
Network Working Group A. Ivanov
Internet-Draft D. Spence
Intended status: Informational S. Saxena
Expires: August 22, 2018 T. Nadeau
 Brocade
 February 18, 2018

Application of YANG Modeling to JSON RPCs for Interoperability Purposes
draft-yang-json-rpc-02

Abstract

 This document specifies the application of YANG modeling language to
 JSON RPC 2.0 for the purposes of achieving interoperability between
 implementations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 22, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Ivanov, et al. Expires August 22, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/draft-yang-json-rpc-02
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft 0 February 2018

Table of Contents

1. Introduction . 2
2. Terminology and Notation 3
3. Modeling of JSON RPC 2.0 Interfaces in YANG 3
3.1. Optionality . 5
3.2. Default values . 7
3.3. The idl:value-type YANG Extension 8
3.4. Modeling of JSON RPC 2.0 RPCs 9
3.4.1. Representing results 9

 3.4.2. Modeling and expressing in JSON of data structures fully
 described by model 10
 3.4.3. Modeling and expressing in JSON of data structures with
 elements outside model scope 12

3.5. Modeling of JSON RPC 2.0 Notifications 15
 3.5.1. Modeling and expressing in JSON of notifications with
 fully modeled data payload 15
 3.5.2. Modeling and expressing in JSON of notifications with
 data payload outside model scope 16

3.6. Addressing Modeled Data - Yang Paths 17
3.6.1. Addressing anything but an individual list element . . . 18
3.6.2. Addressing an individual list element 18
3.6.3. Addressing inside an individual list element 18
4. Normative References . 19

 Authors' Addresses . 20

1. Introduction

 A key use case for JSON encoding of data is the transfer and
 interchange of such data between applications. While some of the
 semantics desribed here will be of value for any such interchange,
 this document will concentrate on two specific use cases - Remote
 Procedure Calls (RPCs) and Notifications. There is a standard
 specification for using JSON in both - it is the JSON RPC 2.0
 specification maintained by JSON RPC working group at jsonrpc.org
 [JSONRPC20]. This specification uses JSON as described in [RFC7159]
 in messages transported over a variety of transports. For example -
 HTTP [RFC7230], 0MQ [ZEROMQ], AMQP [AMQP] etc.

 The JSON RPC 2.0 specification [JSONRPC20] has a number of well known
 shortcomings. There are no means of describing and documenting a
 particular API method. There are no means to specify how to
 interpret data received via an RPC call or notification and what data
 structures should be generated to accommodate the data. Most
 implementers have concentrated on the loss of data structure
 information as a key deficiency, while ignoring the lack of API
 description which is the actual root cause. This has led them to
 encode information about the data structures into bespoke extensions

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230

Ivanov, et al. Expires August 22, 2018 [Page 2]

Internet-Draft 0 February 2018

 also known as class hints and/or use of special "magic" method
 notations as implemented in [JABSORB], [PJ0MQ], etc. These break the
 core assumption of JSON being a language agnostic interchange format
 and result in a plethora of subtly incompatible JSON RPC
 implementations.

 This document proposes an alternative to class hints and other non-
 interoperable extensions through the use of "JSON Encoding of Data
 Modeled with YANG" RFC [RFC7951] and YANG modeling of JSON RPCs.

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 YANG is the data modeling language as described in [RFC7950], version
 1.1

 JSON encoding of YANG modeled data structures is described in
 [RFC7951]

 JSON RPC 2.0 is the Remote Procedure Call and Notifications encoding
 as described in [JSONRPC20]

3. Modeling of JSON RPC 2.0 Interfaces in YANG

 All RPCs in a particular API must be described as RPC statements in
 its corresponding YANG model in accordance to the rules of RFC7950

[RFC7950], section 7.14, which is expanded to cover JSON RPCs in
 addition to NETCONF RPCs. The RPC arguments and results must comply
 to subsections 7.14.2 and 7.14.3 of RFC7950 [RFC7950].

 All Notifications provided by a particular API must be described as
 notification statements in its corresponding YANG model in accordance
 to the rules of RFC7950 [RFC7950], section 7.15 which is expanded to
 cover JSON Notifications in addition to NETCONF ones. The JSON
 Notification payload and substatements must comply to subsection

7.15.1 of RFC7950 [RFC7950].

 While all applicable YANG statements as specified by RFC7950
 [RFC7950] are supported and acceptable in both RPCs and
 notifications, the use of must, when, leafref and identityref is
 discouraged to improve interoperability with implementations which
 use simplistic serialization/deserialization to parse the messages
 and do not have a fully featured YANG interpreter. The internal
 mapping of an RPC name to a function call is an implementation detail
 outside the scope of this document. RPC method names containing

https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950#section-7.14
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950#section-7.15
https://datatracker.ietf.org/doc/html/rfc7950#section-7.15.1
https://datatracker.ietf.org/doc/html/rfc7950#section-7.15.1
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950

Ivanov, et al. Expires August 22, 2018 [Page 3]

Internet-Draft 0 February 2018

 characters invalid as a part of a function name in most computing
 languages are discouraged, but not prohibited.

 All mappings from application data types to JSON representation types
 MUST use the conventions defined in "JSON Encoding of Data Modeled
 with YANG" [RFC7951]. The JSON message payload must use the I-JSON
 profile according to [RFC7493].

 If an application does not wish to specify the model constraints for
 a particular RPC argument or Notification payload it must specify the
 corresponding element as anydata in the YANG model.

 JSON RPC Specification [JSONRPC20] mandates that positional arguments
 are always represented as a list even if an RPC call or Notification
 has a single argument.

 For example, if an RPC is modelled as:

 grouping arg-uri {
 leaf uri {
 description "A test URI.";
 mandatory true;
 type inet:uri;
 }
 }
 rpc test-uri {
 description "A simple example RPC.";
 input {
 uses arg-uri;
 }
 }

 Figure 1

 The following payload is invalid - it violates the JSON RPC
 Specification [JSONRPC20]:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-uri",
 "params": "http://www.ietf.org"
 }

 Figure 2

 The correct parameter encoding is as follows:

https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc7493

Ivanov, et al. Expires August 22, 2018 [Page 4]

Internet-Draft 0 February 2018

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-uri",
 "params": [
 "http://www.ietf.org"
]
 }

 Figure 3

 or

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-uri",
 "params": {
 "uri": "http://www.ietf.org"
 }
 }

 Figure 4

 YANG models describing different RPCs and Notifications may be
 grouped together into a YANG module to describe an API or a set of
 APIs.

3.1. Optionality

 Omitted optional parameters for the positional form of JSON RPC 2.0
 [JSONRPC20] must be specified as null elements in the argument array.

 For example, both arguments in the test-elements RPC are optional.

 rpc test-elements {
 description "A simple example RPC.";
 input {
 leaf element1 {
 type string;
 }
 leaf element2 {
 type string;
 }
 }
 }

 Figure 5

Ivanov, et al. Expires August 22, 2018 [Page 5]

Internet-Draft 0 February 2018

 If only element2 is supplied, the resulting JSON RPC payload using
 the positional form should be:

 {
 "id": 3,
 "jsonrpc": "2.0",
 "method": "test-elements",
 "params": [
 null,
 "element2 value"
]
 }

 Figure 6

 The named form should be:

 {
 "jsonrpc":"2.0",
 "id":3,
 "method":"test-elements",
 "params":{
 "element2": "element2 value"
 }
 }

 Figure 7

 While using the named form can allow an implementation to
 differentiate between a parameter being supplied and a parameter
 being null, implementers should not rely on this difference in
 semantics as most computing language compilers and runtimes will
 obscure this difference from the caller.

 Trailing nulls resulting from missing parameters or an implementation
 supplying a null argument MAY be stripped from a call by position
 payload. The following encoding:

Ivanov, et al. Expires August 22, 2018 [Page 6]

Internet-Draft 0 February 2018

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-elements",
 "params": [
 "element1 value",
 null
]
 }

 Figure 8

 can also be expressed as:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-elements",
 "params": [
 "element1 value"
]
 }

 Figure 9

3.2. Default values

 The receiving implementation MUST supply any default values as
 specified by the model if the sender has omitted them as described in

RFC7950 [RFC7950], section 7.14.2 and 7.14.3. Thus, in a JSON RPC
 the caller may omit supplying a default value. The callee (the
 server) implementation is obliged to fill it in prior to passing the
 data to an application. For example, for the following model:

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950#section-7.14.2

Ivanov, et al. Expires August 22, 2018 [Page 7]

Internet-Draft 0 February 2018

 rpc test-htg-2 {
 description "A simple example RPC.";
 input {
 leaf question {
 type string;
 default "Meaning of the Universe";
 }
 }
 output {
 leaf answer {
 type int;
 default 42;
 }
 }

 Figure 10

 The test-htg RPC can be invoked with the following payload:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-htg-2",
 "params": []
 }

 Figure 11

 The receiver implementation MUST fill the value of "Meaning of the
 Universe" before passing the parsed payload to the application. The
 application is not obliged to supply the answer of 42. If the
 application does not supply an answer, the model aware JSON RPC2.0
 implementation must add it to the payload prior to it being sent to
 the caller as an RPC result.

3.3. The idl:value-type YANG Extension

 This document standardizes a new YANG extension idl:value-type
 compliant to [RFC7950]. This extension specifies additional metadata
 necessary for a source code generator to produce the correct source
 code mapping for a specific YANG type. The value provided by the
 idl:value-type extension is a type hint for the generator and may
 refine or override the standard type mapping rules specified in "JSON
 Encoding of Data Modeled with YANG" [RFC7951]. For example:

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951

Ivanov, et al. Expires August 22, 2018 [Page 8]

Internet-Draft 0 February 2018

 idl:value-type python {
 idl:implemented-by bsct.enforce.value.TypeBoolean;
 }

 Figure 12

3.4. Modeling of JSON RPC 2.0 RPCs

3.4.1. Representing results

 In order to simplify integration to existing codebase, RPC calls
 returning a single result MUST emit a single value for the params key
 in the RPC message instead of a an array consisting of a one element
 for the positional form of JSON RPC 2.0 for the cases where it is
 non-ambiguous, namely lists, leaf-lists and all primitive types.

 For example, invoking the test-1 RPC in the following example

 rpc test-1 {
 description "A simple example RPC.";
 output {
 leaf answer {
 type int;
 }
 }

 Figure 13

 will produce a simplified result:

 {
 "id": 3,
 "jsonrpc": "2.0",
 "result": 42
 }

 Figure 14

 This simplification is ambiguous for anydata and container result
 types. If an RPC call uses the positional form to represent a
 container or anydata return value, it MUST represent it as an array
 with a single element equal to the result value.

 For example, invoking the test-2 RPC in the following example

Ivanov, et al. Expires August 22, 2018 [Page 9]

Internet-Draft 0 February 2018

 rpc test-2 {
 description "A simple example RPC.";
 output {
 leaf answer {
 type anydata;
 }
 }

 Figure 15

 will produce a verbose result:

 {
 "id": 3,
 "jsonrpc": "2.0",
 "result": [
 {"key":"value"}
]
 }

 Figure 16

3.4.2. Modeling and expressing in JSON of data structures fully
 described by model

 All data structures for which the model is known should be fully
 described in YANG as specified in [RFC7950]. The test-uri RPC in the
 following example is expecting a uri argument. The uri argument is
 fully described and modeled:

https://datatracker.ietf.org/doc/html/rfc7950

Ivanov, et al. Expires August 22, 2018 [Page 10]

Internet-Draft 0 February 2018

 grouping arg-uri {
 leaf uri {
 description "A test URI.";
 mandatory true;
 type inet:uri;
 }
 }
 rpc test-uri {
 description "A simple example RPC.";
 input {
 uses arg-uri;
 }
 output {
 leaf passes {
 type boolean;
 }
 }
 }

 Figure 17

 The output is a boolean signifying if the test has passed or has
 failed. For a URI value of "http://www.ietf.org", this corresponds
 to the following JSON RPC request payload when using positional
 arguments:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-uri",
 "params": ["http://www.ietf.org"]
 }

 Figure 18

 Alternatively, when using named arguments

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-uri",
 "params": {
 "uri": "http://www.ietf.org"
 }
 }

 Figure 19

Ivanov, et al. Expires August 22, 2018 [Page 11]

Internet-Draft 0 February 2018

 If we assume that the remote procedure call with an argument of
 "http://www.ietf.org" returns True, we will have the following
 result. Positional form:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "result": true
 }

 Figure 20

 Named form:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "result": {
 "passes": true
 }
 }

 Figure 21

3.4.3. Modeling and expressing in JSON of data structures with elements
 outside model scope

 Structures which the implementer does not wish to model in YANG (from
 here on referred to as "opaque") are specified as anydata. For
 example the test-object RPC expects an object argument and returns an
 object output. The argument and the return are opaque to the model
 and may contain nested structures or structures which the implementer
 has decided to keep outside the scope of the model.

Ivanov, et al. Expires August 22, 2018 [Page 12]

Internet-Draft 0 February 2018

 grouping arg-object {
 leaf object {
 description "A test Object.";
 mandatory true;
 type anydata;
 }
 }
 rpc test-object {
 description "A simple example RPC.";
 input {
 uses arg-object;
 }
 output {
 uses arg-object;
 }
 }

 Figure 22

 Objects opaque to the model as in this example are encoded as JSON
 using the rules for anydata in [RFC7951]

 For an object value of {"key":"value"}, this corresponds to the
 following JSON RPC request payload when using positional arguments:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-object",
 "params":[
 {"key": "value"}
]
 }

 Figure 23

 Alternatively, when using named arguments

https://datatracker.ietf.org/doc/html/rfc7951

Ivanov, et al. Expires August 22, 2018 [Page 13]

Internet-Draft 0 February 2018

 {
 "jsonrpc": "2.0",
 "id": 3,
 "method": "test-object",
 "params": {
 "object":{
 "key": "value"
 }
 }
 }

 Figure 24

 If we assume that the procedure call returns the following test-
 object ["eeny", "meeny", "miny", "moe"], we will have the following
 result. Positional form:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "result": [
 "eeny",
 "meeny",
 "miny",
 "moe"
]
 }

 Figure 25

 Named form:

 {
 "jsonrpc": "2.0",
 "id": 3,
 "result": {
 "object": [
 "eeny",
 "meeny",
 "miny",
 "moe"
]
 }
 }

 Figure 26

Ivanov, et al. Expires August 22, 2018 [Page 14]

Internet-Draft 0 February 2018

3.5. Modeling of JSON RPC 2.0 Notifications

3.5.1. Modeling and expressing in JSON of notifications with fully
 modeled data payload

 All data structures for which the model is known should be fully
 described in YANG as specified in [RFC7950]. The testing
 Notification in the following example contains a uri leaf. The
 notification server issuing the notification is expected to supply
 the value and the recipients will expect the value for this leaf:

 grouping arg-uri {
 leaf uri {
 description "A test URI.";
 mandatory true;
 type inet:uri;
 }
 }
 notification notify-uri {
 description "A simple notification with URI payload.";
 uses arg-uri;
 }

 Figure 27

 This results in the following notification payloads. Positional
 arguments:

 {
 "jsonrpc": "2.0",
 "method": "notify-uri",
 "params": [
 "http://www.ietf.org"
]
 }

 Figure 28

 Note - there is no id member in a notification. Alternatively, when
 using named arguments

https://datatracker.ietf.org/doc/html/rfc7950

Ivanov, et al. Expires August 22, 2018 [Page 15]

Internet-Draft 0 February 2018

 {
 "jsonrpc":"2.0",
 "method": "notify-uri",
 "params": {
 "uri": "http://www.ietf.org"
 }
 }

 Figure 29

3.5.2. Modeling and expressing in JSON of notifications with data
 payload outside model scope

 Structures which the implementer does not wish to model in YANG and
 pass as object are specified as anydata. For example the notify-
 object notification expects an object argument as its object leaf.

 grouping arg-object {
 leaf object {
 description "A test Object.";
 mandatory true;
 type anydata;
 }
 }
 notification notify-object {
 description "A simple Notification with an
 opaque object payload.";
 uses arg-object;
 }

 Figure 30

 Objects opaque to the model as in this example are encoded as JSON
 using the rules for anydata in [RFC7951] resulting in the following
 example payloads for the {"key":"value"} object payload:

 {
 "jsonrpc": "2.0",
 "method": "notify-object",
 "params": [
 {
 "key": "value"
 }
]
 }

 Figure 31

https://datatracker.ietf.org/doc/html/rfc7951

Ivanov, et al. Expires August 22, 2018 [Page 16]

Internet-Draft 0 February 2018

 Note - there is no id member in a notification. Alternatively, when
 using named arguments

 {
 "jsonrpc": "2.0",
 "method": "notify-object",
 "params": {
 "object": {
 "key": "value"
 }
 }
 }

 Figure 32

3.6. Addressing Modeled Data - Yang Paths

 When working with structured data in a tree form it is essential to
 be able to address parts of the tree and individual elements. Yang
 uses Instance Identifiers for this purpose. The current normative
 reference for this is section 6.1. of [RFC7951]. It borrows the
 representation from Netconf and represents IIds as an uri path.
 There are issues with this encoding when used in a JSON RPC context:

 o Yang IId is intended only for the purposes of addressing data. It
 does not provide semantics to address RPCs and/or Notifications
 and their argument which are the primary target of this
 specification.

 o The representation in section 6.11 of [RFC7951] does not match
 JSON semantics - it uses URI syntax which requires conversion for
 each addressing operation. This approach has some advantages for
 implementations which support netconf and/or XML in parallel with
 JSON as these have existing URI parsers. It is, however, clearly
 disadvantageous for any non-netconf implementation, because it
 introduces a single "foreign" object type with a non-JSON
 serialization in the middle of a JSON specification.

 The path specification specified in this draft provides a
 representation of paths to address Notification and RPC objects as
 well as paths into data structures. It MUST be explicitly specified
 as an anydata object in any models and is not a 1:1 replacement
 representation for an IId.

https://datatracker.ietf.org/doc/html/rfc7951#section-6.1
https://datatracker.ietf.org/doc/html/rfc7951#section-6.11

Ivanov, et al. Expires August 22, 2018 [Page 17]

Internet-Draft 0 February 2018

3.6.1. Addressing anything but an individual list element

 Containers, leaves, leaf-lists, lists as a whole (everything but an
 individual element in a list) have their Path expressed as:

 {
 "module:top-level-container": {
 "subcontainer":{}
 }
 }

 Figure 33

 The path is represented as a single branch tree structure containing
 nested JSON objects. Each level key is the QName. Path terminates
 in {} to signify what is being addressed.

 Module, revision and namespace qualifiers are optional and can be
 omitted except module qualifier at top level.

3.6.2. Addressing an individual list element

 Individual list elements have their Paths expressed as:

 {
 "module:top-level-container": {
 "list":[{
 "key1":"value1",
 "key2":"value2"
 }]
 }
 }

 Figure 34

 Path is represented as a single branch tree structure containing
 nested JSON objects up to the list level.

 At list level the QName is followed by [] to signify a list. The
 list contains a single object with key-value pairs uniquely
 identifying the list element.

3.6.3. Addressing inside an individual list element

 Individual list elements have their Paths expressed as:

Ivanov, et al. Expires August 22, 2018 [Page 18]

Internet-Draft 0 February 2018

 {
 "module:top-level-container": {
 "list":[{
 "key1":"value1",
 "key2":"value2",
 "list-element": {}
 }]
 }
 }

 Figure 35

 This form is obtained by adding a path as described in Section 3.6.1
 section to the list element IId representation described in

Section 3.6.2.

4. Normative References

 [AMQP] "AMQP Protocol Specification",
 <https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf>.

 [JABSORB] "Jabsorb JSON RPC Orb and Broker",
 <http://www.jabsorb.org/>.

 [JSONRPC20]
 Morley, M., "JSON-RPC 2.0 Specification", 2010,
 <http://www.jsonrpc.org/specification>.

 [PJ0MQ] "Python JSON RPC over 0MQ",
 <https://github.com/dwb/jsonrpc2-zeromq-python>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf
http://www.jabsorb.org/
http://www.jsonrpc.org/specification
https://github.com/dwb/jsonrpc2-zeromq-python
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493

Ivanov, et al. Expires August 22, 2018 [Page 19]

Internet-Draft 0 February 2018

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,

 <https://www.rfc-editor.org/info/rfc7951>.

 [ZEROMQ] "Zero MQ", <http://zeromq.org>.

Authors' Addresses

 Anton Ivanov
 Cambridge Greys Limited

 Email: anton.ivanov@cambridgegreys.com

 David Spence
 Inocybe Technologies

 Email: david@roughsketch.co.uk

 Shaleen Saxena
 Lumina Networks Inc.

 Email: shaleen.external@gmail.com

 Tom Nadeau
 Lucid Vision LLC

 Email: tnadeau@lucidvision.com

https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://www.rfc-editor.org/info/rfc7951
http://zeromq.org

Ivanov, et al. Expires August 22, 2018 [Page 20]

