
Workgroup: Network Working Group

Internet-Draft: draft-yaoyang-dutf-01

Published: 25 March 2023

Intended Status: Experimental

Expires: 26 September 2023

Authors: Y. Yang

DUTF, a Dynamic Unicode Transformation Format

Abstract

The Unicode Standard and ISO/IEC 10646 jointly define a coded

character set, referred to as Unicode, which encompasses most of the

world's writing systems. Characters of the same language are

arranged close to each other in the Unicode code table. This memo

proposes a dynamic Unicode transformation format(DUTF). DUTF has the

characteristic of preserving the full US-ASCII range, and uses XOR

to calculate the offset value between the Unicode code point of

adjacent non-ASCII characters in the source string, then encodes the

result as a variable-length sequence of octets.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

2. Definition of DUTF

3. Syntax of DUTF Byte Sequences

4. Versions of the Standards

5. Byte Order Mark (BOM)

6. Examples

7. MIME Registration

8. IANA Considerations

9. Security Considerations

10. Acknowledgements

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Registration for DUTF

Author's Address

1. Introduction

ISO/IEC 10646 [ISO-10646] defines a large character set called the

Universal Character Set (UCS), which encompasses most of the world's

writing systems. The same set of characters is defined by the

Unicode standard [UNICODE], which further defines additional

character properties and other application details of great interest

to implementers. Up to the present time, changes in Unicode and

amendments and additions to ISO/IEC 10646 have tracked each other,

so that the character repertoires and code point assignments have

remained in sync. The relevant standardization committees have

committed to maintain this very useful synchronism.

ISO/IEC 10646 and Unicode define several encoding forms of their

common repertoire: UTF-8, UCS-2, UTF-16, UCS-4 and UTF-32. In an

encoding form, each character is encoded individually and context-

free. In most cases, a string will only contain one or two

languages. Characters that belong to the same language are close to

each other in the Unicode code table. Therefore, the character

encoding can be effectively compressed by exploiting the correlation

between adjacent characters.

DUTF, the object of this memo, has the capability to preserve the

full US-ASCII [US-ASCII] range. For characters outside the US-ASCII

range, DUTF calculates the offset value between adjacent characters

in the source string using XOR, and then encodes the offset value as

a variable-length sequence of octets. The number and value of octets

depend on the Unicode code point of the current character and the

¶

¶

previous non-ASCII character in the source string. DUTF has the

following characteristics (all values are hexadecimal):

Characters in the range U+0000 to U+007F (US-ASCII repertoire)

are represented as octets with values from 00 to 7F (7-bit US-

ASCII values). As a result, a plain ASCII string is also a valid

DUTF string.

Characters other than ASCII are encoded as multiple octets.

The highest bit of each octet determines whether the next octet

belongs to the same character's encoding sequence. The remaining

7 bits hold the encoded value.

The encoded value of the multi-octets represents the offset value

between the Unicode code point of the current character and the

previous non-ASCII character in the source string.

Converting from DUTF to Unicode can be easily done.

It is easy to find the starting point of each character boundary

in a multi-octet stream.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Definition of DUTF

In DUTF, characters are encoded as sequences of 1 to n octets. For a

single-octet sequence, the highest bit is set to 0 and the remaining

7 bits encode the character number. In sequences of n octets (n>1),

the highest bit of the initial n-1 octets is set to 1, and the

highest bit of the last octet is set to 0, with 7 bits available for

encoding the offset value between the Unicode code point of the

current character and the previous non-ASCII character in the source

string.

Table 1 summarizes the format of these different variable-length

octets. The letter x indicates bits available for encoding bits of

the offset value.

Offset value range(hexadecimal) DUTF octet sequence(binary)

0000 0000-0000 3FFF 1xxxxxxx 0xxxxxxx

0000 4000-001F FFFF 1xxxxxxx 1xxxxxxx 0xxxxxxx

Table 1

¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

¶

¶

¶

Encoding a character to DUTF proceeds as follows:

Determine whether the Unicode code point of the character is

between 00000000 and 0000007F. If it is, the character belongs

to the ASCII range and can be converted to an octet by simply

converting the code point. Otherwise, continue to perform the

following steps.

Use XOR operation to calculate the offset value between the

Unicode code point of the current character and the previous

non-ASCII character in the source string.

Determining the number of octets required based on the offset

value and the conditions in the first column of Table 1.

Prepare the highest bit of each octet as per the second column

of Table 1.

Populate the x-marked bits with the binary representation of

the offset value. Organize the binary representation of the

offset value into groups of 7 bits, padding with zeros on the

left if necessary. Then, starting from the rightmost group, use

each group of 7 bits to replace the 7 x-marked bits of the

corresponding octet in order, from left to right, until all x-

marked bits have been filled in.

Decoding a DUTF character proceeds as follows:

Determine number of octets in the sequence, if it equals 1,

then the current character belongs to the ASCII range, and the

octet value is equal to the Unicode code point of the current

character. Otherwise, continue to perform the following steps.

Initialize a binary number with all bits set to 0. Up to 21

bits may be needed.

Distribute the 7 least significant bits from each octet of the

sequence to the binary number. The first octet of the sequence

corresponds to the 7 least significant bits of the binary

number, the second octet corresponds to the next 7 least

significant bits, and so on, until all bits have been assigned.

The binary number is now equal to the offset value between the

Unicode code point of the current character and the previous

non-ASCII character in the source string.

XOR the offset value with the previous non-ASCII range

character number to obtain the Unicode code point of the

current character.

Implementations of the decoding algorithm above MUST protect against

decoding invalid sequences. For instance, a naive implementation may

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

decode the invalid DUTF sequence 80 00 into the character U+0000.

Decoding invalid sequences may have security consequences or cause

other problems. See Security Considerations (Section 9) below.

3. Syntax of DUTF Byte Sequences

For the convenience of implementors using ABNF, a definition of DUTF

in ABNF syntax is given here.

A DUTF string is a sequence of octets representing a sequence of

Unicode characters. An octet sequence is valid DUTF only if it

matches the following syntax, which is derived from the rules for

encoding DUTF and is expressed in the ABNF of [RFC5234].

4. Versions of the Standards

ISO/IEC 10646 is updated from time to time by publication of

amendments and additional parts; similarly, new versions of the

Unicode standard are published over time. Each new version obsoletes

and replaces the previous one, but implementations, and more

significantly data, are not updated instantly.

In general, the changes amount to adding new characters, which does

not pose particular problems with old data. In 1996, Amendment 5 to

the 1993 edition of ISO/IEC 10646 and Unicode 2.0 moved and expanded

the Korean Hangul block, thereby making any previous data containing

Hangul characters invalid under the new version. Unicode 2.0 has the

same difference from Unicode 1.1. The justification for allowing

such an incompatible change was that there were no major

implementations and no significant amounts of data containing

Hangul. The incident has been dubbed the "Korean mess", and the

relevant committees have pledged to never, ever again make such an

incompatible change (see Unicode Consortium Policies

[UNICODE-POLICIES]).

New versions, and in particular any incompatible changes, have

consequences regarding MIME charset labels, to be discussed in MIME

registration (Section 7).

5. Byte Order Mark (BOM)

The UCS character U+FEFF "ZERO WIDTH NO-BREAK SPACE" is also known

informally as "BYTE ORDER MARK" (abbreviated "BOM"). This character

¶

¶

¶

DUTF-octets = *(DUTF-char)

DUTF-char = DUTF-1 / DUTF-2 / DUTF-3

DUTF-1 = %x00-7F

DUTF-2 = %x81-FF DUTF-tail

DUTF-3 = %x81-FF %x81-FF DUTF-tail

DUTF-tail = %x00-7F

¶

¶

¶

¶

can be used as a genuine "ZERO WIDTH NO-BREAK SPACE" within text,

but the BOM name hints at a second possible usage of the character:

to prepend a U+FEFF character to a stream of UCS characters as a

"signature". A receiver of such a serialized stream may then use the

initial character as a hint that the stream consists of UCS

characters and also to recognize which UCS encoding is involved and,

with encodings having a multi-octet encoding unit, as a way to

recognize the serialization order of the octets. DUTF having a

single-octet encoding unit, this last function is useless. BOM

encoding is not fixed, only at the beginning of the stream, it will

always be encoded as the octal sequence FF FD 03.

It is important to understand that the character U+FEFF appearing at

any position other than the beginning of a stream MUST be

interpreted with the semantics for the zero-width non-breaking

space, and MUST NOT be interpreted as a signature. When interpreted

as a signature, the Unicode standard suggests than an initial U+FEFF

character may be stripped before processing the text. Such stripping

is necessary in some cases (e.g., when concatenating two strings,

because otherwise the resulting string may contain an unintended

"ZERO WIDTH NO-BREAK SPACE" at the connection point), but might

affect an external process at a different layer (such as a digital

signature or a count of the characters) that is relying on the

presence of all characters in the stream. It is therefore

RECOMMENDED to avoid stripping an initial U+FEFF interpreted as a

signature without a good reason, to ignore it instead of stripping

it when appropriate (such as for display) and to strip it only when

really necessary.

U+FEFF in the first position of a stream MAY be interpreted as a

zero-width non-breaking space, and is not always a signature. In an

attempt at diminishing this uncertainty, Unicode 3.2 adds a new

character, U+2060 "WORD JOINER", with exactly the same semantics and

usage as U+FEFF except for the signature function, and strongly

recommends its exclusive use for expressing word-joining semantics.

Eventually, following this recommendation will make it all but

certain that any initial U+FEFF is a signature, not an intended

"ZERO WIDTH NO-BREAK SPACE".

In the meantime, the uncertainty unfortunately remains and may

affect Internet protocols. Protocol specifications MAY restrict

usage of U+FEFF as a signature in order to reduce or eliminate the

potential ill effects of this uncertainty. In the interest of

striking a balance between the advantages (reduction of uncertainty)

and drawbacks (loss of the signature function) of such restrictions,

it is useful to distinguish a few cases:

A protocol SHOULD forbid use of U+FEFF as a signature for those

textual protocol elements that the protocol mandates to be always

¶

¶

¶

¶

*

DUTF, the signature function being totally useless in those

cases.

A protocol SHOULD also forbid use of U+FEFF as a signature for

those textual protocol elements for which the protocol provides

character encoding identification mechanisms, when it is expected

that implementations of the protocol will be in a position to

always use the mechanisms properly. This will be the case when

the protocol elements are maintained tightly under the control of

the implementation from the time of their creation to the time of

their (properly labeled) transmission.

A protocol SHOULD NOT forbid use of U+FEFF as a signature for

those textual protocol elements for which the protocol does not

provide character encoding identification mechanisms, when a ban

would be unenforceable, or when it is expected that

implementations of the protocol will not be in a position to

always use the mechanisms properly. The latter two cases are

likely to occur with larger protocol elements such as MIME

entities, especially when implementations of the protocol will

obtain such entities from file systems, from protocols that do

not have encoding identification mechanisms for payloads (such as

FTP) or from other protocols that do not guarantee proper

identification of character encoding (such as HTTP).

When a protocol forbids use of U+FEFF as a signature for a certain

protocol element, then any initial U+FEFF in that protocol element

MUST be interpreted as a "ZERO WIDTH NO-BREAK SPACE". When a

protocol does NOT forbid use of U+FEFF as a signature for a certain

protocol element, then implementations SHOULD be prepared to handle

a signature in that element and react appropriately: using the

signature to identify the character encoding as necessary and

stripping or ignoring the signature as appropriate.

6. Examples

The character sequence "A≢Α."(U+0041 U+2262 U+0391 U+002E) is
encoded in DUTF as Figure 1, which requires 6 octets, while using

UTF-8 requires 7 octets.

Figure 1

The character sequence " "(U+4E92 U+8054 U+7F51 U+5DE5 U+7A0B
U+4EFB U+52A1 U+7EC4, meaning "The Internet Engineering Task Force"

in Chinese) is encoded in DUTF as Figure 2, which requires 19

octets, while using UTF-8 requires 24 octets.

¶

*

¶

*

¶

¶

¶

 --+-----+-----+--

 41 E2 44 F3 43 2E

 --+-----+-----+--

¶

Figure 2

The character sequence " "(U+C0BC U+C131 U+C804 U+C790, meaning
"Samsung Electronics" in Korean) is encoded in DUTF as Figure 3,

which requires 9 octets, while using UTF-8 requires 12 octets.

Figure 3

The character sequence " "(U+3088 U+3053 U+306F U+307E
U+3053 U+304F U+308A U+3064 U+3060 U+3044 U+304C U+304F, meaning

"Yokohama National University" in Japanese) is encoded in DUTF as

Figure 4, which requires 24 octets, while using UTF-8 requires 36

octets.

Figure 4

The character sequence " "(U+233B4, a Chinese character meaning
'stump of tree'), prepended with a DUTF BOM, is encoded in DUTF as

Figure 5, which requires 6 octets, while using UTF-8 requires 7

octets.

Figure 5

The character sequence " hello "(U+4F60 U+597D U+0068 U+0065
U+006C U+006C U+006F U+3053 U+3093 U+306B U+3061 U+306F U+C548

U+B155 U+D558 U+C138 U+C694, a Chinese-English-Japanese-Korean mixed

phrase, all of which mean "hello") is encoded in DUTF as Figure 6,

which requires 34 octets, while using UTF-8 requires 41 octets.

 --------+--------+--------+-----+-----+-----+-----+-----

 92 9D 01 C6 9D 03 85 FE 03 B4 45 EE 4F F0 69 DA 38 E5 58

 --------+--------+--------+-----+-----+-----+-----+-----

¶

 --------+-----+-----+-----

 BC 81 03 8D 03 B5 12 94 1F

 --------+-----+-----+-----

¶

 -----+-----+-----+-----+-----+-----

 88 61 DB 01 BC 00 91 00 AD 00 9C 00

 -----+-----+-----+-----+-----+-----

 -----+-----+-----+-----+-----+-----

 C5 01 EE 01 84 00 A4 00 88 00 83 00

 -----+-----+-----+-----+-----+-----

¶

 --------+--------

 FF FD 03 CB 9A 0B

 --------+--------

¶

Figure 6

The character sequence " 天气真☀ "(U+5929 U+6C14 U+771F U+2600 U+FE0F
U+1F44D, meaning "The weather is really nice") is encoded in DUTF as

Figure 7, which requires 16 octets, while using UTF-8 requires 19

octets.

Figure 7

7. MIME Registration

This memo serves as the basis for registration of the MIME charset

parameter for DUTF, according to [RFC2978]. The charset parameter

value is "DUTF". This string labels media types containing text

consisting of characters from the repertoire of ISO/IEC 10646

including all amendments at least up to amendment 5 of the 1993

edition (Korean block), encoded to a sequence of octets using the

encoding scheme outlined above. DUTF is suitable for use in MIME

content types under the "text" top-level type.

It is noteworthy that the label "DUTF" does not contain a version

identification, referring generically to ISO/IEC 10646. This is

intentional, the rationale being as follows:

A MIME charset label is designed to give just the information needed

to interpret a sequence of octets received on the wire into a

sequence of characters, nothing more (see [RFC2045], section 2.2).

As long as a character set standard does not change incompatibly,

version numbers serve no purpose, because one gains nothing by

learning from the tag that newly assigned characters may be received

that one doesn't know about. The tag itself doesn't teach anything

about the new characters, which are going to be received anyway.

Hence, as long as the standards evolve compatibly, the apparent

advantage of having labels that identify the versions is only that,

apparent. But there is a disadvantage to such version-dependent

labels: when an older application receives data accompanied by a

newer, unknown label, it may fail to recognize the label and be

completely unable to deal with the data, whereas a generic, known

 --------+-----+--+--+--+--+--+--------+-----+-----

 E0 9E 01 9D 2C 68 65 6C 6C 6F AE D2 01 C0 01 F8 01

 --------+-----+--+--+--+--+--+--------+-----+-----

 -----+-----+--------+--------+--------+-----+-----

 8A 00 8E 00 A7 EA 03 9D E8 01 8D C8 01 E0 28 AC 0F

 -----+-----+--------+--------+--------+-----+-----

¶

 --------+-----+-----+--------+--------+--------

 A9 B2 01 BD 6A 8B 36 9F A2 01 8F B0 03 C2 94 04

 --------+-----+-----+--------+--------+--------

¶

¶

¶

label would have triggered mostly correct processing of the data,

which may well not contain any new characters.

Now the "Korean mess" (ISO/IEC 10646 amendment 5) is an incompatible

change, in principle contradicting the appropriateness of a version

independent MIME charset label as described above. But the

compatibility problem can only appear with data containing Korean

Hangul characters encoded according to Unicode 1.1 (or equivalently

ISO/IEC 10646 before amendment 5), and there is arguably no such

data to worry about, this being the very reason the incompatible

change was deemed acceptable.

In practice, then, a version-independent label is warranted,

provided the label is understood to refer to all versions after

Amendment 5, and provided no incompatible change actually occurs.

Should incompatible changes occur in a later version of ISO/IEC

10646, the MIME charset label defined here will stay aligned with

the previous version until and unless the IETF specifically decides

otherwise.

8. IANA Considerations

IANA is to register the charset found in Appendix A according to

[RFC2978], using registration template found in this appendix.

9. Security Considerations

Implementers of DUTF need to consider the security aspects of how

they handle illegal DUTF sequences. It is conceivable that in some

circumstances an attacker would be able to exploit an incautious

DUTF parser by sending it an octet sequence that is not permitted by

the DUTF syntax.

A particularly subtle form of this attack could be carried out

against a parser which performs security-critical validity checks

against the DUTF encoded form of its input, but interprets certain

illegal octet sequences as characters. For example, a parser might

prohibit the ACK character when encoded as the single-octet sequence

06, but allow the illegal two-octet sequence 86 00 and interpret it

as a ACK character. Another example might be a parser which

prohibits the octet sequence 2F 2E 2E 2F ("/../"), yet permits the

illegal octet sequence AF 00 2E 2E 2F.

10. Acknowledgements

Some of the text in this specification was copied from [RFC3629] and

[RFC2781].

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

[ISO-10646]

[UNICODE]

[RFC3629]

[RFC2781]

[RFC2045]

[RFC5234]

[RFC2978]

[US-ASCII]

11. References

11.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

International Organization for Standardization,

"Information Technology - Universal Multiple-octet coded

Character Set (UCS)", ISO/IEC Standard 10646 2020, 2020,

<https://www.iso.org/standard/76835.html>.

The Unicode Consortium, "The Unicode Standard, Version

15.0.0", ISBN 978-1-936213-32-0, 2022, <https://

www.unicode.org/standard/versions/

enumeratedversions.html#Unicode_15_0_0>.

11.2. Informative References

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO

10646", RFC 2781, DOI 10.17487/RFC2781, February 2000,

<https://www.rfc-editor.org/info/rfc2781>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message

Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

<https://www.rfc-editor.org/info/rfc2045>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Freed, N. and J. Postel, "IANA Charset Registration

Procedures", BCP 19, RFC 2978, DOI 10.17487/RFC2978,

October 2000, <https://www.rfc-editor.org/info/rfc2978>.

American National Standards Institute, "Coded Character

Set - 7-bit American Standard Code for Information

Interchange", ANSI X3.4, 1986.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.iso.org/standard/76835.html
https://www.unicode.org/standard/versions/enumeratedversions.html#Unicode_15_0_0
https://www.unicode.org/standard/versions/enumeratedversions.html#Unicode_15_0_0
https://www.unicode.org/standard/versions/enumeratedversions.html#Unicode_15_0_0
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc2781
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc2978

[UNICODE-POLICIES]
"Unicode Consortium Policies", <https://

www.unicode.org/policies/index.html>.

Appendix A. Registration for DUTF

Author's Address

Yao Yang

Room 501, Unit 4, Building 36, Hualong Yuan South

Changping District

Beijing, 102218

China

Phone: +86 182 0165 6971

Email: yao.yang.sy@foxmail.com

To: ietf-charsets@iana.org

Subject: Registration of new charset DUTF

Charset name: DUTF

Charset aliases: dutf

Suitability for use in MIME text: Body: ASCII compatible

Published specification(s): This specification

ISO 10646 equivalency table: This specification

Person & email address to contact for further information:

Yao Yang <yao.yang.sy@foxmail.com>

Intended usage: COMMON

¶

https://www.unicode.org/policies/index.html
https://www.unicode.org/policies/index.html
tel:+86%20182%200165%206971
mailto:yao.yang.sy@foxmail.com

	DUTF, a Dynamic Unicode Transformation Format
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Definition of DUTF
	3. Syntax of DUTF Byte Sequences
	4. Versions of the Standards
	5. Byte Order Mark (BOM)
	6. Examples
	7. MIME Registration
	8. IANA Considerations
	9. Security Considerations
	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Registration for DUTF
	Author's Address

