
Network Working Group J. Yasskin
Internet-Draft Google
Intended status: Standards Track January 23, 2019
Expires: July 27, 2019

Signed HTTP Exchanges
draft-yasskin-http-origin-signed-responses-05

Abstract

 This document specifies how a server can send an HTTP exchange--a
 request URL, content negotiation information, and a response--with
 signatures that vouch for that exchange's authenticity. These
 signatures can be verified against an origin's certificate to
 establish that the exchange is authoritative for an origin even if it
 was transferred over a connection that isn't. The signatures can
 also be used in other ways described in the appendices.

 These signatures contain countermeasures against downgrade and
 protocol-confusion attacks.

Note to Readers

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 The source code and issues list for this draft can be found in
https://github.com/WICG/webpackage [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 27, 2019.

Yasskin Expires July 27, 2019 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/WICG/webpackage
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Signed HTTP Exchanges January 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Signing an exchange . 5
3.1. The Signature Header 6
3.1.1. Examples . 7
3.1.2. Open Questions 8

3.2. CBOR representation of exchange response headers 9
3.2.1. Example . 9

3.3. Loading a certificate chain 10
3.4. Canonical CBOR serialization 11
3.5. Signature validity 11
3.5.1. Open Questions 16

3.6. Updating signature validity 16
3.6.1. Examples . 17

3.7. The Accept-Signature header 18
3.7.1. Integrity identifiers 19
3.7.2. Key type identifiers 19
3.7.3. Key value identifiers 20
3.7.4. Examples . 20
3.7.5. Open Questions 21

4. Cross-origin trust . 21
4.1. Uncached header fields 23
4.1.1. Stateful header fields 23

4.2. Certificate Requirements 24
5. Transferring a signed exchange 25
5.1. Same-origin response 25
5.1.1. Serialized headers for a same-origin response 26
5.1.2. The Signed-Headers Header 26

5.2. HTTP/2 extension for cross-origin Server Push 27
5.2.1. Indicating support for cross-origin Server Push . . . 27
5.2.2. NO_TRUSTED_EXCHANGE_SIGNATURE error code 27

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Yasskin Expires July 27, 2019 [Page 2]

Internet-Draft Signed HTTP Exchanges January 2019

5.2.3. Validating a cross-origin Push 28
5.3. application/signed-exchange format 29
5.3.1. Cross-origin trust in application/signed-exchange . . 30
5.3.2. Example . 30
5.3.3. Open Questions 30

6. Security considerations 31
6.1. Over-signing . 31
6.1.1. Session fixation 31
6.1.2. Misleading content 31

6.2. Off-path attackers 32
6.3. Downgrades . 32
6.4. Signing oracles are permanent 32
6.5. Unsigned headers . 32
6.6. application/signed-exchange 33
6.7. Key re-use with TLS 33
6.8. Content sniffing . 34

7. Privacy considerations 35
8. IANA considerations . 35
8.1. Signature Header Field Registration 35
8.2. Accept-Signature Header Field Registration 36
8.3. Signed-Headers Header Field Registration 36
8.4. HTTP/2 Settings . 36
8.5. HTTP/2 Error code . 37
8.6. Internet Media Type application/signed-exchange 37
8.7. Internet Media Type application/cert-chain+cbor 38

9. References . 39
9.1. Normative References 39
9.2. Informative References 41
9.3. URIs . 44

Appendix A. Use cases . 44
A.1. PUSHed subresources 44

 A.2. Explicit use of a content distributor for subresources . 45
A.3. Subresource Integrity 46
A.4. Binary Transparency 46
A.5. Static Analysis . 46
A.6. Offline websites . 47

Appendix B. Requirements . 47
B.1. Proof of origin . 47
B.1.1. Certificate constraints 47
B.1.2. Signature constraints 47
B.1.3. Retrieving the certificate 48

B.2. How much to sign . 48
B.2.1. Conveying the signed headers 49

B.3. Response lifespan . 49
B.3.1. Certificate revocation 50
B.3.2. Response downgrade attacks 50

B.4. Low implementation complexity 51
B.4.1. Limited choices 51

Yasskin Expires July 27, 2019 [Page 3]

Internet-Draft Signed HTTP Exchanges January 2019

B.4.2. Bounded-buffering integrity checking 51
Appendix C. Determining validity using cache control 51
C.1. Example of updating cache control 52
C.2. Downsides of updating cache control 53

Appendix D. Change Log . 53
Appendix E. Acknowledgements 55

 Author's Address . 56

1. Introduction

 Signed HTTP exchanges provide a way to prove the authenticity of a
 resource in cases where the transport layer isn't sufficient. This
 can be used in several ways:

 o When signed by a certificate ([RFC5280]) that's trusted for an
 origin, an exchange can be treated as authoritative for that
 origin, even if it was transferred over a connection that isn't
 authoritative (Section 9.1 of [RFC7230]) for that origin. See

Appendix A.1 and Appendix A.2.

 o A top-level resource can use a public key to identify an expected
 publisher for particular subresources, a system known as
 Subresource Integrity ([SRI]). An exchange's signature provides
 the matching proof of authorship. See Appendix A.3.

 o A signature can vouch for the exchange in some way, for example
 that it appears in a transparency log or that static analysis
 indicates that it omits certain attacks. See Appendix A.4 and

Appendix A.5.

 Subsequent work toward the use cases in
 [I-D.yasskin-webpackage-use-cases] will provide a way to group signed
 exchanges into bundles that can be transmitted and stored together,
 but single signed exchanges are useful enough to standardize on their
 own.

2. Terminology

 Absolute URL A string for which the URL parser [3] ([URL]), when run
 without a base URL, returns a URL rather than a failure, and for
 which that URL has a null fragment. This is similar to the
 absolute-URL string [4] concept defined by ([URL]) but might not
 include exactly the same strings.

 Author The entity that wrote the content in a particular resource.
 This specification deals with publishers rather than authors.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7230#section-9.1

Yasskin Expires July 27, 2019 [Page 4]

Internet-Draft Signed HTTP Exchanges January 2019

 Publisher The entity that controls the server for a particular
 origin [RFC6454]. The publisher can get a CA to issue
 certificates for their private keys and can run a TLS server for
 their origin.

 Exchange (noun) An HTTP request URL, content negotiation
 information, and an HTTP response. This can be encoded into a
 request message from a client with its matching response from a
 server, into the request in a PUSH_PROMISE with its matching
 response stream, or into the dedicated format in Section 5.3,
 which uses [I-D.ietf-httpbis-variants] to encode the content
 negotiation information. This is not quite the same meaning as
 defined by Section 8 of [RFC7540], which assumes the content
 negotiation information is embedded into HTTP request headers.

 Intermediate An entity that fetches signed HTTP exchanges from a
 publisher or another intermediate and forwards them to another
 intermediate or a client.

 Client An entity that uses a signed HTTP exchange and needs to be
 able to prove that the publisher vouched for it as coming from its
 claimed origin.

 Unix time Defined by [POSIX] section 4.16 [5].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Signing an exchange

 In the response of an HTTP exchange the server MAY include a
 "Signature" header field (Section 3.1) holding a list of one or more
 parameterised signatures that vouch for the content of the exchange.
 Exactly which content the signature vouches for can depend on how the
 exchange is transferred (Section 5).

 The client categorizes each signature as "valid" or "invalid" by
 validating that signature with its certificate or public key and
 other metadata against the exchange's URL, response headers, and
 content (Section 3.5). This validity then informs higher-level
 protocols.

 Each signature is parameterised with information to let a client
 fetch assurance that a signed exchange is still valid, in the face of
 revoked certificates and newly-discovered vulnerabilities. This

https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc7540#section-8
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Yasskin Expires July 27, 2019 [Page 5]

Internet-Draft Signed HTTP Exchanges January 2019

 assurance can be bundled back into the signed exchange and forwarded
 to another client, which won't have to re-fetch this validity
 information for some period of time.

3.1. The Signature Header

 The "Signature" header field conveys a list of signatures for an
 exchange, each one accompanied by information about how to determine
 the authority of and refresh that signature. Each signature directly
 signs the exchange's URL and response headers and identifies one of
 those headers that enforces the integrity of the exchange's payload.

 The "Signature" header is a Structured Header as defined by
 [I-D.ietf-httpbis-header-structure]. Its value MUST be a
 parameterised list (Section 3.4 of
 [I-D.ietf-httpbis-header-structure]). Its ABNF is:

 Signature = sh-param-list

 Each parameterised identifier in the list MUST have parameters named
 "sig", "integrity", "validity-url", "date", and "expires". Each
 parameterised identifier MUST also have either "cert-url" and "cert-
 sha256" parameters or an "ed25519key" parameter. This specification
 gives no meaning to the identifier itself, which can be used as a
 human-readable identifier for the signature (see

Section 3.1.2, Paragraph 1). The present parameters MUST have the
 following values:

 "sig" Byte sequence (Section 3.10 of
 [I-D.ietf-httpbis-header-structure]) holding the signature of most
 of these parameters and the exchange's URL and response headers.

 "integrity" A string (Section 3.8 of
 [I-D.ietf-httpbis-header-structure]) containing a "/"-separated
 sequence of names starting with the lowercase name of the response
 header field that guards the response payload's integrity. The
 meaning of subsequent names depends on the response header field,
 but for the "digest" header field, the single following name is
 the name of the digest algorithm that guards the payload's
 integrity.

 "cert-url" A string (Section 3.8 of
 [I-D.ietf-httpbis-header-structure]) containing an absolute URL
 (Section 2) with a scheme of "https" or "data".

 "cert-sha256" Byte sequence (Section 3.10 of
 [I-D.ietf-httpbis-header-structure]) holding the SHA-256 hash of
 the first certificate found at "cert-url".

Yasskin Expires July 27, 2019 [Page 6]

Internet-Draft Signed HTTP Exchanges January 2019

 "ed25519key" Byte sequence (Section 3.10 of
 [I-D.ietf-httpbis-header-structure]) holding an Ed25519 public key
 ([RFC8032]).

 "validity-url" A string (Section 3.8 of
 [I-D.ietf-httpbis-header-structure]) containing an absolute URL
 (Section 2) with a scheme of "https".

 "date" and "expires" An integer (Section 3.6 of
 [I-D.ietf-httpbis-header-structure]) representing a Unix time.

 The "cert-url" parameter is _not_ signed, so intermediates can update
 it with a pointer to a cached version.

3.1.1. Examples

 The following header is included in the response for an exchange with
 effective request URI "https://example.com/resource.html". Newlines
 are added for readability.

Signature:
 sig1;

sig=*MEUCIQDXlI2gN3RNBlgFiuRNFpZXcDIaUpX6HIEwcZEc0cZYLAIga9DsVOMM+g5YpwEBdGW3sS+bvnmAJJiSMwhuBdqp5UY=*;
 integrity="digest/mi-sha256";
 validity-url="https://example.com/resource.validity.1511128380";
 cert-url="https://example.com/oldcerts";
 cert-sha256=*W7uB969dFW3Mb5ZefPS9Tq5ZbH5iSmOILpjv2qEArmI=*;
 date=1511128380; expires=1511733180,
 sig2;
 sig=*MEQCIGjZRqTRf9iKNkGFyzRMTFgwf/BrY2ZNIP/dykhUV0aYAiBTXg+8wujoT4n/
W+cNgb7pGqQvIUGYZ8u8HZJ5YH26Qg=*;
 integrity="digest/mi-sha256";
 validity-url="https://example.com/resource.validity.1511128380";
 cert-url="https://example.com/newcerts";
 cert-sha256=*J/lEm9kNRODdCmINbvitpvdYKNQ+YgBj99DlYp4fEXw=*;
 date=1511128380; expires=1511733180,
 srisig;

sig=*lGZVaJJM5f2oGczFlLmBdKTDL+QADza4BgeO494ggACYJOvrof6uh5OJCcwKrk7DK+LBch0jssDYPp5CLc1SDA=*
 integrity="digest/mi-sha256";
 validity-url="https://example.com/resource.validity.1511128380";
 ed25519key=*zsSevyFsxyZHiUluVBDd4eypdRLTqyWRVOJuuKUz+A8=*
 date=1511128380; expires=1511733180,
 thirdpartysig;

sig=*MEYCIQCNxJzn6Rh2fNxsobktir8TkiaJYQFhWTuWI1i4PewQaQIhAMs2TVjc4rTshDtXbgQEOwgj2mRXALhfXPztXgPupii+=*;
 integrity="digest/mi-sha256";
 validity-url="https://thirdparty.example.com/resource.validity.1511161860";

https://datatracker.ietf.org/doc/html/rfc8032

 cert-url="https://thirdparty.example.com/certs";
 cert-sha256=*UeOwUPkvxlGRTyvHcsMUN0A2oNsZbU8EUvg8A9ZAnNc=*;
 date=1511133060; expires=1511478660,

Yasskin Expires July 27, 2019 [Page 7]

Internet-Draft Signed HTTP Exchanges January 2019

 There are 4 signatures: 2 from different secp256r1 certificates
 within "https://example.com/", one using a raw ed25519 public key
 that's also controlled by "example.com", and a fourth using a
 secp256r1 certificate owned by "thirdparty.example.com".

 All 4 signatures rely on the "Digest" response header with the mi-
 sha256 digest algorithm to guard the integrity of the response
 payload.

 The signatures include a "validity-url" that includes the first time
 the resource was seen. This allows multiple versions of a resource
 at the same URL to be updated with new signatures, which allows
 clients to avoid transferring extra data while the old versions don't
 have known security bugs.

 The certificates at "https://example.com/oldcerts" and
 "https://example.com/newcerts" have "subjectAltName"s of
 "example.com", meaning that if they and their signatures validate,
 the exchange can be trusted as having an origin of
 "https://example.com/". The publisher might be using two
 certificates because their readers have disjoint sets of roots in
 their trust stores.

 The publisher signed with all three certificates at the same time, so
 they share a validity range: 7 days starting at 2017-11-19 21:53 UTC.

 The publisher then requested an additional signature from
 "thirdparty.example.com", which did some validation or processing and
 then signed the resource at 2017-11-19 23:11 UTC.
 "thirdparty.example.com" only grants 4-day signatures, so clients
 will need to re-validate more often.

3.1.2. Open Questions

 [I-D.ietf-httpbis-header-structure] provides a way to parameterise
 identifiers but not other supported types like byte sequences. If
 the "Signature" header field is notionally a list of parameterised
 signatures, maybe we should add a "parameterised byte sequence" type.

 Should the cert-url and validity-url be lists so that intermediates
 can offer a cache without losing the original URLs? Putting lists in
 dictionary fields is more complex than
 [I-D.ietf-httpbis-header-structure] allows, so they're single items
 for now.

Yasskin Expires July 27, 2019 [Page 8]

Internet-Draft Signed HTTP Exchanges January 2019

3.2. CBOR representation of exchange response headers

 To sign an exchange's response headers, they need to be serialized
 into a byte string. Since intermediaries and distributors
 (Appendix A.2) might rearrange, add, or just reserialize headers, we
 can't use the literal bytes of the headers as this serialization.
 Instead, this section defines a CBOR representation that can be
 embedded into other CBOR, canonically serialized (Section 3.4), and
 then signed.

 The CBOR representation of a set of response metadata and headers is
 the CBOR ([RFC7049]) map with the following mappings:

 o The byte string ':status' to the byte string containing the
 response's 3-digit status code, and

 o For each response header field, the header field's lowercase name
 as a byte string to the header field's value as a byte string.

3.2.1. Example

 Given the HTTP exchange:

 GET / HTTP/1.1
 Host: example.com
 Accept: */*

 HTTP/1.1 200
 Content-Type: text/html
 Digest: mi-sha256=dcRDgR2GM35DluAV13PzgnG6+pvQwPywfFvAu1UeFrs=
 Signed-Headers: "content-type", "digest"

 <!doctype html>
 <html>
 ...

 The cbor representation consists of the following item, represented
 using the extended diagnostic notation from [I-D.ietf-cbor-cddl]

appendix G:

 {
 'digest': 'mi-sha256=dcRDgR2GM35DluAV13PzgnG6+pvQwPywfFvAu1UeFrs=',
 ':status': '200',
 'content-type': 'text/html'
 }

https://datatracker.ietf.org/doc/html/rfc7049

Yasskin Expires July 27, 2019 [Page 9]

Internet-Draft Signed HTTP Exchanges January 2019

3.3. Loading a certificate chain

 The resource at a signature's "cert-url" MUST have the "application/
 cert-chain+cbor" content type, MUST be canonically-encoded CBOR
 (Section 3.4), and MUST match the following CDDL:

 cert-chain = [
 "📜⛓", ; U+1F4DC U+26D3
 + {
 cert: bytes,
 ? ocsp: bytes,
 ? sct: bytes,
 * tstr => any,
 }
]

 The first map (second item) in the CBOR array is treated as the end-
 entity certificate, and the client will attempt to build a path
 ([RFC5280]) to it from a trusted root using the other certificates in
 the chain.

 1. Each "cert" value MUST be a DER-encoded X.509v3 certificate
 ([RFC5280]). Other key/value pairs in the same array item define
 properties of this certificate.

 2. The first certificate's "ocsp" value MUST be a complete, DER-
 encoded OCSP response for that certificate (using the ASN.1 type
 "OCSPResponse" defined in [RFC6960]). Subsequent certificates
 MUST NOT have an "ocsp" value.

 3. Each certificate's "sct" value if any MUST be a
 "SignedCertificateTimestampList" for that certificate as defined
 by Section 3.3 of [RFC6962].

 Loading a "cert-url" takes a "forceFetch" flag. The client MUST:

 1. Let "raw-chain" be the result of fetching ([FETCH]) "cert-url".
 If "forceFetch" is _not_ set, the fetch can be fulfilled from a
 cache using normal HTTP semantics [RFC7234]. If this fetch
 fails, return "invalid".

 2. Let "certificate-chain" be the array of certificates and
 properties produced by parsing "raw-chain" using the CDDL above.
 If any of the requirements above aren't satisfied, return
 "invalid". Note that this validation requirement might be
 impractical to completely achieve due to certificate validation
 implementations that don't enforce DER encoding or other standard
 constraints.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6962#section-3.3
https://datatracker.ietf.org/doc/html/rfc7234

Yasskin Expires July 27, 2019 [Page 10]

Internet-Draft Signed HTTP Exchanges January 2019

 3. Return "certificate-chain".

3.4. Canonical CBOR serialization

 Within this specification, the canonical serialization of a CBOR item
 uses the following rules derived from Section 3.9 of [RFC7049] with
 erratum 4964 applied:

 o Integers and the lengths of arrays, maps, and strings MUST use the
 smallest possible encoding.

 o Items MUST NOT be encoded with indefinite length.

 o The keys in every map MUST be sorted in the bytewise lexicographic
 order of their canonical encodings. For example, the following
 keys are correctly sorted:

 1. 10, encoded as 0A.

 2. 100, encoded as 18 64.

 3. -1, encoded as 20.

 4. "z", encoded as 61 7A.

 5. "aa", encoded as 62 61 61.

 6. [100], encoded as 81 18 64.

 7. [-1], encoded as 81 20.

 8. false, encoded as F4.

 Note: this specification does not use floating point, tags, or other
 more complex data types, so it doesn't need rules to canonicalize
 those.

3.5. Signature validity

 The client MUST parse the "Signature" header field as the
 parameterised list (Section 4.2.5 of
 [I-D.ietf-httpbis-header-structure]) described in Section 3.1. If an
 error is thrown during this parsing or any of the requirements
 described there aren't satisfied, the exchange has no valid
 signatures. Otherwise, each member of this list represents a
 signature with parameters.

https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Yasskin Expires July 27, 2019 [Page 11]

Internet-Draft Signed HTTP Exchanges January 2019

 The client MUST use the following algorithm to determine whether each
 signature with parameters is invalid or potentially-valid for an
 exchange's

 o "requestUrl", a byte sequence that can be parsed into the
 exchange's effective request URI (Section 5.5 of [RFC7230]),

 o "responseHeaders", a byte sequence holding the canonical
 serialization (Section 3.4) of the CBOR representation
 (Section 3.2) of the exchange's response metadata and headers, and

 o "payload", a stream of bytes constituting the exchange's payload
 body (Section 3.3 of [RFC7230]). Note that the payload body is
 the message body with any transfer encodings removed.

 Potentially-valid results include:

 o The signed headers of the exchange so that higher-level protocols
 can avoid relying on unsigned headers, and

 o Either a certificate chain or a public key so that a higher-level
 protocol can determine whether it's actually valid.

 This algorithm accepts a "forceFetch" flag that avoids the cache when
 fetching URLs. A client that determines that a potentially-valid
 certificate chain is actually invalid due to an expired OCSP response
 MAY retry with "forceFetch" set to retrieve an updated OCSP from the
 original server.

 1. Let:

 * "signature" be the signature (byte sequence in the
 parameterised identifier's "sig" parameter).

 * "integrity" be the signature's "integrity" parameter.

 * "validity-url" be the signature's "validity-url" parameter.

 * "cert-url" be the signature's "cert-url" parameter, if any.

 * "cert-sha256" be the signature's "cert-sha256" parameter, if
 any.

 * "ed25519key" be the signature's "ed25519key" parameter, if
 any.

 * "date" be the signature's "date" parameter, interpreted as a
 Unix time.

https://datatracker.ietf.org/doc/html/rfc7230#section-5.5
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3

Yasskin Expires July 27, 2019 [Page 12]

Internet-Draft Signed HTTP Exchanges January 2019

 * "expires" be the signature's "expires" parameter, interpreted
 as a Unix time.

 2. Set "publicKey" and "signing-alg" depending on which key fields
 are present:

 1. If "cert-url" is present:

 1. Let "certificate-chain" be the result of loading the
 certificate chain at "cert-url" passing the "forceFetch"
 flag (Section 3.3). If this returns "invalid", return
 "invalid".

 2. Let "main-certificate" be the first certificate in
 "certificate-chain".

 3. Set "publicKey" to "main-certificate"'s public key.

 4. If "publicKey" is an RSA key, return "invalid".

 5. If "publicKey" is a key using the secp256r1 elliptic
 curve, set "signing-alg" to ecdsa_secp256r1_sha256 as
 defined in Section 4.2.3 of [RFC8446].

 6. Otherwise, either return "invalid" or set "signing-alg"
 to a non-legacy signing algorithm defined by TLS 1.3 or
 later ([RFC8446]). This choice MUST depend only on
 "publicKey"'s type and not on any other context.

 2. If "ed25519key" is present, set "publicKey" to "ed25519key"
 and "signing-alg" to ed25519, as defined by [RFC8032]

 3. If "expires" is more than 7 days (604800 seconds) after "date",
 return "invalid".

 4. If the current time is before "date" or after "expires", return
 "invalid".

 5. Let "message" be the concatenation of the following byte
 strings. This matches the [RFC8446] format to avoid cross-
 protocol attacks if anyone uses the same key in a TLS
 certificate and an exchange-signing certificate.

 1. A string that consists of octet 32 (0x20) repeated 64 times.

 2. A context string: the ASCII encoding of "HTTP Exchange 1".

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.3
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8446

Yasskin Expires July 27, 2019 [Page 13]

Internet-Draft Signed HTTP Exchanges January 2019

 Note: RFC EDITOR PLEASE DELETE THIS NOTE; The implementation
 of the final RFC MUST use this context string, but
 implementations of drafts MUST NOT use it and MUST use
 another draft-specific string beginning with "HTTP Exchange
 1 " instead. This ensures that signers can predict how
 their signatures will be used.

 3. A single 0 byte which serves as a separator.

 4. If "cert-sha256" is set, a byte holding the value 32
 followed by the 32 bytes of the value of "cert-sha256".
 Otherwise a 0 byte.

 5. The 8-byte big-endian encoding of the length in bytes of
 "validity-url", followed by the bytes of "validity-url".

 6. The 8-byte big-endian encoding of "date".

 7. The 8-byte big-endian encoding of "expires".

 8. The 8-byte big-endian encoding of the length in bytes of
 "requestUrl", followed by the bytes of "requestUrl".

 9. The 8-byte big-endian encoding of the length in bytes of
 "responseHeaders", followed by the bytes of
 "responseHeaders".

 6. If "cert-url" is present and the SHA-256 hash of "main-
 certificate"'s "cert_data" is not equal to "cert-sha256" (whose
 presence was checked when the "Signature" header field was
 parsed), return "invalid".

 Note that this intentionally differs from TLS 1.3, which signs
 the entire certificate chain in its Certificate Verify
 (Section 4.4.3 of [RFC8446]), in order to allow updating the
 stapled OCSP response without updating signatures at the same
 time.

 7. If "signature" is not a valid signature of "message" by
 "publicKey" using "signing-alg", return "invalid".

 8. If "headers", interpreted according to Section 3.2, does not
 contain a "Content-Type" response header field (Section 3.1.1.5
 of [RFC7231]), return "invalid".

 Clients MUST interpret the signed payload as this specified
 media type instead of trying to sniff a media type from the
 bytes of the payload, for example by attaching an "X-Content-

https://datatracker.ietf.org/doc/html/draft-specific
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.5
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.5

Yasskin Expires July 27, 2019 [Page 14]

Internet-Draft Signed HTTP Exchanges January 2019

 Type-Options: nosniff" header field ([FETCH]) to the extracted
 response.

 9. If "integrity" names a header field and parameter that is not
 present in "responseHeaders" or which the client cannot use to
 check the integrity of "payload" (for example, the header field
 is new and hasn't been implemented yet), then return "invalid".
 If the selected header field provides integrity guarantees
 weaker than SHA-256, return "invalid". If validating integrity
 using the selected header field requires the client to process
 records larger than 16384 bytes, return "invalid". Clients MUST
 implement at least the "Digest" header field with its "mi-
 sha256" digest algorithm (Section 3 of [I-D.thomson-http-mice]).

 Note: RFC EDITOR PLEASE DELETE THIS NOTE; Implementations of
 drafts of this RFC MUST recognize the draft spelling of the
 content encoding and digest algorithm specified by
 [I-D.thomson-http-mice] until that draft is published as an RFC.
 For example, implementations of draft-thomson-http-mice-03 would
 use "mi-sha256-03" and MUST NOT use "mi-sha256" itself. This
 ensures that final implementations don't need to handle
 compatibility with implementations of early drafts of that
 content encoding.

 If "payload" doesn't match the integrity information in the
 header described by "integrity", return "invalid".

 10. Return "potentially-valid" with whichever is present of
 "certificate-chain" or "ed25519key".

 Note that the above algorithm can determine that an exchange's
 headers are potentially-valid before the exchange's payload is
 received. Similarly, if "integrity" identifies a header field and
 parameter like "Digest:mi-sha256" ([I-D.thomson-http-mice]) that can
 incrementally validate the payload, early parts of the payload can be
 determined to be potentially-valid before later parts of the payload.
 Higher-level protocols MAY process parts of the exchange that have
 been determined to be potentially-valid as soon as that determination
 is made but MUST NOT process parts of the exchange that are not yet
 potentially-valid. Similarly, as the higher-level protocol
 determines that parts of the exchange are actually valid, the client
 MAY process those parts of the exchange and MUST wait to process
 other parts of the exchange until they too are determined to be
 valid.

https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-03

Yasskin Expires July 27, 2019 [Page 15]

Internet-Draft Signed HTTP Exchanges January 2019

3.5.1. Open Questions

 Should the signed message use the TLS format (with an initial 64
 spaces) even though these certificates can't be used in TLS servers?

3.6. Updating signature validity

 Both OCSP responses and signatures are designed to expire a short
 time after they're signed, so that revoked certificates and signed
 exchanges with known vulnerabilities are distrusted promptly.

 This specification provides no way to update OCSP responses by
 themselves. Instead, clients need to re-fetch the "cert-url"
 (Section 3.5, Paragraph 6) to get a chain including a newer OCSP
 response.

 The "validity-url" parameter (Paragraph 6) of the signatures provides
 a way to fetch new signatures or learn where to fetch a complete
 updated exchange.

 Each version of a signed exchange SHOULD have its own validity URLs,
 since each version needs different signatures and becomes obsolete at
 different times.

 The resource at a "validity-url" is "validity data", a CBOR map
 matching the following CDDL ([I-D.ietf-cbor-cddl]):

 validity = {
 ? signatures: [+ bytes]
 ? update: {
 ? size: uint,
 }
]

 The elements of the "signatures" array are parameterised identifiers
 (Section 4.2.6 of [I-D.ietf-httpbis-header-structure]) meant to
 replace the signatures within the "Signature" header field pointing
 to this validity data. If the signed exchange contains a bug severe
 enough that clients need to stop using the content, the "signatures"
 array MUST NOT be present.

 If the the "update" map is present, that indicates that a new version
 of the signed exchange is available at its effective request URI
 (Section 5.5 of [RFC7230]) and can give an estimate of the size of
 the updated exchange ("update.size"). If the signed exchange is
 currently the most recent version, the "update" SHOULD NOT be
 present.

https://datatracker.ietf.org/doc/html/rfc7230#section-5.5

Yasskin Expires July 27, 2019 [Page 16]

Internet-Draft Signed HTTP Exchanges January 2019

 If both the "signatures" and "update" fields are present, clients can
 use the estimated size to decide whether to update the whole resource
 or just its signatures.

3.6.1. Examples

 For example, say a signed exchange whose URL is "https://example.com/
 resource" has the following "Signature" header field (with line
 breaks included and irrelevant fields omitted for ease of reading).

Signature:
 sig1;
 sig=*MEUCIQ...*;
 ...
 validity-url="https://example.com/resource.validity.1511157180";
 cert-url="https://example.com/oldcerts";
 date=1511128380; expires=1511733180,
 sig2;
 sig=*MEQCIG...*;
 ...
 validity-url="https://example.com/resource.validity.1511157180";
 cert-url="https://example.com/newcerts";
 date=1511128380; expires=1511733180,
 thirdpartysig;
 sig=*MEYCIQ...*;
 ...
 validity-url="https://thirdparty.example.com/resource.validity.1511161860";
 cert-url="https://thirdparty.example.com/certs";
 date=1511478660; expires=1511824260

 At 2017-11-27 11:02 UTC, "sig1" and "sig2" have expired, but
 "thirdpartysig" doesn't exipire until 23:11 that night, so the client
 needs to fetch "https://example.com/resource.validity.1511157180"
 (the "validity-url" of "sig1" and "sig2") if it wishes to update
 those signatures. This URL might contain:

Yasskin Expires July 27, 2019 [Page 17]

Internet-Draft Signed HTTP Exchanges January 2019

{
 "signatures": [
 'sig1; '
 'sig=*MEQCIC/I9Q+7BZFP6cSDsWx43pBAL0ujTbON/
+7RwKVk+ba5AiB3FSFLZqpzmDJ0NumNwN04pqgJZE99fcK86UjkPbj4jw==*; '
 'validity-url="https://example.com/resource.validity.1511157180"; '
 'integrity="digest/mi-sha256"; '
 'cert-url="https://example.com/newcerts"; '
 'cert-sha256=*J/lEm9kNRODdCmINbvitpvdYKNQ+YgBj99DlYp4fEXw=*; '
 'date=1511733180; expires=1512337980'
],
 "update": {
 "size": 5557452
 }
}

 This indicates that the client could fetch a newer version at
 "https://example.com/resource" (the original URL of the exchange), or
 that the validity period of the old version can be extended by
 replacing the first two of the original signatures (the ones with a
 validity-url of "https://example.com/resource.validity.1511157180")
 with the single new signature provided. (This might happen at the
 end of a migration to a new root certificate.) The signatures of the
 updated signed exchange would be:

Signature:
 sig1;
 sig=*MEQCIC...*;
 ...
 validity-url="https://example.com/resource.validity.1511157180";
 cert-url="https://example.com/newcerts";
 date=1511733180; expires=1512337980,
 thirdpartysig;
 sig=*MEYCIQ...*;
 ...
 validity-url="https://thirdparty.example.com/resource.validity.1511161860";
 cert-url="https://thirdparty.example.com/certs";
 date=1511478660; expires=1511824260

 "https://example.com/resource.validity.1511157180" could also expand
 the set of signatures if its "signatures" array contained more than 2
 elements.

3.7. The Accept-Signature header

 "Signature" header fields cost on the order of 300 bytes for ECDSA
 signatures, so servers might prefer to avoid sending them to clients
 that don't intend to use them. A client can send the "Accept-

 Signature" header field to indicate that it does intend to take

Yasskin Expires July 27, 2019 [Page 18]

Internet-Draft Signed HTTP Exchanges January 2019

 advantage of any available signatures and to indicate what kinds of
 signatures it supports.

 When a server receives an "Accept-Signature" header field in a client
 request, it SHOULD reply with any available "Signature" header fields
 for its response that the "Accept-Signature" header field indicates
 the client supports. However, if the "Accept-Signature" value
 violates a requirement in this section, the server MUST behave as if
 it hadn't received any "Accept-Signature" header at all.

 The "Accept-Signature" header field is a Structured Header as defined
 by [I-D.ietf-httpbis-header-structure]. Its value MUST be a
 parameterised list (Section 3.4 of
 [I-D.ietf-httpbis-header-structure]). Its ABNF is:

 Accept-Signature = sh-param-list

 The order of identifiers in the "Accept-Signature" list is not
 significant. Identifiers, ignoring any initial "-" character, MUST
 NOT be duplicated.

 Each identifier in the "Accept-Signature" header field's value
 indicates that a feature of the "Signature" header field
 (Section 3.1) is supported. If the identifier begins with a "-"
 character, it instead indicates that the feature named by the rest of
 the identifier is not supported. Unknown identifiers and parameters
 MUST be ignored because new identifiers and new parameters on
 existing identifiers may be defined by future specifications.

3.7.1. Integrity identifiers

 Identifiers starting with "digest/" indicate that the client supports
 the "Digest" header field ({{!RFC3230) with the parameter from the
 HTTP Digest Algorithm Values Registry [6] registry named in lower-
 case by the rest of the identifier. For example, "digest/mi-blake2"
 indicates support for Merkle integrity with the as-yet-unspecified
 mi-blake2 parameter, and "-digest/mi-sha256" indicates non-support
 for Merkle integrity with the mi-sha256 content encoding.

 If the "Accept-Signature" header field is present, servers SHOULD
 assume support for "digest/mi-sha256" unless the header field states
 otherwise.

3.7.2. Key type identifiers

 Identifiers starting with "ecdsa/" indicate that the client supports
 certificates holding ECDSA public keys on the curve named in lower-
 case by the rest of the identifier.

https://datatracker.ietf.org/doc/html/rfc3230

Yasskin Expires July 27, 2019 [Page 19]

Internet-Draft Signed HTTP Exchanges January 2019

 If the "Accept-Signature" header field is present, servers SHOULD
 assume support for "ecdsa/secp256r1" unless the header field states
 otherwise.

3.7.3. Key value identifiers

 The "ed25519key" identifier has parameters indicating the public keys
 that will be used to validate the returned signature. Each
 parameter's name is re-interpreted as a byte sequence (Section 3.10
 of [I-D.ietf-httpbis-header-structure]) encoding a prefix of the
 public key. For example, if the client will validate signatures
 using the public key whose base64 encoding is
 "11qYAYKxCrfVS/7TyWQHOg7hcvPapiMlrwIaaPcHURo=", valid "Accept-
 Signature" header fields include:

Accept-Signature: ..., ed25519key; *11qYAYKxCrfVS/
7TyWQHOg7hcvPapiMlrwIaaPcHURo=*
Accept-Signature: ..., ed25519key; *11qYAYKxCrfVS/7TyWQHOg==*
Accept-Signature: ..., ed25519key; *11qYAQ==*
Accept-Signature: ..., ed25519key; **

 but not

 Accept-Signature: ..., ed25519key; *11qYA===*

 because 5 bytes isn't a valid length for encoded base64, and not

 Accept-Signature: ..., ed25519key; 11qYAQ

 because it doesn't start or end with the "*"s that indicate a byte
 sequence.

 Note that "ed25519key; **" is an empty prefix, which matches all
 public keys, so it's useful in subresource integrity (Appendix A.3)
 cases like "<link rel=preload as=script href="...">" where the public
 key isn't known until the matching "<script src="..."
 integrity="...">" tag.

3.7.4. Examples

 Accept-Signature: digest/mi-sha256

 states that the client will accept signatures with payload integrity
 assured by the "Digest" header and "mi-sha256" digest algorithm and
 implies that the client will accept signatures from ECDSA keys on the
 secp256r1 curve.

 Accept-Signature: -ecdsa/secp256r1, ecdsa/secp384r1

Yasskin Expires July 27, 2019 [Page 20]

Internet-Draft Signed HTTP Exchanges January 2019

 states that the client will accept ECDSA keys on the secp384r1 curve
 but not the secp256r1 curve and payload integrity assured with the
 "Digest: mi-sha256" header field.

3.7.5. Open Questions

 Is an "Accept-Signature" header useful enough to pay for itself? If
 clients wind up sending it on most requests, that may cost more than
 the cost of sending "Signature"s unconditionally. On the other hand,
 it gives servers an indication of which kinds of signatures are
 supported, which can help us upgrade the ecosystem in the future.

 Is "Accept-Signature" the right spelling, or do we want to imitate
 "Want-Digest" (Section 4.3.1 of [RFC3230]) instead?

 Do I have the right structure for the identifiers indicating feature
 support?

4. Cross-origin trust

 To determine whether to trust a cross-origin exchange, the client
 takes a "Signature" header field (Section 3.1) and the exchange's

 o "requestUrl", a byte sequence that can be parsed into the
 exchange's effective request URI (Section 5.5 of [RFC7230]),

 o "responseHeaders", a byte sequence holding the canonical
 serialization (Section 3.4) of the CBOR representation
 (Section 3.2) of the exchange's response metadata and headers, and

 o "payload", a stream of bytes constituting the exchange's payload
 body (Section 3.3 of [RFC7230]).

 The client MUST parse the "Signature" header into a list of
 signatures according to the instructions in Section 3.5, and run the
 following algorithm for each signature, stopping at the first one
 that returns "valid". If any signature returns "valid", return
 "valid". Otherwise, return "invalid".

 1. If the signature's "validity-url" parameter (Paragraph 6) is not
 same-origin [7] with "requestUrl", return "invalid".

 2. Use Section 3.5 to determine the signature's validity for
 "requestUrl", "responseHeaders", and "payload", getting
 "certificate-chain" back. If this returned "invalid" or didn't
 return a certificate chain, return "invalid".

https://datatracker.ietf.org/doc/html/rfc3230#section-4.3.1
https://datatracker.ietf.org/doc/html/rfc7230#section-5.5
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3

Yasskin Expires July 27, 2019 [Page 21]

Internet-Draft Signed HTTP Exchanges January 2019

 3. Let "response" be the response metadata and headers parsed out of
 "responseHeaders".

 4. If Section 3 of [RFC7234] forbids a shared cache from storing
 "response", return "invalid".

 5. If "response"'s headers contain an uncached header field, as
 defined in Section 4.1, return "invalid".

 6. Let "authority" be the host component of "requestUrl".

 7. Validate the "certificate-chain" using the following substeps.
 If any of them fail, re-run Section 3.5 once over the signature
 with the "forceFetch" flag set, and restart from step 2. If a
 substep fails again, return "invalid".

 1. Use "certificate-chain" to validate that its first entry,
 "main-certificate" is trusted as "authority"'s server
 certificate ([RFC5280] and other undocumented conventions).
 Let "path" be the path that was used from the "main-
 certificate" to a trusted root, including the "main-
 certificate" but excluding the root.

 2. Validate that "main-certificate" has the CanSignHttpExchanges
 extension (Section 4.2).

 3. Validate that "main-certificate" has an "ocsp" property
 (Section 3.3) with a valid OCSP response whose lifetime
 ("nextUpdate - thisUpdate") is less than 7 days ([RFC6960]).
 Note that this does not check for revocation of intermediate
 certificates, and clients SHOULD implement another mechanism
 for that.

 4. Validate that valid SCTs from trusted logs are available from
 any of:

 + The "SignedCertificateTimestampList" in "main-
 certificate"'s "sct" property (Section 3.3),

 + An OCSP extension in the OCSP response in "main-
 certificate"'s "ocsp" property, or

 + An X.509 extension in the certificate in "main-
 certificate"'s "cert" property,

 as described by Section 3.3 of [RFC6962].

 8. Return "valid".

https://datatracker.ietf.org/doc/html/rfc7234#section-3
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6962#section-3.3

Yasskin Expires July 27, 2019 [Page 22]

Internet-Draft Signed HTTP Exchanges January 2019

4.1. Uncached header fields

 Hop-by-hop and other uncached headers MUST NOT appear in a signed
 exchange. These will eventually be listed in
 [I-D.ietf-httpbis-cache], but for now they're listed here:

 o Hop-by-hop header fields listed in the Connection header field
 (Section 6.1 of [RFC7230]).

 o Header fields listed in the no-cache response directive in the
 Cache-Control header field (Section 5.2.2.2 of [RFC7234]).

 o Header fields defined as hop-by-hop:

 * Connection

 * Keep-Alive

 * Proxy-Connection

 * Trailer

 * Transfer-Encoding

 * Upgrade

 o Stateful headers as defined below.

4.1.1. Stateful header fields

 As described in Section 6.1, a publisher can cause problems if they
 sign an exchange that includes private information. There's no way
 for a client to be sure an exchange does or does not include private
 information, but header fields that store or convey stored state in
 the client are a good sign.

 A stateful response header field modifies state, including
 authentication status, in the client. The HTTP cache is not
 considered part of this state. These include but are not limited to:

 o "Authentication-Control", [RFC8053]

 o "Authentication-Info", [RFC7615]

 o "Clear-Site-Data", [W3C.WD-clear-site-data-20171130]

 o "Optional-WWW-Authenticate", [RFC8053]

https://datatracker.ietf.org/doc/html/rfc7230#section-6.1
https://datatracker.ietf.org/doc/html/rfc7234#section-5.2.2.2
https://datatracker.ietf.org/doc/html/rfc8053
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc8053

Yasskin Expires July 27, 2019 [Page 23]

Internet-Draft Signed HTTP Exchanges January 2019

 o "Proxy-Authenticate", [RFC7235]

 o "Proxy-Authentication-Info", [RFC7615]

 o "Public-Key-Pins", [RFC7469]

 o "Sec-WebSocket-Accept", [RFC6455]

 o "Set-Cookie", [RFC6265]

 o "Set-Cookie2", [RFC2965]

 o "SetProfile", [W3C.NOTE-OPS-OverHTTP]

 o "Strict-Transport-Security", [RFC6797]

 o "WWW-Authenticate", [RFC7235]

4.2. Certificate Requirements

 We define a new X.509 extension, CanSignHttpExchanges to be used in
 the certificate when the certificate permits the usage of signed
 exchanges. When this extension is not present the client MUST NOT
 accept a signature from the certificate as proof that a signed
 exchange is authoritative for a domain covered by the certificate.
 When it is present, the client MUST follow the validation procedure
 in Section 4.

 id-ce-canSignHttpExchanges OBJECT IDENTIFIER ::= { TBD }

 CanSignHttpExchanges ::= NULL

 Note that this extension contains an ASN.1 NULL (bytes "05 00")
 because some implementations have bugs with empty extensions.

 Leaf certificates without this extension need to be revoked if the
 private key is exposed to an unauthorized entity, but they generally
 don't need to be revoked if a signing oracle is exposed and then
 removed.

 CA certificates, by contrast, need to be revoked if an unauthorized
 entity is able to make even one unauthorized signature.

 Certificates with this extension MUST be revoked if an unauthorized
 entity is able to make even one unauthorized signature.

 Conforming CAs MUST NOT mark this extension as critical.

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc7469
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc6797
https://datatracker.ietf.org/doc/html/rfc7235

Yasskin Expires July 27, 2019 [Page 24]

Internet-Draft Signed HTTP Exchanges January 2019

 Clients MUST NOT accept certificates with this extension in TLS
 connections (Section 4.4.2.2 of [RFC8446]).

 RFC EDITOR PLEASE DELETE THE REST OF THE PARAGRAPHS IN THIS SECTION

 id-ce-google OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 11129 }
 id-ce-canSignHttpExchangesDraft OBJECT IDENTIFIER ::= { id-ce-google 2 1
22 }

 Implementations of drafts of this specification MAY recognize the
 "id-ce-canSignHttpExchangesDraft" OID as identifying the
 CanSignHttpExchanges extension. This OID might or might not be used
 as the final OID for the extension, so certificates including it
 might need to be reissued once the final RFC is published.

5. Transferring a signed exchange

 A signed exchange can be transferred in several ways, of which three
 are described here.

5.1. Same-origin response

 The signature for a signed exchange can be included in a normal HTTP
 response. Because different clients send different request header
 fields, clients don't know how the server's content negotiation
 algorithm works, and intermediate servers add response header fields,
 it can be impossible to have a signature for the exchange's exact
 request, content negotiation, and response. Therefore, when a client
 calls the validation procedure in Section 3.5) to validate the
 "Signature" header field for an exchange represented as a normal HTTP
 request/response pair, it MUST pass:

 o The "Signature" header field,

 o The effective request URI (Section 5.5 of [RFC7230]) of the
 request,

 o The serialized headers defined by Section 5.1.1, and

 o The response's payload.

 If the client relies on signature validity for any aspect of its
 behavior, it MUST ignore any header fields that it didn't pass to the
 validation procedure.

 If the signed response includes a "Variants" header field, the client
 MUST use the cache behavior algorithm in Section 4 of
 [I-D.ietf-httpbis-variants] to check that the signed response is an
 appropriate representation for the request the client is trying to

https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2.2
https://datatracker.ietf.org/doc/html/rfc7230#section-5.5

Yasskin Expires July 27, 2019 [Page 25]

Internet-Draft Signed HTTP Exchanges January 2019

 fulfil. If the response is not an appropriate representation, the
 client MUST treat the signature as invalid.

5.1.1. Serialized headers for a same-origin response

 The serialized headers of an exchange represented as a normal HTTP
 request/response pair (Section 2.1 of [RFC7230] or Section 8.1 of
 [RFC7540]) are the canonical serialization (Section 3.4) of the CBOR
 representation (Section 3.2) of the response status code (Section 6
 of [RFC7231]) and the response header fields whose names are listed
 in that response's "Signed-Headers" header field (Section 5.1.2). If
 a response header field name from "Signed-Headers" does not appear in
 the response's header fields, the exchange has no serialized headers.

 If the exchange's "Signed-Headers" header field is not present,
 doesn't parse as a Structured Header
 ([I-D.ietf-httpbis-header-structure]) or doesn't follow the
 constraints on its value described in Section 5.1.2, the exchange has
 no serialized headers.

5.1.1.1. Open Questions

 Do the serialized headers of an exchange need to include the "Signed-
 Headers" header field itself?

5.1.2. The Signed-Headers Header

 The "Signed-Headers" header field identifies an ordered list of
 response header fields to include in a signature. The request URL
 and response status are included unconditionally. This allows a TLS-
 terminating intermediate to reorder headers without breaking the
 signature. This _can_ also allow the intermediate to add headers
 that will be ignored by some higher-level protocols, but Section 3.5
 provides a hook to let other higher-level protocols reject such
 insecure headers.

 This header field appears once instead of being incorporated into the
 signatures' parameters because the signed header fields need to be
 consistent across all signatures of an exchange, to avoid forcing
 higher-level protocols to merge the header field lists of valid
 signatures.

 "Signed-Headers" is a Structured Header as defined by
 [I-D.ietf-httpbis-header-structure]. Its value MUST be a list
 (Section 3.2 of [I-D.ietf-httpbis-header-structure]). Its ABNF is:

 Signed-Headers = sh-list

https://datatracker.ietf.org/doc/html/rfc7230#section-2.1
https://datatracker.ietf.org/doc/html/rfc7540#section-8.1
https://datatracker.ietf.org/doc/html/rfc7540#section-8.1
https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://datatracker.ietf.org/doc/html/rfc7231#section-6

Yasskin Expires July 27, 2019 [Page 26]

Internet-Draft Signed HTTP Exchanges January 2019

 Each element of the "Signed-Headers" list must be a lowercase string
 (Section 3.8 of [I-D.ietf-httpbis-header-structure]) naming an HTTP
 response header field. Pseudo-header field names (Section 8.1.2.1 of
 [RFC7540]) MUST NOT appear in this list.

 Higher-level protocols SHOULD place requirements on the minimum set
 of headers to include in the "Signed-Headers" header field.

5.2. HTTP/2 extension for cross-origin Server Push

 To allow servers to Server-Push (Section 8.2 of [RFC7540]) signed
 exchanges (Section 3) signed by an authority for which the server is
 not authoritative (Section 9.1 of [RFC7230]), this section defines an
 HTTP/2 extension.

5.2.1. Indicating support for cross-origin Server Push

 Clients that might accept signed Server Pushes with an authority for
 which the server is not authoritative indicate this using the HTTP/2
 SETTINGS parameter ENABLE_CROSS_ORIGIN_PUSH (0xSETTING-TBD).

 An ENABLE_CROSS_ORIGIN_PUSH value of 0 indicates that the client does
 not support cross-origin Push. A value of 1 indicates that the
 client does support cross-origin Push.

 A client MUST NOT send a ENABLE_CROSS_ORIGIN_PUSH setting with a
 value other than 0 or 1 or a value of 0 after previously sending a
 value of 1. If a server receives a value that violates these rules,
 it MUST treat it as a connection error (Section 5.4.1 of [RFC7540])
 of type PROTOCOL_ERROR.

 The use of a SETTINGS parameter to opt-in to an otherwise
 incompatible protocol change is a use of "Extending HTTP/2" defined
 by Section 5.5 of [RFC7540]. If a server were to send a cross-origin
 Push without first receiving a ENABLE_CROSS_ORIGIN_PUSH setting with
 the value of 1 it would be a protocol violation.

5.2.2. NO_TRUSTED_EXCHANGE_SIGNATURE error code

 The signatures on a Pushed cross-origin exchange may be untrusted for
 several reasons, for example that the certificate could not be
 fetched, that the certificate does not chain to a trusted root, that
 the signature itself doesn't validate, that the signature is expired,
 etc. This draft conflates all of these possible failures into one
 error code, NO_TRUSTED_EXCHANGE_SIGNATURE (0xERROR-TBD).

https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2.1
https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2.1
https://datatracker.ietf.org/doc/html/rfc7540#section-8.2
https://datatracker.ietf.org/doc/html/rfc7230#section-9.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.5

Yasskin Expires July 27, 2019 [Page 27]

Internet-Draft Signed HTTP Exchanges January 2019

5.2.2.1. Open Questions

 How fine-grained should this specification's error codes be?

5.2.3. Validating a cross-origin Push

 If the client has set the ENABLE_CROSS_ORIGIN_PUSH setting to 1, the
 server MAY Push a signed exchange for which it is not authoritative,
 and the client MUST NOT treat a PUSH_PROMISE for which the server is
 not authoritative as a stream error (Section 5.4.2 of [RFC7540]) of
 type PROTOCOL_ERROR, as described in Section 8.2 of [RFC7540], unless
 there is another error as described below.

 Instead, the client MUST validate such a PUSH_PROMISE and its
 response against the following list:

 1. If the PUSH_PROMISE includes any non-pseudo request header
 fields, the client MUST treat it as a stream error (Section 5.4.2
 of [RFC7540]) of type PROTOCOL_ERROR.

 2. If the PUSH_PROMISE's method is not "GET", the client MUST treat
 it as a stream error (Section 5.4.2 of [RFC7540]) of type
 PROTOCOL_ERROR.

 3. Run the algorithm in Section 4 over:

 * The "Signature" header field from the response.

 * The effective request URI from the PUSH_PROMISE.

 * The canonical serialization (Section 3.4) of the CBOR
 representation (Section 3.2) of the pushed response's status
 and its headers except for the "Signature" header field.

 * The response's payload.

 If this returns "invalid", the client MUST treat the response as
 a stream error (Section 5.4.2 of [RFC7540]) of type
 NO_TRUSTED_EXCHANGE_SIGNATURE. Otherwise, the client MUST treat
 the pushed response as if the server were authoritative for the
 PUSH_PROMISE's authority.

5.2.3.1. Open Questions

 Is it right that "validity-url" is required to be same-origin with
 the exchange? This allows the mitigation against downgrades in

Section 6.3, but prohibits intermediates from providing a cache of
 the validity information. We could do both with a list of URLs.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc7540#section-8.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.2

Yasskin Expires July 27, 2019 [Page 28]

Internet-Draft Signed HTTP Exchanges January 2019

5.3. application/signed-exchange format

 To allow signed exchanges to be the targets of "<link rel=prefetch>"
 tags, we define the "application/signed-exchange" content type that
 represents a signed HTTP exchange, including a request URL, response
 metadata and header fields, and a response payload.

 When served over HTTP, a response containing an "application/signed-
 exchange" payload MUST include at least the following response header
 fields, to reduce content sniffing vulnerabilities (Section 6.8):

 o Content-Type: application/signed-exchange;v=_version_

 o X-Content-Type-Options: nosniff

 This content type consists of the concatenation of the following
 items:

 1. 8 bytes consisting of the ASCII characters "sxg1" followed by 4
 0x00 bytes, to serve as a file signature. This is redundant with
 the MIME type, and recipients that receive both MUST check that
 they match and stop parsing if they don't.

 Note: RFC EDITOR PLEASE DELETE THIS NOTE; The implementation of
 the final RFC MUST use this file signature, but implementations
 of drafts MUST NOT use it and MUST use another implementation-
 specific 8-byte string beginning with "sxg1-".

 2. 2 bytes storing a big-endian integer "fallbackUrlLength".

 3. "fallbackUrlLength" bytes holding a "fallbackUrl", which MUST be
 an absolute URL with a scheme of "https".

 Note: The byte location of the fallback URL is intended to remain
 invariant across versions of the "application/signed-exchange"
 format so that parsers encountering unknown versions can always
 find a URL to redirect to.

 Issue: Should this fallback information also include the method?

 4. 3 bytes storing a big-endian integer "sigLength". If this is
 larger than 16384 (16*1024), parsing MUST fail.

 5. 3 bytes storing a big-endian integer "headerLength". If this is
 larger than 524288 (512*1024), parsing MUST fail.

 6. "sigLength" bytes holding the "Signature" header field's value
 (Section 3.1).

Yasskin Expires July 27, 2019 [Page 29]

Internet-Draft Signed HTTP Exchanges January 2019

 7. "headerLength" bytes holding "signedHeaders", the canonical
 serialization (Section 3.4) of the CBOR representation of the
 response headers of the exchange represented by the "application/
 signed-exchange" resource (Section 3.2), excluding the
 "Signature" header field.

 8. The payload body (Section 3.3 of [RFC7230]) of the exchange
 represented by the "application/signed-exchange" resource.

 Note that the use of the payload body here means that a
 "Transfer-Encoding" header field inside the "application/signed-
 exchange" header block has no effect. A "Transfer-Encoding"
 header field on the outer HTTP response that transfers this
 resource still has its normal effect.

5.3.1. Cross-origin trust in application/signed-exchange

 To determine whether to trust a cross-origin exchange stored in an
 "application/signed-exchange" resource, pass the "Signature" header
 field's value, "fallbackUrl" as the effective request URI,
 "signedHeaders", and the payload body to the algorithm in Section 4.

5.3.2. Example

 An example "application/signed-exchange" file representing a possible
 signed exchange with https://example.com/ [8] follows, with lengths
 represented by descriptions in "<>"s, CBOR represented in the
 extended diagnostic format defined in Appendix G of
 [I-D.ietf-cbor-cddl], and most of the "Signature" header field and
 payload elided with a ...:

 sxg1\0\0\0\0<2-byte length of the following url string>
 https://example.com/<3-byte length of the following header
 value><3-byte length of the encoding of the
 following map>sig1; sig=*...; integrity="digest/mi-sha256"; ...{
 ':status': '200',
 'content-type': 'text/html'
 }<!doctype html>\r\n<html>...

5.3.3. Open Questions

 Should this be a CBOR format, or is the current mix of binary and
 CBOR better?

 Are the mime type, extension, and magic number right?

https://datatracker.ietf.org/doc/html/rfc7230#section-3.3

Yasskin Expires July 27, 2019 [Page 30]

Internet-Draft Signed HTTP Exchanges January 2019

6. Security considerations

6.1. Over-signing

 If a publisher blindly signs all responses as their origin, they can
 cause at least two kinds of problems, described below. To avoid
 this, publishers SHOULD design their systems to opt particular public
 content that doesn't depend on authentication status into signatures
 instead of signing by default.

 Signing systems SHOULD also incorporate the following mitigations to
 reduce the risk that private responses are signed:

 1. Strip the "Cookie" request header field and other identifying
 information like client authentication and TLS session IDs from
 requests whose exchange is destined to be signed, before
 forwarding the request to a backend.

 2. Only sign exchanges where the response includes a "Cache-Control:
 public" header. Clients are not required to fail signature-
 checking for exchanges that omit this "Cache-Control" response
 header field to reduce the risk that naive signing systems
 blindly add it.

6.1.1. Session fixation

 Blind signing can sign responses that create session cookies or
 otherwise change state on the client to identify a particular
 session. This breaks certain kinds of CSRF defense and can allow an
 attacker to force a user into the attacker's account, where the user
 might unintentionally save private information, like credit card
 numbers or addresses.

 This specification defends against cookie-based attacks by blocking
 the "Set-Cookie" response header, but it cannot prevent Javascript or
 other response content from changing state.

6.1.2. Misleading content

 If a site signs private information, an attacker might set up their
 own account to show particular private information, forward that
 signed information to a victim, and use that victim's confusion in a
 more sophisticated attack.

 Stripping authentication information from requests before sending
 them to backends is likely to prevent the backend from showing
 attacker-specific information in the signed response. It does not
 prevent the attacker from showing their victim a signed-out page when

Yasskin Expires July 27, 2019 [Page 31]

Internet-Draft Signed HTTP Exchanges January 2019

 the victim is actually signed in, but while this is still misleading,
 it seems less likely to be useful to the attacker.

6.2. Off-path attackers

 Relaxing the requirement to consult DNS when determining authority
 for an origin means that an attacker who possesses a valid
 certificate no longer needs to be on-path to redirect traffic to
 them; instead of modifying DNS, they need only convince the user to
 visit another Web site in order to serve responses signed as the
 target. This consideration and mitigations for it are shared by the
 combination of [RFC8336] and
 [I-D.ietf-httpbis-http2-secondary-certs].

6.3. Downgrades

 Signing a bad response can affect more users than simply serving a
 bad response, since a served response will only affect users who make
 a request while the bad version is live, while an attacker can
 forward a signed response until its signature expires. Publishers
 should consider shorter signature expiration times than they use for
 cache expiration times.

 Clients MAY also check the "validity-url" (Paragraph 6) of an
 exchange more often than the signature's expiration would require.
 Doing so for an exchange with an HTTPS request URI provides a TLS
 guarantee that the exchange isn't out of date (as long as

Section 5.2.3.1 is resolved to keep the same-origin requirement).

6.4. Signing oracles are permanent

 An attacker with temporary access to a signing oracle can sign "still
 valid" assertions with arbitrary timestamps and expiration times. As
 a result, when a signing oracle is removed, the keys it provided
 access to MUST be revoked so that, even if the attacker used them to
 sign future-dated exchange validity assertions, the key's OCSP
 assertion will expire, causing the exchange as a whole to become
 untrusted.

6.5. Unsigned headers

 The use of a single "Signed-Headers" header field prevents us from
 signing aspects of the request other than its effective request URI
 (Section 5.5 of [RFC7230]). For example, if a publisher signs both
 "Content-Encoding: br" and "Content-Encoding: gzip" variants of a
 response, what's the impact if an attacker serves the brotli one for
 a request with "Accept-Encoding: gzip"? This is mitigated by using

https://datatracker.ietf.org/doc/html/rfc8336
https://datatracker.ietf.org/doc/html/rfc7230#section-5.5

Yasskin Expires July 27, 2019 [Page 32]

Internet-Draft Signed HTTP Exchanges January 2019

 [I-D.ietf-httpbis-variants] instead of request headers to describe
 how the client should run content negotiation.

 The simple form of "Signed-Headers" also prevents us from signing
 less than the full request URL. The SRI use case (Appendix A.3) may
 benefit from being able to leave the authority less constrained.

Section 3.5 can succeed when some delivered headers aren't included
 in the signed set. This accommodates current TLS-terminating
 intermediates and may be useful for SRI (Appendix A.3), but is risky
 for trusting cross-origin responses (Appendix A.1, Appendix A.2, and

Appendix A.6). Section 5.2 requires all headers to be included in
 the signature before trusting cross-origin pushed resources, at Ryan
 Sleevi's recommendation.

6.6. application/signed-exchange

 Clients MUST NOT trust an effective request URI claimed by an
 "application/signed-exchange" resource (Section 5.3) without either
 ensuring the resource was transferred from a server that was
 authoritative (Section 9.1 of [RFC7230]) for that URI's origin, or
 calling the algorithm in Section 5.3.1 and getting "valid" back.

6.7. Key re-use with TLS

 In general, key re-use across multiple protocols is a bad idea.

 Using an exchange-signing key in a TLS (or other directly-internet-
 facing) server increases the risk that an attacker can steal the
 private key, which will allow them to mint packages (similar to

Section 6.4) until their theft is discovered.

 Using a TLS key in a CanSignHttpExchanges certificate makes it less
 likely that the server operator will discover key theft, due to the
 considerations in Section 6.2.

 This specification uses the CanSignHttpExchanges X.509 extension
 (Section 4.2) to discourage re-use of TLS keys to sign exchanges or
 vice-versa.

 We require that clients reject certificates with the
 CanSignHttpExchanges extension when making TLS connections to
 minimize the chance that servers will re-use keys like this.
 Ideally, we would make the extension critical so that even clients
 that don't understand it would reject such TLS connections, but this
 proved impossible because certificate-validating libraries ship on
 significantly different schedules from the clients that use them.

https://datatracker.ietf.org/doc/html/rfc7230#section-9.1

Yasskin Expires July 27, 2019 [Page 33]

Internet-Draft Signed HTTP Exchanges January 2019

 Even once all clients reject these certificates in TLS connections,
 this will still just discourage and not prevent key re-use, since a
 server operator can unwisely request two different certificates with
 the same private key.

6.8. Content sniffing

 While modern browsers tend to trust the "Content-Type" header sent
 with a resource, especially when accompanied by "X-Content-Type-
 Options: nosniff", plugins will sometimes search for executable
 content buried inside a resource and execute it in the context of the
 origin that served the resource, leading to XSS vulnerabilities. For
 example, some PDF reader plugins look for "%PDF" anywhere in the
 first 1kB and execute the code that follows it.

 The "application/signed-exchange" format (Section 5.3) includes a URL
 and response headers early in the format, which an attacker could use
 to cause these plugins to sniff a bad content type.

 To avoid vulnerabilities, in addition to the response header
 requirements in Section 5.3, servers are advised to only serve an
 "application/signed-exchange" resource (SXG) from a domain if it
 would also be safe for that domain to serve the SXG's content
 directly, and to follow at least one of the following strategies:

 1. Only serve signed exchanges from dedicated domains that don't
 have access to sensitive cookies or user storage.

 2. Generate signed exchanges "offline", that is, in response to a
 trusted author submitting content or existing signatures reaching
 a certain age, rather than in response to untrusted-reader
 queries.

 3. Do all of:

 1. If the SXG's fallback URL (Section 5.3) is derived from the
 request URL, percent-encode [9] ([URL]) any bytes that are
 greater than 0x7E or are not URL code points [10] ([URL]) in
 the fallback URL . It is particularly important to make sure
 no unescaped nulls (0x00) or angle brackets (0x3C and 0x3E)
 appear.

 2. Do not reflect request header fields into the set of response
 headers.

 There are still a few binary length fields that an attacker may
 influence to contain sensitive bytes, but they're always followed by
 lowercase alphabetic strings from a small set of possibilities, which

Yasskin Expires July 27, 2019 [Page 34]

Internet-Draft Signed HTTP Exchanges January 2019

 reduces the chance that a client will sniff them as indicating a
 particular content type.

 To encourage servers to include the "X-Content-Type-Options: nosniff"
 header field, clients SHOULD reject signed exchanges served without
 it.

7. Privacy considerations

 Normally, when a client fetches "https://o1.com/resource.js",
 "o1.com" learns that the client is interested in the resource. If
 "o1.com" signs "resource.js", "o2.com" serves it as "https://o2.com/
 o1resource.js", and the client fetches it from there, then "o2.com"
 learns that the client is interested, and if the client executes the
 Javascript, that could also report the client's interest back to
 "o1.com".

 Often, "o2.com" already knew about the client's interest, because
 it's the entity that directed the client to "o1resource.js", but
 there may be cases where this leaks extra information.

 For non-executable resource types, a signed response can improve the
 privacy situation by hiding the client's interest from the original
 publisher.

 To prevent network operators other than "o1.com" or "o2.com" from
 learning which exchanges were read, clients SHOULD only load
 exchanges fetched over a transport that's protected from
 eavesdroppers. This can be difficult to determine when the exchange
 is being loaded from local disk, but when the client itself requested
 the exchange over a network it SHOULD require TLS ([RFC8446]) or a
 successor transport layer, and MUST NOT accept exchanges transferred
 over plain HTTP without TLS.

8. IANA considerations

 TODO: possibly register the validity-url format.

8.1. Signature Header Field Registration

 This section registers the "Signature" header field in the "Permanent
 Message Header Field Names" registry ([RFC3864]).

 Header field name: "Signature"

 Applicable protocol: http

 Status: standard

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc3864

Yasskin Expires July 27, 2019 [Page 35]

Internet-Draft Signed HTTP Exchanges January 2019

 Author/Change controller: IETF

 Specification document(s): Section 3.1 of this document

8.2. Accept-Signature Header Field Registration

 This section registers the "Accept-Signature" header field in the
 "Permanent Message Header Field Names" registry ([RFC3864]).

 Header field name: "Accept-Signature"

 Applicable protocol: http

 Status: standard

 Author/Change controller: IETF

 Specification document(s): Section 3.7 of this document

8.3. Signed-Headers Header Field Registration

 This section registers the "Signed-Headers" header field in the
 "Permanent Message Header Field Names" registry ([RFC3864]).

 Header field name: "Signed-Headers"

 Applicable protocol: http

 Status: standard

 Author/Change controller: IETF

 Specification document(s): Section 5.1.2 of this document

8.4. HTTP/2 Settings

 This section establishes an entry for the HTTP/2 Settings Registry
 that was established by Section 11.3 of [RFC7540]

 Name: ENABLE_CROSS_ORIGIN_PUSH

 Code: 0xSETTING-TBD

 Initial Value: 0

 Specification: This document

https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc7540#section-11.3

Yasskin Expires July 27, 2019 [Page 36]

Internet-Draft Signed HTTP Exchanges January 2019

8.5. HTTP/2 Error code

 This section establishes an entry for the HTTP/2 Error Code Registry
 that was established by Section 11.4 of [RFC7540]

 Name: NO_TRUSTED_EXCHANGE_SIGNATURE

 Code: 0xERROR-TBD

 Description: The client does not trust the signature for a cross-
 origin Pushed signed exchange.

 Specification: This document

8.6. Internet Media Type application/signed-exchange

 Type name: application

 Subtype name: signed-exchange

 Required parameters:

 o v: A string denoting the version of the file format. ([RFC5234]
 ABNF: "version = DIGIT/%x61-7A") The version defined in this
 specification is "1". When used with the "Accept" header field
 (Section 5.3.1 of [RFC7231]), this parameter can be a comma
 (,)-separated list of version strings. ([RFC5234] ABNF: "version-
 list = version *("," version)") The server is then expected to
 reply with a resource using a particular version from that list.

 Note: RFC EDITOR PLEASE DELETE THIS NOTE; Implementations of
 drafts of this specification MUST NOT use simple integers to
 describe their versions, and MUST instead define implementation-
 specific strings to identify which draft is implemented. The
 newest version of
 [I-D.yasskin-httpbis-origin-signed-exchanges-impl] describes the
 meaning of one such string.

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: see Section 6.6

 Interoperability considerations: N/A

 Published specification: This specification (see Section 5.3).

https://datatracker.ietf.org/doc/html/rfc7540#section-11.4
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc5234

Yasskin Expires July 27, 2019 [Page 37]

Internet-Draft Signed HTTP Exchanges January 2019

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): 73 78 67 31 00

 File extension(s): .sxg

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: See
 Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See Authors' Addresses section.

 Change controller: IESG

8.7. Internet Media Type application/cert-chain+cbor

 Type name: application

 Subtype name: cert-chain+cbor

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: N/A

 Interoperability considerations: N/A

 Published specification: This specification (see Section 3.3).

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information:

Yasskin Expires July 27, 2019 [Page 38]

Internet-Draft Signed HTTP Exchanges January 2019

 Deprecated alias names for this type: N/A

 Magic number(s): 1*9(??) 67 F0 9F 93 9C E2 9B 93

 File extension(s): N/A

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: See
 Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See Authors' Addresses section.

 Change controller: IESG

9. References

9.1. Normative References

 [FETCH] WHATWG, "Fetch", January 2019,
 <https://fetch.spec.whatwg.org/>.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-06 (work in progress), November 2018.

 [I-D.ietf-httpbis-header-structure]
 Nottingham, M. and P. Kamp, "Structured Headers for HTTP",

draft-ietf-httpbis-header-structure-09 (work in progress),
 December 2018.

 [I-D.ietf-httpbis-variants]
 Nottingham, M., "HTTP Representation Variants", draft-

ietf-httpbis-variants-04 (work in progress), October 2018.

 [I-D.thomson-http-mice]
 Thomson, M. and J. Yasskin, "Merkle Integrity Content
 Encoding", draft-thomson-http-mice-03 (work in progress),
 August 2018.

https://fetch.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-06
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-04
https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-03

Yasskin Expires July 27, 2019 [Page 39]

Internet-Draft Signed HTTP Exchanges January 2019

 [POSIX] IEEE and The Open Group, "The Open Group Base
 Specifications Issue 7", name IEEE, value 1003.1-2008,
 2016 Edition, 2016,
 <http://pubs.opengroup.org/onlinepubs/9699919799/

basedefs/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
RFC 3230, DOI 10.17487/RFC3230, January 2002,

 <https://www.rfc-editor.org/info/rfc3230>.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/info/rfc3864>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049

Yasskin Expires July 27, 2019 [Page 40]

Internet-Draft Signed HTTP Exchanges January 2019

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [URL] WHATWG, "URL", January 2019,
 <https://url.spec.whatwg.org/>.

9.2. Informative References

 [I-D.burke-content-signature]
 Burke, B., "HTTP Header for digital signatures", draft-

burke-content-signature-00 (work in progress), March 2011.

 [I-D.cavage-http-signatures]
 Cavage, M. and M. Sporny, "Signing HTTP Messages", draft-

cavage-http-signatures-10 (work in progress), May 2018.

https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://url.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-burke-content-signature-00
https://datatracker.ietf.org/doc/html/draft-burke-content-signature-00
https://datatracker.ietf.org/doc/html/draft-cavage-http-signatures-10
https://datatracker.ietf.org/doc/html/draft-cavage-http-signatures-10

Yasskin Expires July 27, 2019 [Page 41]

Internet-Draft Signed HTTP Exchanges January 2019

 [I-D.ietf-httpbis-cache]
 Fielding, R., Nottingham, M., and J. Reschke, "HTTP
 Caching", draft-ietf-httpbis-cache-03 (work in progress),
 October 2018.

 [I-D.ietf-httpbis-http2-secondary-certs]
 Bishop, M., Sullivan, N., and M. Thomson, "Secondary
 Certificate Authentication in HTTP/2", draft-ietf-httpbis-

http2-secondary-certs-03 (work in progress), October 2018.

 [I-D.thomson-http-content-signature]
 Thomson, M., "Content-Signature Header Field for HTTP",

draft-thomson-http-content-signature-00 (work in
 progress), July 2015.

 [I-D.yasskin-httpbis-origin-signed-exchanges-impl]
 Yasskin, J. and K. Ueno, "Signed HTTP Exchanges
 Implementation Checkpoints", draft-yasskin-httpbis-origin-

signed-exchanges-impl-02 (work in progress), September
 2018.

 [I-D.yasskin-webpackage-use-cases]
 Yasskin, J., "Use Cases and Requirements for Web
 Packages", draft-yasskin-webpackage-use-cases-01 (work in
 progress), March 2018.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, DOI 10.17487/RFC2965, October 2000,
 <https://www.rfc-editor.org/info/rfc2965>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, DOI 10.17487/RFC6455, December 2011,

 <https://www.rfc-editor.org/info/rfc6455>.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-03
https://datatracker.ietf.org/doc/html/draft-thomson-http-content-signature-00
https://datatracker.ietf.org/doc/html/draft-yasskin-httpbis-origin-signed-exchanges-impl-02
https://datatracker.ietf.org/doc/html/draft-yasskin-httpbis-origin-signed-exchanges-impl-02
https://datatracker.ietf.org/doc/html/draft-yasskin-webpackage-use-cases-01
https://datatracker.ietf.org/doc/html/rfc2965
https://www.rfc-editor.org/info/rfc2965
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc6455
https://www.rfc-editor.org/info/rfc6455

Yasskin Expires July 27, 2019 [Page 42]

Internet-Draft Signed HTTP Exchanges January 2019

 [RFC6797] Hodges, J., Jackson, C., and A. Barth, "HTTP Strict
 Transport Security (HSTS)", RFC 6797,
 DOI 10.17487/RFC6797, November 2012,
 <https://www.rfc-editor.org/info/rfc6797>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
 Authentication-Info Response Header Fields", RFC 7615,
 DOI 10.17487/RFC7615, September 2015,
 <https://www.rfc-editor.org/info/rfc7615>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8053] Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,
 T., and Y. Ioku, "HTTP Authentication Extensions for
 Interactive Clients", RFC 8053, DOI 10.17487/RFC8053,
 January 2017, <https://www.rfc-editor.org/info/rfc8053>.

 [RFC8336] Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",
RFC 8336, DOI 10.17487/RFC8336, March 2018,

 <https://www.rfc-editor.org/info/rfc8336>.

 [SRI] Akhawe, D., Braun, F., Marier, F., and J. Weinberger,
 "Subresource Integrity", World Wide Web Consortium
 Recommendation REC-SRI-20160623, June 2016,
 <http://www.w3.org/TR/2016/REC-SRI-20160623>.

 [W3C.NOTE-OPS-OverHTTP]
 Hensley, P., Metral, M., Shardanand, U., Converse, D., and
 M. Myers, "Implementation of OPS Over HTTP", W3C NOTE
 NOTE-OPS-OverHTTP, June 1997.

 [W3C.WD-clear-site-data-20171130]
 West, M., "Clear Site Data", World Wide Web Consortium WD
 WD-clear-site-data-20171130, November 2017,
 <https://www.w3.org/TR/2017/WD-clear-site-data-20171130>.

https://datatracker.ietf.org/doc/html/rfc6797
https://www.rfc-editor.org/info/rfc6797
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7469
https://www.rfc-editor.org/info/rfc7469
https://datatracker.ietf.org/doc/html/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8053
https://www.rfc-editor.org/info/rfc8053
https://datatracker.ietf.org/doc/html/rfc8336
https://www.rfc-editor.org/info/rfc8336
http://www.w3.org/TR/2016/REC-SRI-20160623
https://www.w3.org/TR/2017/WD-clear-site-data-20171130

Yasskin Expires July 27, 2019 [Page 43]

Internet-Draft Signed HTTP Exchanges January 2019

9.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] https://github.com/WICG/webpackage

 [3] https://url.spec.whatwg.org/#concept-url-parser

 [4] https://url.spec.whatwg.org/#absolute-url-string

 [5] http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap04.html#tag_04_16

 [6] https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml

 [7] https://html.spec.whatwg.org/multipage/origin.html#same-origin

 [8] https://example.com/

 [9] https://url.spec.whatwg.org/#percent-encode

 [10] https://url.spec.whatwg.org/#url-code-points

 [11] https://calendar.perfplanet.com/2013/big-bad-preloader/

 [12] https://github.com/mikewest/signature-based-sri

 [13] https://github.com/mikewest/signature-based-sri/issues/5

 [14] https://www.apple.com/ios/app-store/

 [15] https://play.google.com/store

 [16] https://github.com/WICG/webpackage

 [17] https://www.imperialviolet.org/2012/02/05/crlsets.html

 [18] https://tlswg.github.io/tls13-spec/draft-ietf-tls-
tls13.html#ocsp-and-sct

Appendix A. Use cases

A.1. PUSHed subresources

 To reduce round trips, a server might use HTTP/2 Push (Section 8.2 of
 [RFC7540]) to inject a subresource from another server into the
 client's cache. If anything about the subresource is expired or

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/WICG/webpackage
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#absolute-url-string
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml
https://html.spec.whatwg.org/multipage/origin.html#same-origin
https://url.spec.whatwg.org/#percent-encode
https://url.spec.whatwg.org/#url-code-points
https://calendar.perfplanet.com/2013/big-bad-preloader/
https://github.com/mikewest/signature-based-sri
https://github.com/mikewest/signature-based-sri/issues/5
https://www.apple.com/ios/app-store/
https://play.google.com/store
https://github.com/WICG/webpackage
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://tlswg.github.io/tls13-spec/draft-ietf-tls-tls13.html#ocsp-and-sct
https://tlswg.github.io/tls13-spec/draft-ietf-tls-tls13.html#ocsp-and-sct
https://datatracker.ietf.org/doc/html/rfc7540#section-8.2
https://datatracker.ietf.org/doc/html/rfc7540#section-8.2

Yasskin Expires July 27, 2019 [Page 44]

Internet-Draft Signed HTTP Exchanges January 2019

 can't be verified, the client would fetch it from the original
 server.

 For example, if "https://example.com/index.html" includes

 <script src="https://jquery.com/jquery-1.2.3.min.js">

 Then to avoid the need to look up and connect to "jquery.com" in the
 critical path, "example.com" might push that resource signed by
 "jquery.com".

A.2. Explicit use of a content distributor for subresources

 In order to speed up loading but still maintain control over its
 content, an HTML page in a particular origin "O.com" could tell
 clients to load its subresources from an intermediate content
 distributor that's not authoritative, but require that those
 resources be signed by "O.com" so that the distributor couldn't
 modify the resources. This is more constrained than the common CDN
 case where "O.com" has a CNAME granting the CDN the right to serve
 arbitrary content as "O.com".

 <img logicalsrc="https://O.com/img.png"
 physicalsrc="https://distributor.com/O.com/img.png">

 To make it easier to configure the right distributor for a given
 request, computation of the "physicalsrc" could be encapsulated in a
 custom element:

 <dist-img src="https://O.com/img.png"></dist-img>

 where the "<dist-img>" implementation generates an appropriate
 "" based on, for example, a "<meta name="dist-base">" tag
 elsewhere in the page. However, this has the downside that the
 preloader [11] can no longer see the physical source to download it.
 The resulting delay might cancel out the benefit of using a
 distributor.

 This could be used for some of the same purposes as SRI
 (Appendix A.3).

 To implement this with the current proposal, the distributor would
 respond to the physical request to "https://distributor.com/O.com/
 img.png" with first a signed PUSH_PROMISE for "https://O.com/img.png"
 and then a redirect to "https://O.com/img.png".

Yasskin Expires July 27, 2019 [Page 45]

Internet-Draft Signed HTTP Exchanges January 2019

A.3. Subresource Integrity

 The W3C WebAppSec group is investigating using signatures [12] in
 [SRI]. They need a way to transmit the signature with the response,
 which this proposal provides.

 Their needs are simpler than most other use cases in that the
 "integrity="ed25519-[public-key]"" attribute and CSP-based ways of
 expressing a public key don't need that key to be wrapped into a
 certificate.

 The "ed25519key" signature parameter supports this simpler way of
 attaching a key.

 The current proposal for signature-based SRI describes signing only
 the content of a resource, while this specification requires them to
 sign the request URI as well. This issue is tracked in

https://github.com/mikewest/signature-based-sri/issues/5 [13]. The
 details of what they need to sign will affect whether and how they
 can use this proposal.

A.4. Binary Transparency

 So-called "Binary Transparency" may eventually allow users to verify
 that a program they've been delivered is one that's available to the
 public, and not a specially-built version intended to attack just
 them. Binary transparency systems don't exist yet, but they're
 likely to work similarly to the successful Certificate Transparency
 logs described by [RFC6962].

 Certificate Transparency depends on Signed Certificate Timestamps
 that prove a log contained a particular certificate at a particular
 time. To build the same thing for Binary Transparency logs
 containing HTTP resources or full websites, we'll need a way to
 provide signatures of those resources, which signed exchanges
 provides.

A.5. Static Analysis

 Native app stores like the Apple App Store [14] and the Android Play
 Store [15] grant their contents powerful abilities, which they
 attempt to make safe by analyzing the applications before offering
 them to people. The web has no equivalent way for people to wait to
 run an update of a web application until a trusted authority has
 vouched for it.

 While full application analysis probably needs to wait until the
 authority can sign bundles of exchanges, authorities may be able to

https://github.com/mikewest/signature-based-sri/issues/5
https://datatracker.ietf.org/doc/html/rfc6962

Yasskin Expires July 27, 2019 [Page 46]

Internet-Draft Signed HTTP Exchanges January 2019

 guarantee certain properties by just checking a top-level resource
 and its [SRI]-constrained sub-resources.

A.6. Offline websites

 Fully-offline websites can be represented as bundles of signed
 exchanges, although an optimization to reduce the number of signature
 verifications may be needed. Work on this is in progress in the

https://github.com/WICG/webpackage [16] repository.

Appendix B. Requirements

B.1. Proof of origin

 To verify that a thing came from a particular origin, for use in the
 same context as a TLS connection, we need someone to vouch for the
 signing key with as much verification as the signing keys used in
 TLS. The obvious way to do this is to re-use the web PKI and CA
 ecosystem.

B.1.1. Certificate constraints

 If we re-use existing TLS server certificates, we incur the risks
 that:

 1. TLS server certificates must be accessible from online servers,
 so they're easier to steal or use as signing oracles than an
 offline key. An exchange's signing key doesn't need to be
 online.

 2. A server using an origin-trusted key for one purpose (e.g. TLS)
 might accidentally sign something that looks like an exchange, or
 vice versa.

 These risks are considered too high, so we define a new X.509
 certificate extension in Section 4.2 that requires CAs to issue new
 certificates for this purpose. We expect at least one low-cost CA to
 be willing to sign certificates with this extension.

B.1.2. Signature constraints

 In order to prevent an attacker who can convince the server to sign
 some resource from causing those signed bytes to be interpreted as
 something else the new X.509 extension here is forbidden from being
 used in TLS servers. If Section 4.2 changes to allow re-use in TLS
 servers, we would need to:

https://github.com/WICG/webpackage

Yasskin Expires July 27, 2019 [Page 47]

Internet-Draft Signed HTTP Exchanges January 2019

 1. Avoid key types that are used for non-TLS protocols whose output
 could be confused with a signature. That may be just the
 "rsaEncryption" OID from [RFC8017].

 2. Use the same format as TLS's signatures, specified in
Section 4.4.3 of [RFC8446], with a context string that's specific

 to this use.

 The specification also needs to define which signing algorithm to
 use. It currently specifies that as a function from the key type,
 instead of allowing attacker-controlled data to specify it.

B.1.3. Retrieving the certificate

 The client needs to be able to find the certificate vouching for the
 signing key, a chain from that certificate to a trusted root, and
 possibly other trust information like SCTs ([RFC6962]). One approach
 would be to include the certificate and its chain in the signature
 metadata itself, but this wastes bytes when the same certificate is
 used for multiple HTTP responses. If we decide to put the signature
 in an HTTP header, certificates are also unusually large for that
 context.

 Another option is to pass a URL that the client can fetch to retrieve
 the certificate and chain. To avoid extra round trips in fetching
 that URL, it could be bundled (Appendix A.6) with the signed content
 or PUSHed (Appendix A.1) with it. The risks from the
 "client_certificate_url" extension (Section 11.3 of [RFC6066]) don't
 seem to apply here, since an attacker who can get a client to load an
 exchange and fetch the certificates it references, can also get the
 client to perform those fetches by loading other HTML.

 To avoid using an unintended certificate with the same public key as
 the intended one, the content of the leaf certificate or the chain
 should be included in the signed data, like TLS does (Section 4.4.3
 of [RFC8446]).

B.2. How much to sign

 The previous [I-D.thomson-http-content-signature] and
 [I-D.burke-content-signature] schemes signed just the content, while
 ([I-D.cavage-http-signatures] could also sign the response headers
 and the request method and path. However, the same path, response
 headers, and content may mean something very different when retrieved
 from a different server. Section 5.1.1 currently includes the whole
 request URL in the signature, but it's possible we need a more
 flexible scheme to allow some higher-level protocols to accept a
 less-signed URL.

https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3
https://datatracker.ietf.org/doc/html/rfc6962
https://datatracker.ietf.org/doc/html/rfc6066#section-11.3
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3

Yasskin Expires July 27, 2019 [Page 48]

Internet-Draft Signed HTTP Exchanges January 2019

 Servers might want to sign other request headers in order to capture
 their effects on content negotiation. However, there's no standard
 algorithm to check that a client's actual request headers match
 request headers sent by a server. The most promising attempt at this
 is [I-D.ietf-httpbis-variants], which encodes the content negotiation
 algorithm into the "Variants" and "Variant-Key" response headers.
 The proposal here (Section 3) assumes that is in use and doesn't sign
 request headers.

B.2.1. Conveying the signed headers

 HTTP headers are traditionally munged by proxies, making it
 impossible to guarantee that the client will see the same sequence of
 bytes as the publisher published. In the HTTPS world, we have more
 end-to-end header integrity, but it's still likely that there are
 enough TLS-terminating proxies that the publisher's signatures would
 tend to break before getting to the client.

 There's no way in current HTTP for the response to a client-initiated
 request (Section 8.1 of [RFC7540]) to convey the request headers it
 expected to respond to, but we sidestep that by conveying content
 negotiation information in response headers, per
 [I-D.ietf-httpbis-variants].

 Since proxies are unlikely to modify unknown content types, we can
 wrap the original exchange into an "application/signed-exchange"
 format (Section 5.3) and include the "Cache-Control: no-transform"
 header when sending it.

 To reduce the likelihood of accidental modification by proxies, the
 "application/signed-exchange" format includes a file signature that
 doesn't collide with other known signatures.

 To help the PUSHed subresources use case (Appendix A.1), we might
 also want to extend the "PUSH_PROMISE" frame type to include a
 signature, and that could tell intermediates not to change the
 ensuing headers.

B.3. Response lifespan

 A normal HTTPS response is authoritative only for one client, for as
 long as its cache headers say it should live. A signed exchange can
 be re-used for many clients, and if it was generated while a server
 was compromised, it can continue compromising clients even if their
 requests happen after the server recovers. This signing scheme needs
 to mitigate that risk.

https://datatracker.ietf.org/doc/html/rfc7540#section-8.1

Yasskin Expires July 27, 2019 [Page 49]

Internet-Draft Signed HTTP Exchanges January 2019

B.3.1. Certificate revocation

 Certificates are mis-issued and private keys are stolen, and in
 response clients need to be able to stop trusting these certificates
 as promptly as possible. Online revocation checks don't work [17],
 so the industry has moved to pushed revocation lists and stapled OCSP
 responses [RFC6066].

 Pushed revocation lists work as-is to block trust in the certificate
 signing an exchange, but the signatures need an explicit strategy to
 staple OCSP responses. One option is to extend the certificate
 download (Appendix B.1.3) to include the OCSP response too, perhaps
 in the TLS 1.3 CertificateEntry [18] format.

B.3.2. Response downgrade attacks

 The signed content in a response might be vulnerable to attacks, such
 as XSS, or might simply be discovered to be incorrect after
 publication. Once the author fixes those vulnerabilities or
 mistakes, clients should stop trusting the old signed content in a
 reasonable amount of time. Similar to certificate revocation, I
 expect the best option to be stapled "this version is still valid"
 assertions with short expiration times.

 These assertions could be structured as:

 1. A signed minimum version number or timestamp for a set of request
 headers: This requires that signed responses need to include a
 version number or timestamp, but allows a server to provide a
 single signature covering all valid versions.

 2. A replacement for the whole exchange's signature. This requires
 the publisher to separately re-sign each valid version and
 requires each version to include a different update URL, but
 allows intermediates to serve less data. This is the approach
 taken in Section 3.

 3. A replacement for the exchange's signature and an update for the
 embedded "expires" and related cache-control HTTP headers
 [RFC7234]. This naturally extends publishers' intuitions about
 cache expiration and the existing cache revalidation behavior to
 signed exchanges. This is sketched and its downsides explored in

Appendix C.

 The signature also needs to include instructions to intermediates for
 how to fetch updated validity assertions.

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc7234

Yasskin Expires July 27, 2019 [Page 50]

Internet-Draft Signed HTTP Exchanges January 2019

B.4. Low implementation complexity

 Simpler implementations are, all things equal, less likely to include
 bugs. This section describes decisions that were made in the rest of
 the specification to reduce complexity.

B.4.1. Limited choices

 In general, we're trying to eliminate unnecessary choices in the
 specification. For example, instead of requiring clients to support
 two methods for verifying payload integrity, we only require one.

B.4.2. Bounded-buffering integrity checking

 Clients can be designed with a more-trusted network layer that
 decides how to trust resources and then provides those resources to
 less-trusted rendering processes along with handles to the storage
 and other resources they're allowed to access. If the network layer
 can enforce that it only operates on chunks of data up to a certain
 size, it can avoid the complexity of spooling large files to disk.

 To allow the network layer to verify signed exchanges using a bounded
 amount of memory, Section 5.3 requires the signature to be less than
 16kB and the headers to be less than 512kB, and Section 3.5 requires
 that the MI record size be less than 16kB. This allows the network
 layer to validate a bounded chunk at a time, and pass that chunk on
 to a renderer, and then forget about that chunk before processing the
 next one.

 The "Digest" header field from [RFC3230] requires the network layer
 to buffer the entire response body, so it's disallowed.

Appendix C. Determining validity using cache control

 This draft could expire signature validity using the normal HTTP
 cache control headers ([RFC7234]) instead of embedding an expiration
 date in the signature itself. This section specifies how that would
 work, and describes why I haven't chosen that option.

 The signatures in the "Signature" header field (Section 3.1) would no
 longer contain "date" or "expires" fields.

 The validity-checking algorithm (Section 3.5) would initialize "date"
 from the resource's "Date" header field (Section 7.1.1.2 of
 [RFC7231]) and initialize "expires" from either the "Expires" header
 field (Section 5.3 of [RFC7234]) or the "Cache-Control" header
 field's "max-age" directive (Section 5.2.2.8 of [RFC7234]) (added to

https://datatracker.ietf.org/doc/html/rfc3230
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.1.2
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.1.2
https://datatracker.ietf.org/doc/html/rfc7234#section-5.3
https://datatracker.ietf.org/doc/html/rfc7234#section-5.2.2.8

Yasskin Expires July 27, 2019 [Page 51]

Internet-Draft Signed HTTP Exchanges January 2019

 "date"), whichever is present, preferring "max-age" (or failing) if
 both are present.

 Validity updates (Section 3.6) would include a list of replacement
 response header fields. For each header field name in this list, the
 client would remove matching header fields from the stored exchange's
 response header fields. Then the client would append the replacement
 header fields to the stored exchange's response header fields.

C.1. Example of updating cache control

 For example, given a stored exchange of:

 GET / HTTP/1.1
 Host: example.com
 Accept: */*

 HTTP/1.1 200
 Date: Mon, 20 Nov 2017 10:00:00 UTC
 Content-Type: text/html
 Date: Tue, 21 Nov 2017 10:00:00 UTC
 Expires: Sun, 26 Nov 2017 10:00:00 UTC

 <!doctype html>
 <html>
 ...

 And an update listing the following headers:

 Expires: Fri, 1 Dec 2017 10:00:00 UTC
 Date: Sat, 25 Nov 2017 10:00:00 UTC

 The resulting stored exchange would be:

 GET / HTTP/1.1
 Host: example.com
 Accept: */*

 HTTP/1.1 200
 Content-Type: text/html
 Expires: Fri, 1 Dec 2017 10:00:00 UTC
 Date: Sat, 25 Nov 2017 10:00:00 UTC

 <!doctype html>
 <html>
 ...

Yasskin Expires July 27, 2019 [Page 52]

Internet-Draft Signed HTTP Exchanges January 2019

C.2. Downsides of updating cache control

 In an exchange with multiple signatures, using cache control to
 expire signatures forces all signatures to initially live for the
 same period. Worse, the update from one signature's "validity-url"
 might not match the update for another signature. Clients would need
 to maintain a current set of headers for each signature, and then
 decide which set to use when actually parsing the resource itself.

 This need to store and reconcile multiple sets of headers for a
 single signed exchange argues for embedding a signature's lifetime
 into the signature.

Appendix D. Change Log

 RFC EDITOR PLEASE DELETE THIS SECTION.

draft-05

 o Define absolute URLs, and limit the schemes each instance can use.

 o Fill in TBD size limits.

 o Update to mice-03 including the Digest header.

 o Refer to draft-yasskin-httpbis-origin-signed-exchanges-impl for
 draft version numbers.

 o Require "exchange"'s response to be cachable by a shared cache.

 o Define the "integrity" field of the Signature header to include
 subfields of the main integrity-protecting header, including the
 digest algorithm.

 o Put a fallback URL at the beginning of the "application/signed-
 exchange" format, which replaces the ':url' key from the CBOR
 representation of the exchange's request and response metadata and
 headers.

 o Remove the rest of the request headers from the signed data, in
 favor of representing content negotiation with the "Variants"
 response header.

 o Make the signed message format a concatenation of byte sequences,
 which helps implementations avoid re-serializing the exchange's
 request and response metadata and headers.

https://datatracker.ietf.org/doc/html/draft-05
https://datatracker.ietf.org/doc/html/draft-yasskin-httpbis-origin-signed-exchanges-impl

Yasskin Expires July 27, 2019 [Page 53]

Internet-Draft Signed HTTP Exchanges January 2019

 o Explicitly check the response payload's integrity instead of
 assuming the client did it elsewhere in processing the response.

 o Reject uncached header fields.

 o Update to draft-ietf-httpbis-header-structure-09.

 o Update to the final TLS 1.3 RFC.

draft-04

 o Update to draft-ietf-httpbis-header-structure-06.

 o Replace the application/http-exchange+cbor format with a simpler
 application/signed-exchange format that:

 * Doesn't require a streaming CBOR parser parse it from a network
 stream.

 * Doesn't allow request payloads or response trailers, which
 don't fit into the signature model.

 * Allows checking the signature before parsing the exchange
 headers.

 o Require absolute URLs.

 o Make all identifiers in headers lower-case, as required by
 Structured Headers.

 o Switch back to the TLS 1.3 signature format.

 o Include the version and draft number in the signature context
 string.

 o Remove support for integrity protection using the Digest header
 field.

 o Limit the record size in the mi-sha256 encoding.

 o Forbid RSA keys, and only require clients to support secp256r1
 keys.

 o Add a test OID for the CanSignHttpExchanges X.509 extension.

draft-03

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-09
https://datatracker.ietf.org/doc/html/draft-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-06
https://datatracker.ietf.org/doc/html/draft-03

Yasskin Expires July 27, 2019 [Page 54]

Internet-Draft Signed HTTP Exchanges January 2019

 o Allow each method of transferring an exchange to define which
 headers are signed, have the cross-origin methods use all headers,
 and remove the "allResponseHeaders" flag.

 o Describe footguns around signing private content, and block
 certain headers to make it less likely.

 o Define a CBOR structure to hold the certificate chain instead of
 re-using the TLS1.3 message. The TLS 1.3 parser fails on
 unexpected extensions while this format should ignore them, and
 apparently TLS implementations don't expose their message parsers
 enough to allow passing a message to a certificate verifier.

 o Require an X.509 extension for the signing certificate.

draft-02

 o Signatures identify a header (e.g. Digest or MI) to guard the
 payload's integrity instead of directly signing over the payload.

 o The validityUrl is signed.

 o Use CBOR maps where appropriate, and define how they're
 canonicalized.

 o Remove the update.url field from signature validity updates, in
 favor of just re-fetching the original request URL.

 o Define an HTTP/2 extension to use a setting to enable cross-origin
 Server Push.

 o Define an "Accept-Signature" header to negotiate whether to send
 Signatures and which ones.

 o Define an "application/http-exchange+cbor" format to fetch signed
 exchanges without HTTP/2 Push.

 o 2 new use cases.

Appendix E. Acknowledgements

 Thanks to Devin Mullins, Ilari Liusvaara, Justin Schuh, Mark
 Nottingham, Mike Bishop, Ryan Sleevi, and Yoav Weiss for comments
 that improved this draft.

https://datatracker.ietf.org/doc/html/draft-02

Yasskin Expires July 27, 2019 [Page 55]

Internet-Draft Signed HTTP Exchanges January 2019

Author's Address

 Jeffrey Yasskin
 Google

 Email: jyasskin@chromium.org

Yasskin Expires July 27, 2019 [Page 56]

