299 4957

Email: pauljeong@skku.edu

URI: http://iotlab.skku.edu/people-jaehoon-jeong.php

Patrick Lingga

Department of Electronic, Electrical and Computer Engineering

Sungkyunkwan University

2066 Seobu-Ro, Jangan-Gu

Suwon

Gyeonggi-Do

16419

Republic of Korea

Phone: +82 31 299 4957

Email: patricklink@skku.edu

Jinhyuk Yang

Department of Electronic, Electrical and Computer Engineering

Sungkyunkwan University

2066 Seobu-Ro, Jangan-Gu

Suwon

Gyeonggi-Do

16419

¶

*

¶

*

¶

* ¶

* ¶

tel:+82%2031%20299%204957
mailto:pauljeong@skku.edu
http://iotlab.skku.edu/people-jaehoon-jeong.php
tel:+82%2031%20299%204957
mailto:patricklink@skku.edu

Republic of Korea

Phone: +82 10 8520 8039

Email: jin.hyuk@skku.edu

Jeonghyeon Kim

Department of Computer Science and Engineering

Sungkyunkwan University

2066 Seobu-Ro, Jangan-Gu

Suwon

Gyeonggi-Do

16419

Republic of Korea

Phone: +82 31 299 4957

Email: jeonghyeon12@skku.edu

tel:+82%2010%208520%208039
mailto:jin.hyuk@skku.edu
tel:+82%2031%20299%204957
mailto:jeonghyeon12@skku.edu

	Guidelines for Security Policy Translation in Interface to Network Security Functions
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Necessity for Security Policy Translator
	4. Relation between Consumer-Facing Interface and NSF-Facing Interface YANG Data Models
	4.1. The CFI and NFI Top-Level YANG Trees Comparison
	4.2. The CFI and NFI Rule-Level YANG Trees Comparison
	4.2.1. The CFI and NFI Event YANG Data Models Comparison
	4.2.2. The CFI and NFI Condition YANG Data Models Comparison
	4.2.3. The CFI and NFI Action YANG Data Models Comparison

	5. Design of Security Policy Translator
	5.1. Overall Structure of Security Policy Translator
	5.2. DFA-based Data Extractor
	5.2.1. Design of DFA-based Data Extractor
	5.2.2. Example Scenario for Data Extractor

	5.3. Data Converter
	5.3.1. Role of Data Converter
	5.3.2. NSF Database
	5.3.3. Data Conversion in Data Converter
	5.3.4. Data Model Mapper
	5.3.4.1. Handling of Default Values for a Low-level Security Policy

	5.3.5. Policy Provisioning

	5.4. Policy Generator

	6. Implementation Considerations
	6.1. Data Model Auto-adaptation
	6.2. Data Conversion
	6.3. Policy Provisioning

	7. Features of Security Policy Translator Design
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Mapping Information for Data Conversion
	Appendix B. Acknowledgments
	Appendix C. Contributors
	Appendix D. Changes from draft-yang-i2nsf-security-policy-translation-11
	Authors' Addresses

