
 Internet Engineering Task Force Lily Yang
 INTERNET DRAFT Intel Corporation
 Expires: August 2001 Markus Hofmann
 Lucent Technologies

 OPES Architecture for Rule Processing and Service Execution
draft-yang-opes-rule-processing-service-execution-00.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document describes specific architectural components of the
 Open Pluggable Edge Service (OPES) framework [1]. It defines the
 functionality of the OPES Administration Server and the OPES Service
 Engine and discusses the interaction with other OPES components. In
 particular, the document defines the operational flow for
 downloading rules and proxylets and the content flow for handling
 web requests and responses. A list of protocols and interfaces to be
 specified within the OPES framework is derived from the discussion.

Table of Contents

 Status of this Memo..1
 Abstract...1
 Table of Contents..1

1. Introduction..3
2. Terminology...3
3. Basic Assumptions...5
3.1. Administrative Domains..5
3.2. Ownership and Deployment Scenarios............................6
3.3. Types of OPES devices...6

https://datatracker.ietf.org/doc/html/draft-yang-opes-rule-processing-service-execution-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

3.4. Physical Boundary between OPES Admin Server and OPES Device...6
4. Loading Proxylets into OPES Devices.............................7

Yang, Hofmann [Page 1]

Internet Draft OPES Architecture February 2001

5. Configuration Path: Getting Rules and Proxylets.................7
5.1. Rule Loading..7
5.1.1. Description...7
5.1.2. Protocols and Interfaces required for Rule Loading..........7
5.2. Proxylet Loading..8
5.2.1. Description...8
5.2.2. Protocols and Interfaces required for Proxylet Loading......8
6. Content Path: Rule Processing and Service Execution.............9
6.1. Data Flow...9
6.2. Rule Parsing and Compilation.................................10
6.3. Rule Processing and Service Execution........................10
6.4. Protocols and Interfaces required for Rule Processing........11
7. Accounting and Management......................................11
8. Security Considerations..11
9. Intellectual Property..11
10. Acknowledgments...12
11. References..12
12. Disclaimer..12
13. Author's Address..12
14. Full Copyright Statement......................................12

Yang, Hofmann Expires August 2001 [Page 2]

Internet Draft OPES Architecture February 2001

1. Introduction

 The Open Pluggable Edge Services (OPES) framework described in [1]
 enables the creation and the provisioning of services executed on
 application data by participating transit intermediaries. Figure 1
 shows a diagram of the main components of the framework, with two
 elements added û the ôProxylet Vendorö and the ôRule Ownerö. The
 Proxylet Vendor is the party providing the proxylet code to be
 executed on the OPES Engine or the Callout Server. The Proxylet
 Vendor is not necessarily the developer of the proxylet code (e.g.
 it can also be a reseller). Rule Owner and Proxylet Vendor represent
 two important trust parties in the overall framework.

 +--------------+ +---------------+
 | Rule | | Proxylet |
 | Owner | | Vendor |
 +--------------+ +---------------+
 A | | A
 | | | |
 | V V |
 +----------------------+
 | OPES |
 | Admin Server |
 +----------------------+
 A |
 | |
 | V
 +----------------------+
 | OPES |
 +-----------+ | Engine | +-----------+
 | User |----->|----------------------|----->| Content |
 | Agent |<-----| |<-----| Server |
 +-----------+ | Intermediary | +-----------+
 +----------------------+
 A |
 | |
 | V
 +----------------------+
 | Callout |
 | Server |
 +----------------------+

 Figure 1 - OPES System Architecture Components

2. Terminology

 The Terminology section of [1] provides a list of terms, many of

 them being used throughout this document. Additional terms are
 specified in this section.

 Intermediary

Yang, Hofmann Expires August 2001 [Page 3]

Internet Draft OPES Architecture February 2001

 An intermediary is a device that is located in the middle of the
 client-to-server transit path and has a basic understanding of
 the application protocol. Caches are probably the most commonly
 known and used intermediaries today.

 OPES Engine
 An OPES engine allows new services to be defined and executed on
 intermediaries according to the policies set up by an OPES admin
 server and the rules specified by rule owners (e.g. content
 providers, user agents, or access providers). An OPES Engine
 contains a message parser, a rule processor and a service
 execution component that executes proxylets or makes calls to a
 basic proxylet library or a remote call-out server (e.g. using
 (ICAP).

 OPES Device
 An intermediary integrating an OPES engine is called OPES device.
 We generally use OPES device to refer to a physical intermediary
 that has an OPES engine built in it.

 Proxylet
 A proxylet is a piece of code that runs on the (local) OPES
 device and provides a service on the transit requests or
 responses. For example, a proxylet could be a piece of JAVA code
 that does a simple URL filtering û it allows only traffic to a
 short list of work-related sites during work hours.

 Proxylet Library
 Proxylet library is a library provided to support some basic
 functionality to the proxylet code programmers. The library also
 provides a set of commonly useful services that every OPES device
 would need, like simple traffic accounting functions etc.

 OPES Service
 An OPES service is any service that can be provided within the
 OPES framework on behalf of content providers, access providers
 or end users. The service is provided within the OPES
 architecture by executing code either locally on an OPES device
 or remotely on other service engines. Currently the services
 supported by OPES are either proxylets, calls to the proxylet
 library, or remote procedure calls like ICAP.

 OPES Admin Server
 An OPES admin server performs downloading of proxylets and rules
 from other parties at a higher trust level, authorization and
 authentication for services, the collection of accounting and log
 data, and other administrative tasks for the OPES devices.

 Rule Owner
 The rule owner is the party that authors the rule module. The
 rules specify which services have to be executed under what
 condition. The rule owner can be one of the three types û content
 providers, client, and access providers. There are certain

Yang, Hofmann Expires August 2001 [Page 4]

Internet Draft OPES Architecture February 2001

 constraints as to which services the rule modules from a
 particular owner can initiate û the rule owner can only instruct
 on how services are invoked on its behalf. For example, a rule
 module provided by a content provider should only affect requests
 for content owned by the same content provider; and a rule module
 from a client agent should only affect requests from that client.
 If the rule owner is an access provider, it usually is the same
 party that owns the OPES device and hence there is no similar
 constraint at the rule module level for access providers.

 Proxylet Vendor
 Proxylet vendor is the party that provides the proxylet code to
 run in the OPES engine.

 Proxylet Meta-Data
 Proxylet meta-data describes the characteristics, features and
 requirements associated with a proxylet. Examples for such meta-
 data are the name of the proxylet, its functionality, its version
 number, where to get it, license related information, execution
 environments, etc. The meta-data can physically be separated from
 the proxylet code, but it must be possible to uniquely associate
 meta-data with proxylets and vice versa.

 Content Path
 The content path describes the path that content requests and
 responses take through the network. Typically, content requests
 and responses flow between a client, an OPES device, a content
 server and optionally a remote call-out server.

 Configuration Path
 Rules and proxylet code (and its associated meta-data) is
 downloaded into the OPES admin server from rule owners and
 proxylet vendors, respectively, and then distributed to the OPES
 devices. This flow is referred to as configuration path, as the
 data being transferred along this path is used to configure the
 OPES devices for providing the requested services.

3. Basic Assumptions

 The OPES architecture shown in Figure 1 is based on certain
 assumptions. These assumptions are adopted in this document and have
 impact on the outlined architecture for rule processing and service
 execution. We discuss these assumptions, having in mind that most of
 them are still open for debate.

3.1. Administrative Domains

 It is assumed that each of the components in Figure 1 may belong to
 a different administrative domain, except for the OPES admin server

 and OPES devices, which are assumed to belong to the same
 administrative domain. Note, however, that the OPES admin server and
 OPES devices may be manufactured by different vendors.

Yang, Hofmann Expires August 2001 [Page 5]

Internet Draft OPES Architecture February 2001

3.2. Ownership and Deployment Scenarios

 The general issue of OPES ownership is addressed in [2]. In summary,
 the OPES service is likely to be deployed by either the access
 provider (e.g. ISP or enterprise) on the behalf of their users (i.e.
 subscribers), or the content provider (e.g. surrogate proxies in
 front of the origin server farm, or edge servers in a CDN). In
 general, two OPES service deployment scenarios seem to be most
 typical:

 o ISP scenario: One or multiple OPES devices deployed in the
 access providerÆs network. ISPs are more likely to be
 interested in value-added services that they can resell to
 their subscribers and in services that would simplify their
 general administrative tasks.

 o CDN scenario: CDN providers can deploy OPES engines on
 surrogates that provide CDN services on behalf of content
 providers (i.e. the customers of the CDN). CDN providers are
 likely to be more interested in services that they can offer to
 content providers, in particular to enable secure and
 profitable distribution of valuable content.

 Other scenarios are not excluded, but the above-mentioned scenarios
 seem to be most likely and are the focus of this document. In
 particular, it is assumed that a single OPES admin server should be
 able to support multiple OPES devices, all being in the same
 administrative domain. We do not consider a scenario in which a
 single OPES device is controlled by multiple OPES admin servers.
 This does not exclude scenarios in which a provider deploys multiple
 OPES admin servers for fail-over.

3.3. Types of OPES devices

 In principle, an OPES Engine can be implemented on top of any
 intermediary, as long as it meets certain requirements (e.g.
 understanding the required set of protocols and/or MIME types).

 Caching proxies are probably the most commonly thought-of
 intermediaries when talking about OPES devices. Although their
 built-in caching capability can provide additional benefits, the
 OPES architecture does not depend on it. Other types of
 intermediaries, such as web switches or firewalls, can also be used
 as a basis for OPES devices.

3.4. Physical Boundary between OPES Admin Server and OPES Device

 The OPES admin server and the OPES device represent separate logical
 components in the OPES architecture. While the OPES admin server is

 off the content path, the OPES device is placed right in the middle
 of the content flow. However, no assumption is made regarding the
 physical boundary between these two functional components. In
 particular, the following physical configurations are possible:

Yang, Hofmann Expires August 2001 [Page 6]

Internet Draft OPES Architecture February 2001

 o Appliance Model: The OPES admin server and the OPES engine/OPES
 device are built into a single appliance.

 o Toolbox Model: The OPES admin server and the OPES device are
 physically separate boxes. This toolbox approach seems to be
 beneficial in large-scale CDN environments, where a few admin
 servers can administer a large number of OPES devices.

4. Loading Proxylets into OPES Devices

 In general, there are two choices in loading proxylets into OPES
 devices. Proxylets could be requested and loaded dynamically
 together with the content, or they could be loaded and verified a-
 priori, i.e. independent from the content.

 In this document, we explicitly assume that proxylets are NOT
 requested and loaded dynamically along with the content. Instead,
 they are loaded a-priori and independent from the content. In other
 words, the configuration path is different from the content path. It
 is assumed that rules and proxylets are loaded into the OPES admin
 server via a separate mechanism before they are transmitted to the
 OPES device.

5. Configuration Path: Getting Rules and Proxylets

 This section addresses issues along the configuration path and
 identifies protocols and APIs to be specified by OPES.

5.1. Rule Loading

5.1.1. Description

 Rule owners (e.g. content providers, access providers, or users)
 specify what kind of services should be invoked under what
 conditions. They specify these rules using an open, standardized
 rule specification language such as IRML [3]. It is assumed that the
 rule owner has a certain trust relationship and/or business
 arrangement with the owner of the targeted OPES devices.

 After the rules have been specified by the rule owner using IRML,
 they can be loaded into the OPES admin server via any secure file
 transfer mechanism (e.g. secure file copy, email with PGP, etc.).
 Once the IRML rule is loaded into and authenticated by the OPES
 admin server, the OPES admin server transmits the IRML rule module
 to the OPES devices. As above, any secure standard transfer
 mechanism can be used here.

5.1.2. Protocols and Interfaces required for Rule Loading

 o An open and standardized language for rule specification is
 needed. A standard format allows exchange of rule sets between
 different parties and different vendor appliances. See [3] for

Yang, Hofmann Expires August 2001 [Page 7]

Internet Draft OPES Architecture February 2001

 a work-in-progress specification on the Intermediary Rule
 Markup Language (IRML).

 o Although no specific transfer mechanism is required to ship
 rules from the rule owner to the OPES admin server and further
 to the OPES devices, it seems favorable to agree on a specific
 existing transfer mechanism within the OPES framework in order
 to simplify vendor interoperability.

5.2. Proxylet Loading

5.2.1. Description

 A proxylet is software code to be executed on an OPES device to
 provide a specific service on the same OPES device. Similar to
 rules, the proxylet is downloaded from the proxylet vendor or
 proxylet owner to OPES admin servers. In addition to the
 authentication process, the OPES admin server also wants to perform
 proxylet ôsandboxö validation to make sure that the proxylet
 conforms to local policies (e.g. what resource it is allowed to
 access, etc.). Only after successful validation, the proxylet code
 would be loaded into the targeted OPES devices and be triggered by
 the rules.

 Since a proxylet itself is a piece of binary code, it is necessary
 to have meta-data associated that describes the important features
 and requirements of the proxylet. For example, it is necessary to
 learn about the required execution environment (e.g. operating
 system, runtime interpreters, etc.) before loading a proxylet code
 into an OPES device. It might also be possible that a proxylet owner
 wants to specify a policy about which rule owners are allowed to
 call the proxylet (e.g. only rule modules from abc.com and xyz.com
 are allowed to call this proxylet, or any rule modules can all this
 proxylet, etc.). It would also be helpful to indicate the message
 format that the proxylet can handle (e.g. an video adaptation
 proxylet might require the underlying video stream to be in MPEG).
 This meta-data information has to be provided in a standardized
 format, so that different parties (e.g. rule owners, OPES device
 managers etc.) can access it. The meta-data can be kept separately,
 but it must be possible to associate meta-data with the correct
 proxylet and vice versa.

 Since meta-data can be kept separate from the proxylet code, a
 standard API for querying meta-data of proxylets is required.

5.2.2. Protocols and Interfaces required for Proxylet Loading

 o A standard format for proxylet meta-data. See [4] for a work-
 in-progress specification on the OPES Meta-data Markup Language

 (OMML).

 o An API for the standard library that can be used by proxylet
 developers.

Yang, Hofmann Expires August 2001 [Page 8]

Internet Draft OPES Architecture February 2001

 o An API for a base class proxylet or a standard library that
 provides fundamental functions, such as querying meta-data of
 installed proxylets.

 o A protocol for proxylet loading between proxylet vendor and
 OPES admin server if automation of the loading (i.e., no human
 involved) is desirable (see also comments above on loading
 rules).

6. Content Path: Rule Processing and Service Execution

 This section describes how messages (i.e. client requests and
 responses) flow through the OPES service engine.

6.1. Data Flow

 Figure 2 illustrates the data flow within an OPES device.

 | rule module A
 V |
 +--------------+ |
 | Rule Parser | |[Rule Parsing and
 | & Validation | | compilation]
 +--------------+ |
 | |
 V |
 +--------------+ |
 | Rule | |
 | Base | V
 +--------------+ ->+--------+
 | / |proxylet|--+
 | / +--------+ |
 | / A |
 V / | |
 +---------+ +----------+ +---------+/ V |
 -->| Message |--->| Rule |-->| Service |------->+--------+ |
 | Parser | A | Processor| |Execution|\ |library |--+--+
 +---------+ | +----------+ +---------+ \ +--------+ | |
 | \ | | |
 | \ | |
 | \ | |
 | ->+--------+ | |
 | | ICAP |--+ |
 | +--------+ |
 | |
 | (Message properties modified) |
 +---+

 <-->
 [Rule Processing and Service Execution]

 Figure 2 - Data Flow within an OPES Device

Yang, Hofmann Expires August 2001 [Page 9]

Internet Draft OPES Architecture February 2001

 Figure 2 illustrates the separation of rule parsing and compilation
 from rule processing and service execution. Rule parsing and
 compilation is off the content path and refers to the process of
 generating an efficient internal representation of the rules (i.e.
 the rule base). Rule processing and service execution is on the
 content path invoking OPES services on messages as defined by the
 rules.

6.2. Rule Parsing and Compilation

 In the rule parsing and compilation process, the rule module file is
 loaded (from OPES admin server) to the OPES device in IRML format,
 and it is parsed, validated and inserted into the rule base. The
 rule base is the ultimate output for the rule parsing and
 compilation process. It is an internal representation of all the
 rules accepted into the OPES rule engine. This representation is
 internal to the implementation of the OPES service engine.

 A rule can reference a proxylet, a call to a proxylet library, or a
 remote callout service like ICAP as its action. So in order to
 validate a rule, the corresponding service (i.e. action) referenced
 by the rule must exist (either locally for proxylet and library, or
 remotely for ICAP). For local proxylet code, that means the proxylet
 must have passed the validation at the OPES admin server and have
 been loaded onto the OPES device.

6.3. Rule Processing and Service Execution

 In the rule processing and service execution process, value-added
 services are invoked according to the rules in the rule base.

 First, the Message Parser parses the incoming user requests and
 server responses and feed the relevant message properties (like HTTP
 headers for HTTP) into Rule Processor. This step might be optimized
 by looking at the already compiled rule base to find out what
 headers are relevant so only relevant headers are fed into the rule
 processor. The rule processor takes one rule out of the rule base
 at a time and attempts to match the relevant properties against the
 regular expression pattern specified by the rule. If a match is
 found, an action is fired. The Service Execution component binds the
 action element in the IRML rule [3] with a proxylet, a call to the
 proxylet library, or to the ICAP client for invoking a remote
 callout service. When the action is completed, the control is back
 to the OPES engine with a set of possibly modified message
 properties. The modified message properties are then fed back to the
 rule processor again for the next rule in the rule base. Infinite
 loop is avoided because each rule in the rule base is checked once
 and only once per request or response.

 The Message Parser usually is provided as a base functionality of
 the intermediary. A standardized API between the Message Parser and
 the rule processor would help facilitate easy implementation of OPES

Yang, Hofmann Expires August 2001 [Page 10]

Internet Draft OPES Architecture February 2001

 engine over a variety of different intermediary devices from
 different vendors.

6.4. Protocols and Interfaces required for Rule Processing

 o It would be desirable to have a standard API to the message
 parser allowing for standardized access to message properties.

7. Accounting and Management

 The OPES admin server has to collect information from OPES devices
 in order to perform accounting and billing services and to provide
 statistics for management purposes. (In principle, accounting and
 billing can also be done on a separate component, but for simplicity
 of this document, we consider this functionality to be integrated
 into the OPES admin server. This assumption does not limit the
 generality of this document).

 OPES devices collect relevant information and save it in a standard
 logging format yet to be specified. The standard log files can be
 transferred to the OPES admin server (or any other accounting and
 billing system) for later processing. The transfer of log files can
 be done via existing file transfer protocols, although a certain
 level of security is desirable.

8. Security Considerations

 Security is an important aspect within the OPES framework and is
 discussed in the section on "Security Considerations" of [1].

9. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11.

 Copies of claims of rights made available for publication and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary

https://datatracker.ietf.org/doc/html/bcp11

 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Yang, Hofmann Expires August 2001 [Page 11]

Internet Draft OPES Architecture February 2001

10. Acknowledgments

 The authors would like to thank all the active participants in the
 OPES mailing list for their thought-provoking discussion. Many of
 the ideas and suggestions have been incorporated into this document.
 In particular, we want to acknowledge the following people for their
 significant contributions: Christian Maciocco, Rob Erickson, Michael
 Condry, and Andre Beck.

11. References

 [1] G. Tomlinson, et al., "Extensible Proxy Services Framework",
 Internet-Draft draft-tomlinson-epsfw-00.txt, work in progress, July
 2000.

 [2] R. Erickson, et al., ôOPES Ownershipö, Internet-Draft, work in
 progress, February 2001.

 [3] A. Beck, M. Hofmann, "IRML: A Rule Specification Language for
 Intermediary Services ", Internet-Draft draft-beck-opes-irml-00.txt,
 work in progress, February 2001.

 [4] C. Maciocco, M. Hofmann, "OMML: OPES Meta-data Markup Language",
 Internet-Draft draft-maciocco-opes-omml-00.txt, work in progress,
 February 2001.

12. Disclaimer

 The views and specification herein are those of the authors and are
 not necessarily those of their employers. The authors and their
 employer specifically disclaim responsibility for any problems
 arising from correct or incorrect implementation or use of this
 specification.

13. Author's Address

 Lily Yang
 Intel Corporation
 MS JF3-206
 2111 NE 25th Ave.
 Hillsboro, OR 97124, USA
 Phone: +1-503-264-8813
 E-Mail: lily.l.yang@intel.com

 Markus Hofmann
 Bell Labs/Lucent Technologies
 Room 4F-513
 101 Crawfords Corner Road
 Holmdel, NJ 07704, USA

https://datatracker.ietf.org/doc/html/draft-tomlinson-epsfw-00.txt
https://datatracker.ietf.org/doc/html/draft-beck-opes-irml-00.txt
https://datatracker.ietf.org/doc/html/draft-maciocco-opes-omml-00.txt

 Phone: +1 732 332 5983
 Email: hofmann@bell-labs.com

14. Full Copyright Statement

Yang, Hofmann Expires August 2001 [Page 12]

Internet Draft OPES Architecture February 2001

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it maybe copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other then
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THEINTERNET ENGINEERING
 TASK FORCE DISCLIAMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMAITON
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTEIS OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Yang, Hofmann Expires August 2001 [Page 13]

