
Workgroup: Network Working Group

Internet-Draft:

draft-yasskin-http-origin-signed-responses-09

Published: 27 July 2020

Intended Status: Standards Track

Expires: 28 January 2021

Authors: J. Yasskin

Google

Signed HTTP Exchanges

Abstract

This document specifies how a server can send an HTTP exchange--a

request URL, content negotiation information, and a response--with

signatures that vouch for that exchange's authenticity. These

signatures can be verified against an origin's certificate to

establish that the exchange is authoritative for an origin even if

it was transferred over a connection that isn't. The signatures can

also be used in other ways described in the appendices.

These signatures contain countermeasures against downgrade and

protocol-confusion attacks.

Note to Readers

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at https://

lists.w3.org/Archives/Public/ietf-http-wg/.

The source code and issues list for this draft can be found in

https://github.com/WICG/webpackage.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 January 2021.

¶

¶

¶

¶

¶

¶

¶

¶

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/WICG/webpackage
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Signing an exchange

3.1. The Signature Header

3.1.1. Examples

3.1.2. Open Questions

3.2. CBOR representation of exchange response headers

3.2.1. Example

3.3. Loading a certificate chain

3.4. Canonical CBOR serialization

3.5. Signature validity

3.5.1. Open Questions

3.6. Updating signature validity

3.6.1. Examples

3.7. The Accept-Signature header

3.7.1. Integrity identifiers

3.7.2. Key type identifiers

3.7.3. Key value identifiers

3.7.4. Examples

3.7.5. Open Questions

4. Cross-origin trust

4.1. Uncached header fields

4.1.1. Stateful header fields

4.2. Certificate Requirements

4.2.1. Extensions to the CAA Record: cansignhttpexchanges

Parameter

5. Transferring a signed exchange

5.1. Same-origin response

5.1.1. Serialized headers for a same-origin response

5.1.2. The Signed-Headers Header

5.2. HTTP/2 extension for cross-origin Server Push

5.2.1. Indicating support for cross-origin Server Push

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

5.2.2. NO_TRUSTED_EXCHANGE_SIGNATURE error code

5.2.3. Validating a cross-origin Push

5.3. application/signed-exchange format

5.3.1. Cross-origin trust in application/signed-exchange

5.3.2. Example

5.3.3. Open Questions

6. Security considerations

6.1. Over-signing

6.1.1. Session fixation

6.1.2. Misleading content

6.2. Off-path attackers

6.2.1. Mis-issued certificates

6.2.2. Stolen private keys

6.3. Downgrades

6.4. Signing oracles are permanent

6.5. Unsigned headers

6.6. application/signed-exchange

6.7. Key re-use with TLS

6.8. Content sniffing

7. Privacy considerations

7.1. Visibility of resource requests

7.2. User ID transfer

8. IANA considerations

8.1. Signature Header Field Registration

8.2. Accept-Signature Header Field Registration

8.3. Signed-Headers Header Field Registration

8.4. HTTP/2 Settings

8.5. HTTP/2 Error code

8.6. Internet Media Type application/signed-exchange

8.7. Internet Media Type application/cert-chain+cbor

8.8. The cansignhttpexchanges CAA Parameter

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Use cases

A.1. PUSHed subresources

A.2. Explicit use of a content distributor for subresources

A.3. Subresource Integrity

A.4. Binary Transparency

A.5. Static Analysis

A.6. Offline websites

Appendix B. Requirements

B.1. Proof of origin

B.1.1. Certificate constraints

B.1.2. Signature constraints

B.1.3. Retrieving the certificate

B.2. How much to sign

B.2.1. Conveying the signed headers

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Absolute URL

Author

B.3. Response lifespan

B.3.1. Certificate revocation

B.3.2. Response downgrade attacks

B.4. Low implementation complexity

B.4.1. Limited choices

B.4.2. Bounded-buffering integrity checking

Appendix C. Determining validity using cache control

C.1. Example of updating cache control

C.2. Downsides of updating cache control

Appendix D. Change Log

Appendix E. Acknowledgements

Author's Address

1. Introduction

Signed HTTP exchanges provide a way to prove the authenticity of a

resource in cases where the transport layer isn't sufficient. This

can be used in several ways:

When signed by a certificate ([RFC5280]) that's trusted for an

origin, an exchange can be treated as authoritative for that

origin, even if it was transferred over a connection that isn't

authoritative (Section 9.1 of [RFC7230]) for that origin. See

Appendix A.1 and Appendix A.2.

A top-level resource can use a public key to identify an expected

publisher for particular subresources, a system known as

Subresource Integrity ([SRI]). An exchange's signature provides

the matching proof of authorship. See Appendix A.3.

A signature can vouch for the exchange in some way, for example

that it appears in a transparency log or that static analysis

indicates that it omits certain attacks. See Appendix A.4 and

Appendix A.5.

Subsequent work toward the use cases in [I-D.yasskin-wpack-use-

cases] will provide a way to group signed exchanges into bundles

that can be transmitted and stored together, but single signed

exchanges are useful enough to standardize on their own.

2. Terminology

A string for which the URL parser ([URL]), when run

without a base URL, returns a URL rather than a failure, and for

which that URL has a null fragment. This is similar to the

absolute-URL string concept defined by ([URL]) but might not

include exactly the same strings.

The entity that wrote the content in a particular resource.

This specification deals with publishers rather than authors.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#absolute-url-string

Publisher

Exchange (noun)

Intermediate

Client

Unix time

The entity that controls the server for a particular

origin [RFC6454]. The publisher can get a CA to issue

certificates for their private keys and can run a TLS server for

their origin.

An HTTP request URL, content negotiation

information, and an HTTP response. This can be encoded into a

request message from a client with its matching response from a

server, into the request in a PUSH_PROMISE with its matching

response stream, or into the dedicated format in Section 5.3,

which uses [I-D.ietf-httpbis-variants] to encode the content

negotiation information. This is not quite the same meaning as

defined by Section 8 of [RFC7540], which assumes the content

negotiation information is embedded into HTTP request headers.

An entity that fetches signed HTTP exchanges from a

publisher or another intermediate and forwards them to another

intermediate or a client.

An entity that uses a signed HTTP exchange and needs to be

able to prove that the publisher vouched for it as coming from

its claimed origin.

Defined by [POSIX] section 4.16.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Signing an exchange

In the response of an HTTP exchange the server MAY include a

Signature header field (Section 3.1) holding a list of one or more

parameterised signatures that vouch for the content of the exchange.

Exactly which content the signature vouches for can depend on how

the exchange is transferred (Section 5).

The client categorizes each signature as "valid" or "invalid" by

validating that signature with its certificate or public key and

other metadata against the exchange's URL, response headers, and

content (Section 3.5). This validity then informs higher-level

protocols.

Each signature is parameterised with information to let a client

fetch assurance that a signed exchange is still valid, in the face

of revoked certificates and newly-discovered vulnerabilities. This

assurance can be bundled back into the signed exchange and forwarded

¶

¶

¶

¶

¶

¶

¶

¶

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16

"sig"

"integrity"

to another client, which won't have to re-fetch this validity

information for some period of time.

3.1. The Signature Header

The Signature header field conveys a list of signatures for an

exchange, each one accompanied by information about how to determine

the authority of and refresh that signature. Each signature directly

signs the exchange's URL and response headers and identifies one of

those headers that enforces the integrity of the exchange's payload.

The Signature header is a Structured Header as defined by [I-D.ietf-

httpbis-header-structure]. Its value MUST be a parameterised list

(Section 3.4 of [I-D.ietf-httpbis-header-structure]). Its ABNF is:

Each parameterised identifier in the list MUST have parameters named

"sig", "integrity", "validity-url", "date", and "expires". Each

parameterised identifier MUST also have either "cert-url" and "cert-

sha256" parameters or an "ed25519key" parameter. This specification

gives no meaning to the identifier itself, which can be used as a

human-readable identifier for the signature (however, this is likely

to change soon; see Section 3.1.2, Paragraph 1). The present

parameters MUST have the following values:

Byte sequence (Section 3.10 of [I-D.ietf-httpbis-header-

structure]) holding the signature of most of these parameters and

the exchange's URL and response headers.

A string (Section 3.8 of [I-D.ietf-httpbis-header-

structure]) containing a "/"-separated sequence of names starting

with the lowercase name of the response header field that guards

the response payload's integrity. The meaning of subsequent names

depends on the response header field, but for the "digest" header

¶

¶

¶

Signature = sh-param-list¶

¶

¶

"cert-url"

"cert-sha256"

"ed25519key"

"validity-url"

"date" and "expires"

field, the single following name is the name of the digest

algorithm that guards the payload's integrity.

A string (Section 3.8 of [I-D.ietf-httpbis-header-

structure]) containing an absolute URL (Section 2) with a scheme

of "https" or "data".

Byte sequence (Section 3.10 of [I-D.ietf-httpbis-

header-structure]) holding the SHA-256 hash of the first

certificate found at "cert-url".

Byte sequence (Section 3.10 of [I-D.ietf-httpbis-

header-structure]) holding an Ed25519 public key ([RFC8032]).

A string (Section 3.8 of [I-D.ietf-httpbis-header-

structure]) containing an absolute URL (Section 2) with a scheme

of "https".

An integer (Section 3.6 of [I-D.ietf-httpbis-

header-structure]) representing a Unix time.

The "cert-url" parameter is not signed, so intermediates can update

it with a pointer to a cached version.

3.1.1. Examples

The following header is included in the response for an exchange

with effective request URI https://example.com/resource.html.

Newlines are added for readability.

¶

¶

¶

¶

¶

¶

¶

¶

There are 4 signatures: 2 from different secp256r1 certificates

within https://example.com/, one using a raw ed25519 public key

that's also controlled by example.com, and a fourth using a

secp256r1 certificate owned by thirdparty.example.com.

All 4 signatures rely on the Digest response header with the mi-

sha256 digest algorithm to guard the integrity of the response

payload.

The signatures include a "validity-url" that includes the first time

the resource was seen. This allows multiple versions of a resource

at the same URL to be updated with new signatures, which allows

clients to avoid transferring extra data while the old versions

don't have known security bugs.

The certificates at https://example.com/oldcerts and https://

example.com/newcerts have subjectAltNames of example.com, meaning

that if they and their signatures validate, the exchange can be

trusted as having an origin of https://example.com/. The publisher

Signature:

 sig1;

 sig=*MEUCIQDXlI2gN3RNBlgFiuRNFpZXcDIaUpX6HIEwcZEc0cZYLAIga9DsVOMM+g5YpwEBdGW3sS+bvnmAJJiSMwhuBdqp5UY=*;

 integrity="digest/mi-sha256";

 validity-url="https://example.com/resource.validity.1511128380";

 cert-url="https://example.com/oldcerts";

 cert-sha256=*W7uB969dFW3Mb5ZefPS9Tq5ZbH5iSmOILpjv2qEArmI=*;

 date=1511128380; expires=1511733180,

 sig2;

 sig=*MEQCIGjZRqTRf9iKNkGFyzRMTFgwf/BrY2ZNIP/dykhUV0aYAiBTXg+8wujoT4n/W+cNgb7pGqQvIUGYZ8u8HZJ5YH26Qg==*;

 integrity="digest/mi-sha256";

 validity-url="https://example.com/resource.validity.1511128380";

 cert-url="https://example.com/newcerts";

 cert-sha256=*J/lEm9kNRODdCmINbvitpvdYKNQ+YgBj99DlYp4fEXw=*;

 date=1511128380; expires=1511733180,

 srisig;

 sig=*lGZVaJJM5f2oGczFlLmBdKTDL+QADza4BgeO494ggACYJOvrof6uh5OJCcwKrk7DK+LBch0jssDYPp5CLc1SDA==*;

 integrity="digest/mi-sha256";

 validity-url="https://example.com/resource.validity.1511128380";

 ed25519key=*zsSevyFsxyZHiUluVBDd4eypdRLTqyWRVOJuuKUz+A8=*

 date=1511128380; expires=1511733180,

 thirdpartysig;

 sig=*MEYCIQCNxJzn6Rh2fNxsobktir8TkiaJYQFhWTuWI1i4PewQaQIhAMs2TVjc4rTshDtXbgQEOwgj2mRXALhfXPztXgPupii+*;

 integrity="digest/mi-sha256";

 validity-url="https://thirdparty.example.com/resource.validity.1511161860";

 cert-url="https://thirdparty.example.com/certs";

 cert-sha256=*UeOwUPkvxlGRTyvHcsMUN0A2oNsZbU8EUvg8A9ZAnNc=*;

 date=1511133060; expires=1511478660,

¶

¶

¶

¶

might be using two certificates because their readers have disjoint

sets of roots in their trust stores.

The publisher signed with all three certificates at the same time,

so they share a validity range: 7 days starting at 2017-11-19 21:53

UTC.

The publisher then requested an additional signature from

thirdparty.example.com, which did some validation or processing and

then signed the resource at 2017-11-19 23:11 UTC.

thirdparty.example.com only grants 4-day signatures, so clients will

need to re-validate more often.

3.1.2. Open Questions

The next revision of [I-D.ietf-httpbis-header-structure] will

provide a way to parameterise byte sequences, at which point the

signature itself is likely to become the main list item.

Should the cert-url and validity-url be lists so that intermediates

can offer a cache without losing the original URLs? Putting lists in

dictionary fields is more complex than [I-D.ietf-httpbis-header-

structure] allows, so they're single items for now.

3.2. CBOR representation of exchange response headers

To sign an exchange's response headers, they need to be serialized

into a byte string. Since intermediaries and distributors (Appendix

A.2) might rearrange, add, or just reserialize headers, we can't use

the literal bytes of the headers as this serialization. Instead,

this section defines a CBOR representation that can be embedded into

other CBOR, canonically serialized (Section 3.4), and then signed.

The CBOR representation of a set of response metadata and headers is

the CBOR ([RFC7049]) map with the following mappings:

The byte string ':status' to the byte string containing the

response's 3-digit status code, and

For each response header field, the header field's lowercase name

as a byte string to the header field's value as a byte string.

3.2.1. Example

Given the HTTP exchange:

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

The cbor representation consists of the following item, represented

using the extended diagnostic notation from [CDDL] appendix G:

3.3. Loading a certificate chain

The resource at a signature's cert-url MUST have the application/

cert-chain+cbor content type, MUST be canonically-encoded CBOR

(Section 3.4), and MUST match the following CDDL:

The first map (second item) in the CBOR array is treated as the end-

entity certificate, and the client will attempt to build a path

([RFC5280]) to it from a trusted root using the other certificates

in the chain.

Each cert value MUST be a DER-encoded X.509v3 certificate

([RFC5280]). Other key/value pairs in the same array item

define properties of this certificate.

The first certificate's ocsp value MUST be a complete, DER-

encoded OCSP response for that certificate (using the ASN.1

GET / HTTP/1.1

Host: example.com

Accept: */*

HTTP/1.1 200

Content-Type: text/html

Digest: mi-sha256=dcRDgR2GM35DluAV13PzgnG6+pvQwPywfFvAu1UeFrs=

Signed-Headers: "content-type", "digest"

<!doctype html>

<html>

...

¶

¶

{

 'digest': 'mi-sha256=dcRDgR2GM35DluAV13PzgnG6+pvQwPywfFvAu1UeFrs=',

 ':status': '200',

 'content-type': 'text/html'

}

¶

¶

cert-chain = [

 " ", ; U+1F4DC U+26D3
 + augmented-certificate

]

augmented-certificate = {

 cert: bytes,

 ? ocsp: bytes,

 ? sct: bytes,

 * tstr => any,

}

¶

¶

1.

¶

2.

type OCSPResponse defined in [RFC6960]). Subsequent

certificates MUST NOT have an ocsp value.

Each certificate's sct value if any MUST be a

SignedCertificateTimestampList for that certificate as defined

by Section 3.3 of [RFC6962].

Loading a cert-url takes a forceFetch flag. The client MUST:

Let raw-chain be the result of fetching ([FETCH]) cert-url. If

forceFetch is not set, the fetch can be fulfilled from a cache

using normal HTTP semantics [RFC7234]. If this fetch fails,

return "invalid".

Let certificate-chain be the array of certificates and

properties produced by parsing raw-chain using the CDDL above.

If any of the requirements above aren't satisfied, return

"invalid". Note that this validation requirement might be

impractical to completely achieve due to certificate validation

implementations that don't enforce DER encoding or other

standard constraints.

Return certificate-chain.

3.4. Canonical CBOR serialization

Within this specification, the canonical serialization of a CBOR

item uses the following rules derived from Section 3.9 of [RFC7049]

with erratum 4964 applied:

Integers and the lengths of arrays, maps, and strings MUST use

the smallest possible encoding.

Items MUST NOT be encoded with indefinite length.

The keys in every map MUST be sorted in the bytewise

lexicographic order of their canonical encodings. For example,

the following keys are correctly sorted:

10, encoded as 0A.

100, encoded as 18 64.

-1, encoded as 20.

"z", encoded as 61 7A.

"aa", encoded as 62 61 61.

[100], encoded as 81 18 64.

¶

3.

¶

¶

1.

¶

2.

¶

3. ¶

¶

*

¶

* ¶

*

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

6. ¶

[-1], encoded as 81 20.

false, encoded as F4.

Note: this specification does not use floating point, tags, or other

more complex data types, so it doesn't need rules to canonicalize

those.

3.5. Signature validity

The client MUST parse the Signature header field as the

parameterised list (Section 4.2.5 of [I-D.ietf-httpbis-header-

structure]) described in Section 3.1. If an error is thrown during

this parsing or any of the requirements described there aren't

satisfied, the exchange has no valid signatures. Otherwise, each

member of this list represents a signature with parameters.

The client MUST use the following algorithm to determine whether

each signature with parameters is invalid or potentially-valid for

an exchange's

requestUrl, a byte sequence that can be parsed into the

exchange's effective request URI (Section 5.5 of [RFC7230]),

responseHeaders, a byte sequence holding the canonical

serialization (Section 3.4) of the CBOR representation (Section

3.2) of the exchange's response metadata and headers, and

payload, a stream of bytes constituting the exchange's payload

body (Section 3.3 of [RFC7230]). Note that the payload body is

the message body with any transfer encodings removed.

Potentially-valid results include:

The signed headers of the exchange so that higher-level protocols

can avoid relying on unsigned headers, and

Either a certificate chain or a public key so that a higher-level

protocol can determine whether it's actually valid.

This algorithm accepts a forceFetch flag that avoids the cache when

fetching URLs. A client that determines that a potentially-valid

certificate chain is actually invalid due to an expired OCSP

response MAY retry with forceFetch set to retrieve an updated OCSP

from the original server.

Let:

signature be the signature (byte sequence in the

parameterised identifier's "sig" parameter).

7. ¶

8. ¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

1. ¶

*

¶

integrity be the signature's "integrity" parameter.

validity-url be the signature's "validity-url" parameter.

cert-url be the signature's "cert-url" parameter, if any.

cert-sha256 be the signature's "cert-sha256" parameter, if

any.

ed25519key be the signature's "ed25519key" parameter, if

any.

date be the signature's "date" parameter, interpreted as a

Unix time.

expires be the signature's "expires" parameter, interpreted

as a Unix time.

Set publicKey and signing-alg depending on which key fields are

present:

If cert-url is present:

Let certificate-chain be the result of loading the

certificate chain at cert-url passing the forceFetch

flag (Section 3.3). If this returns "invalid", return

"invalid".

Let main-certificate be the first certificate in

certificate-chain.

Set publicKey to main-certificate's public key.

If publicKey is an RSA key, return "invalid".

If publicKey is a key using the secp256r1 elliptic

curve, set signing-alg to ecdsa_secp256r1_sha256 as

defined in Section 4.2.3 of [RFC8446].

Otherwise, either return "invalid" or set signing-alg

to a non-legacy signing algorithm defined by TLS 1.3

or later ([RFC8446]). This choice MUST depend only

on publicKey's type and not on any other context.

If ed25519key is present, set publicKey to ed25519key and

signing-alg to ed25519, as defined by [RFC8032]

If expires is more than 7 days (604800 seconds) after date,

return "invalid".

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

2.

¶

1. ¶

1.

¶

2.

¶

3. ¶

4. ¶

5.

¶

6.

¶

2.

¶

3.

¶

If the current time is before date or after expires, return

"invalid".

Let message be the concatenation of the following byte strings.

This matches the [RFC8446] format to avoid cross-protocol

attacks if anyone uses the same key in a TLS certificate and an

exchange-signing certificate.

A string that consists of octet 32 (0x20) repeated 64

times.

A context string: the ASCII encoding of "HTTP Exchange 1".

Note: RFC EDITOR PLEASE DELETE THIS NOTE; The

implementation of the final RFC MUST use this context

string, but implementations of drafts MUST NOT use it and

MUST use another draft-specific string beginning with

"HTTP Exchange 1 " instead. This ensures that signers can

predict how their signatures will be used.

A single 0 byte which serves as a separator.

If cert-sha256 is set, a byte holding the value 32

followed by the 32 bytes of the value of cert-sha256.

Otherwise a 0 byte.

The 8-byte big-endian encoding of the length in bytes of

validity-url, followed by the bytes of validity-url.

The 8-byte big-endian encoding of date.

The 8-byte big-endian encoding of expires.

The 8-byte big-endian encoding of the length in bytes of

requestUrl, followed by the bytes of requestUrl.

The 8-byte big-endian encoding of the length in bytes of

responseHeaders, followed by the bytes of responseHeaders.

If cert-url is present and the SHA-256 hash of main-

certificate's cert_data is not equal to cert-sha256 (whose

presence was checked when the Signature header field was

parsed), return "invalid".

Note that this intentionally differs from TLS 1.3, which signs

the entire certificate chain in its Certificate Verify (Section

4.4.3 of [RFC8446]), in order to allow updating the stapled

OCSP response without updating signatures at the same time.

4.

¶

5.

¶

1.

¶

2. ¶

¶

3. ¶

4.

¶

5.

¶

6. ¶

7. ¶

8.

¶

9.

¶

6.

¶

¶

If signature is not a valid signature of message by publicKey

using signing-alg, return "invalid".

If headers, interpreted according to Section 3.2, does not

contain a Content-Type response header field (Section 3.1.1.5

of [RFC7231]), return "invalid".

Clients MUST interpret the signed payload as this specified

media type instead of trying to sniff a media type from the

bytes of the payload, for example by attaching an X-Content-

Type-Options: nosniff header field ([FETCH]) to the extracted

response.

If integrity names a header field and parameter that is not

present in responseHeaders or which the client cannot use to

check the integrity of payload (for example, the header field

is new and hasn't been implemented yet), then return "invalid".

If the selected header field provides integrity guarantees

weaker than SHA-256, return "invalid". If validating integrity

using the selected header field requires the client to process

records larger than 16384 bytes, return "invalid". Clients MUST

implement at least the Digest header field with its mi-sha256

digest algorithm (Section 3 of [I-D.thomson-http-mice]).

Note: RFC EDITOR PLEASE DELETE THIS NOTE; Implementations of

drafts of this RFC MUST recognize the draft spelling of the

content encoding and digest algorithm specified by [I-

D.thomson-http-mice] until that draft is published as an RFC.

For example, implementations of draft-thomson-http-mice-03

would use mi-sha256-03 and MUST NOT use mi-sha256 itself. This

ensures that final implementations don't need to handle

compatibility with implementations of early drafts of that

content encoding.

If payload doesn't match the integrity information in the

header described by integrity, return "invalid".

Return "potentially-valid" with whichever is present of

certificate-chain or ed25519key.

Note that the above algorithm can determine that an exchange's

headers are potentially-valid before the exchange's payload is

received. Similarly, if integrity identifies a header field and

parameter like Digest:mi-sha256 ([I-D.thomson-http-mice]) that can

incrementally validate the payload, early parts of the payload can

be determined to be potentially-valid before later parts of the

payload. Higher-level protocols MAY process parts of the exchange

that have been determined to be potentially-valid as soon as that

determination is made but MUST NOT process parts of the exchange

7.

¶

8.

¶

¶

9.

¶

¶

¶

10.

¶

that are not yet potentially-valid. Similarly, as the higher-level

protocol determines that parts of the exchange are actually valid,

the client MAY process those parts of the exchange and MUST wait to

process other parts of the exchange until they too are determined to

be valid.

3.5.1. Open Questions

Should the signed message use the TLS format (with an initial 64

spaces) even though these certificates can't be used in TLS servers?

3.6. Updating signature validity

Both OCSP responses and signatures are designed to expire a short

time after they're signed, so that revoked certificates and signed

exchanges with known vulnerabilities are distrusted promptly.

This specification provides no way to update OCSP responses by

themselves. Instead, clients need to re-fetch the "cert-url"

(Section 3.5, Paragraph 6) to get a chain including a newer OCSP

response.

The "validity-url" parameter (Section 3.1) of the signatures

provides a way to fetch new signatures or learn where to fetch a

complete updated exchange.

Each version of a signed exchange SHOULD have its own validity URLs,

since each version needs different signatures and becomes obsolete

at different times.

The resource at a "validity-url" is "validity data", a CBOR map

matching the following CDDL ([CDDL]):

The elements of the signatures array are parameterised identifiers

(Section 4.2.6 of [I-D.ietf-httpbis-header-structure]) meant to

replace the signatures within the Signature header field pointing to

this validity data. If the signed exchange contains a bug severe

enough that clients need to stop using the content, the signatures

array MUST NOT be present.

If the the update map is present, that indicates that a new version

of the signed exchange is available at its effective request URI

(Section 5.5 of [RFC7230]) and can give an estimate of the size of

¶

¶

¶

¶

¶

¶

¶

validity = {

 ? signatures: [+ bytes]

 ? update: {

 ? size: uint,

 }

]

¶

¶

the updated exchange (update.size). If the signed exchange is

currently the most recent version, the update SHOULD NOT be present.

If both the signatures and update fields are present, clients can

use the estimated size to decide whether to update the whole

resource or just its signatures.

3.6.1. Examples

For example, say a signed exchange whose URL is https://example.com/

resource has the following Signature header field (with line breaks

included and irrelevant fields omitted for ease of reading).

At 2017-11-27 11:02 UTC, sig1 and sig2 have expired, but

thirdpartysig doesn't exipire until 23:11 that night, so the client

needs to fetch https://example.com/resource.validity.1511157180 (the

validity-url of sig1 and sig2) if it wishes to update those

signatures. This URL might contain:

¶

¶

¶

Signature:

 sig1;

 sig=*MEUCIQ...*;

 ...

 validity-url="https://example.com/resource.validity.1511157180";

 cert-url="https://example.com/oldcerts";

 date=1511128380; expires=1511733180,

 sig2;

 sig=*MEQCIG...*;

 ...

 validity-url="https://example.com/resource.validity.1511157180";

 cert-url="https://example.com/newcerts";

 date=1511128380; expires=1511733180,

 thirdpartysig;

 sig=*MEYCIQ...*;

 ...

 validity-url="https://thirdparty.example.com/resource.validity.1511161860";

 cert-url="https://thirdparty.example.com/certs";

 date=1511478660; expires=1511824260

¶

¶

This indicates that the client could fetch a newer version at

https://example.com/resource (the original URL of the exchange), or

that the validity period of the old version can be extended by

replacing the first two of the original signatures (the ones with a

validity-url of https://example.com/resource.validity.1511157180)

with the single new signature provided. (This might happen at the

end of a migration to a new root certificate.) The signatures of the

updated signed exchange would be:

https://example.com/resource.validity.1511157180 could also expand

the set of signatures if its signatures array contained more than 2

elements.

3.7. The Accept-Signature header

Signature header fields cost on the order of 300 bytes for ECDSA

signatures, so servers might prefer to avoid sending them to clients

that don't intend to use them. A client can send the Accept-

Signature header field to indicate that it does intend to take

{

 "signatures": [

 'sig1; '

 'sig=*MEQCIC/I9Q+7BZFP6cSDsWx43pBAL0ujTbON/+7RwKVk+ba5AiB3FSFLZqpzmDJ0NumNwN04pqgJZE99fcK86UjkPbj4jw==*; '

 'validity-url="https://example.com/resource.validity.1511157180"; '

 'integrity="digest/mi-sha256"; '

 'cert-url="https://example.com/newcerts"; '

 'cert-sha256=*J/lEm9kNRODdCmINbvitpvdYKNQ+YgBj99DlYp4fEXw=*; '

 'date=1511733180; expires=1512337980'

],

 "update": {

 "size": 5557452

 }

}

¶

¶

Signature:

 sig1;

 sig=*MEQCIC...*;

 ...

 validity-url="https://example.com/resource.validity.1511157180";

 cert-url="https://example.com/newcerts";

 date=1511733180; expires=1512337980,

 thirdpartysig;

 sig=*MEYCIQ...*;

 ...

 validity-url="https://thirdparty.example.com/resource.validity.1511161860";

 cert-url="https://thirdparty.example.com/certs";

 date=1511478660; expires=1511824260

¶

¶

advantage of any available signatures and to indicate what kinds of

signatures it supports.

When a server receives an Accept-Signature header field in a client

request, it SHOULD reply with any available Signature header fields

for its response that the Accept-Signature header field indicates

the client supports. However, if the Accept-Signature value violates

a requirement in this section, the server MUST behave as if it

hadn't received any Accept-Signature header at all.

The Accept-Signature header field is a Structured Header as defined

by [I-D.ietf-httpbis-header-structure]. Its value MUST be a

parameterised list (Section 3.4 of [I-D.ietf-httpbis-header-

structure]). Its ABNF is:

The order of identifiers in the Accept-Signature list is not

significant. Identifiers, ignoring any initial "-" character, MUST

NOT be duplicated.

Each identifier in the Accept-Signature header field's value

indicates that a feature of the Signature header field (Section 3.1)

is supported. If the identifier begins with a "-" character, it

instead indicates that the feature named by the rest of the

identifier is not supported. Unknown identifiers and parameters MUST

be ignored because new identifiers and new parameters on existing

identifiers may be defined by future specifications.

3.7.1. Integrity identifiers

Identifiers starting with "digest/" indicate that the client

supports the Digest header field ([RFC3230]) with the parameter from

the HTTP Digest Algorithm Values Registry registry named in lower-

case by the rest of the identifier. For example, "digest/mi-blake2"

indicates support for Merkle integrity with the as-yet-unspecified

mi-blake2 parameter, and "-digest/mi-sha256" indicates non-support

for Merkle integrity with the mi-sha256 content encoding.

If the Accept-Signature header field is present, servers SHOULD

assume support for "digest/mi-sha256" unless the header field states

otherwise.

3.7.2. Key type identifiers

Identifiers starting with "ecdsa/" indicate that the client supports

certificates holding ECDSA public keys on the curve named in lower-

case by the rest of the identifier.

¶

¶

¶

Accept-Signature = sh-param-list¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml

If the Accept-Signature header field is present, servers SHOULD

assume support for "ecdsa/secp256r1" unless the header field states

otherwise.

3.7.3. Key value identifiers

The "ed25519key" identifier has parameters indicating the public

keys that will be used to validate the returned signature. Each

parameter's name is re-interpreted as a byte sequence (Section 3.10

of [I-D.ietf-httpbis-header-structure]) encoding a prefix of the

public key. For example, if the client will validate signatures

using the public key whose base64 encoding is 11qYAYKxCrfVS/

7TyWQHOg7hcvPapiMlrwIaaPcHURo=, valid Accept-Signature header fields

include:

but not

because 5 bytes isn't a valid length for encoded base64, and not

because it doesn't start or end with the *s that indicate a byte

sequence.

Note that ed25519key; ** is an empty prefix, which matches all

public keys, so it's useful in subresource integrity (Appendix A.3)

cases like <link rel=preload as=script href="..."> where the public

key isn't known until the matching <script src="..."

integrity="..."> tag.

3.7.4. Examples

states that the client will accept signatures with payload integrity

assured by the Digest header and mi-sha256 digest algorithm and

implies that the client will accept signatures from ECDSA keys on

the secp256r1 curve.

¶

¶

Accept-Signature: ..., ed25519key; *11qYAYKxCrfVS/7TyWQHOg7hcvPapiMlrwIaaPcHURo=*

Accept-Signature: ..., ed25519key; *11qYAYKxCrfVS/7TyWQHOg==*

Accept-Signature: ..., ed25519key; *11qYAQ==*

Accept-Signature: ..., ed25519key; **

¶

¶

Accept-Signature: ..., ed25519key; *11qYA===*¶

¶

Accept-Signature: ..., ed25519key; 11qYAQ¶

¶

¶

Accept-Signature: digest/mi-sha256¶

¶

Accept-Signature: -ecdsa/secp256r1, ecdsa/secp384r1¶

states that the client will accept ECDSA keys on the secp384r1 curve

but not the secp256r1 curve and payload integrity assured with the

Digest: mi-sha256 header field.

3.7.5. Open Questions

Is an Accept-Signature header useful enough to pay for itself? If

clients wind up sending it on most requests, that may cost more than

the cost of sending Signatures unconditionally. On the other hand,

it gives servers an indication of which kinds of signatures are

supported, which can help us upgrade the ecosystem in the future.

Is Accept-Signature the right spelling, or do we want to imitate

Want-Digest (Section 4.3.1 of [RFC3230]) instead?

Do I have the right structure for the identifiers indicating feature

support?

4. Cross-origin trust

To determine whether to trust a cross-origin exchange, the client

takes a Signature header field (Section 3.1) and the exchange's

requestUrl, a byte sequence that can be parsed into the

exchange's effective request URI (Section 5.5 of [RFC7230]),

responseHeaders, a byte sequence holding the canonical

serialization (Section 3.4) of the CBOR representation (Section

3.2) of the exchange's response metadata and headers, and

payload, a stream of bytes constituting the exchange's payload

body (Section 3.3 of [RFC7230]).

The client MUST parse the Signature header into a list of signatures

according to the instructions in Section 3.5, and run the following

algorithm for each signature, stopping at the first one that returns

"valid". If any signature returns "valid", return "valid".

Otherwise, return "invalid".

If the signature's "validity-url" parameter (Section 3.1) is

not same-origin with requestUrl, return "invalid".

Use Section 3.5 to determine the signature's validity for

requestUrl, responseHeaders, and payload, getting certificate-

chain back. If this returned "invalid" or didn't return a

certificate chain, return "invalid".

Let response be the response metadata and headers parsed out of

responseHeaders.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

1.

¶

2.

¶

3.

¶

https://html.spec.whatwg.org/multipage/origin.html#same-origin

If Section 3 of [RFC7234] forbids a shared cache from storing

response, return "invalid".

If response's headers contain an uncached header field, as

defined in Section 4.1, return "invalid".

Let authority be the host component of requestUrl.

Validate the certificate-chain using the following substeps. If

any of them fail, re-run Section 3.5 once over the signature

with the forceFetch flag set, and restart from step 2. If a

substep fails again, return "invalid".

Use certificate-chain to validate that its first entry,

main-certificate is trusted as authority's server

certificate ([RFC5280] and other undocumented

conventions). Let path be the path that was used from the

main-certificate to a trusted root, including the main-

certificate but excluding the root.

Validate that main-certificate has the

CanSignHttpExchanges extension (Section 4.2).

Validate that main-certificate has an ocsp property

(Section 3.3) with a valid OCSP response whose lifetime

(nextUpdate - thisUpdate) is less than 7 days ([RFC6960]).

Note that this does not check for revocation of

intermediate certificates, and clients SHOULD implement

another mechanism for that.

Validate that valid SCTs from trusted logs are available

from any of:

The SignedCertificateTimestampList in main-

certificate's sct property (Section 3.3),

An OCSP extension in the OCSP response in main-

certificate's ocsp property, or

An X.509 extension in the certificate in main-

certificate's cert property,

as described by Section 3.3 of [RFC6962].

Return "valid".

4.

¶

5.

¶

6. ¶

7.

¶

1.

¶

2.

¶

3.

¶

4.

¶

*

¶

*

¶

*

¶

¶

8. ¶

4.1. Uncached header fields

Hop-by-hop and other uncached headers MUST NOT appear in a signed

exchange. These will eventually be listed in [I-D.ietf-httpbis-

cache], but for now they're listed here:

Hop-by-hop header fields listed in the Connection header field

(Section 6.1 of [RFC7230]).

Header fields listed in the no-cache response directive in the

Cache-Control header field (Section 5.2.2.2 of [RFC7234]).

Header fields defined as hop-by-hop:

Connection

Keep-Alive

Proxy-Connection

Trailer

Transfer-Encoding

Upgrade

Stateful headers as defined below.

4.1.1. Stateful header fields

As described in Section 6.1, a publisher can cause problems if they

sign an exchange that includes private information. There's no way

for a client to be sure an exchange does or does not include private

information, but header fields that store or convey stored state in

the client are a good sign.

A stateful response header field modifies state, including

authentication status, in the client. The HTTP cache is not

considered part of this state. These include but are not limited to:

Authentication-Control, [RFC8053]

Authentication-Info, [RFC7615]

Clear-Site-Data, [W3C.WD-clear-site-data-20171130]

Optional-WWW-Authenticate, [RFC8053]

Proxy-Authenticate, [RFC7235]

Proxy-Authentication-Info, [RFC7615]

¶

*

¶

*

¶

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Public-Key-Pins, [RFC7469]

Sec-WebSocket-Accept, [RFC6455]

Set-Cookie, [RFC6265]

Set-Cookie2, [RFC2965]

SetProfile, [W3C.NOTE-OPS-OverHTTP]

Strict-Transport-Security, [RFC6797]

WWW-Authenticate, [RFC7235]

4.2. Certificate Requirements

We define a new X.509 extension, CanSignHttpExchanges to be used in

the certificate when the certificate permits the usage of signed

exchanges. When this extension is not present the client MUST NOT

accept a signature from the certificate as proof that a signed

exchange is authoritative for a domain covered by the certificate.

When it is present, the client MUST follow the validation procedure

in Section 4.

Note that this extension contains an ASN.1 NULL (bytes 05 00)

because some implementations have bugs with empty extensions.

Leaf certificates without this extension need to be revoked if the

private key is exposed to an unauthorized entity, but they generally

don't need to be revoked if a signing oracle is exposed and then

removed.

CA certificates, by contrast, need to be revoked if an unauthorized

entity is able to make even one unauthorized signature.

Certificates with this extension MUST be revoked if an unauthorized

entity is able to make even one unauthorized signature.

Certificates with this extension MUST have a Validity Period no

greater than 90 days.

Conforming CAs MUST NOT mark this extension as critical.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

 id-ce-canSignHttpExchanges OBJECT IDENTIFIER ::= { TBD }

 CanSignHttpExchanges ::= NULL

¶

¶

¶

¶

¶

¶

¶

A conforming CA MUST NOT issue certificates with this extension

unless, for each dNSName in the subjectAltName extension of the

certificate to be issued:

An "issue" or "issuewild" CAA property ([RFC6844]) exists that

authorizes the CA to issue the certificate; and

The "cansignhttpexchanges" parameter (Section 4.2.1) is present

on the property and is equal to "yes"

Clients MUST NOT accept certificates with this extension in TLS

connections (Section 4.4.2.2 of [RFC8446]).

RFC EDITOR PLEASE DELETE THE REST OF THE PARAGRAPHS IN THIS SECTION

Implementations of drafts of this specification MAY recognize the

id-ce-canSignHttpExchangesDraft OID as identifying the

CanSignHttpExchanges extension. This OID might or might not be used

as the final OID for the extension, so certificates including it

might need to be reissued once the final RFC is published.

Some certificates have already been issued with this extension and

with validity periods longer than 90 days. These certificates will

not immediately be treated as invalid. Instead:

Clients MUST reject certificates with this extension that were

issued after 2019-05-01 and have a Validity Period longer than 90

days.

After 2019-08-01, clients MUST reject all certificates with this

extension that have a Validity Period longer than 90 days.

The above requirements on CAs to limit the Validity Period and check

for a CAA parameter are effective starting 2019-05-01.

4.2.1. Extensions to the CAA Record: cansignhttpexchanges Parameter

A CAA parameter "cansignhttpexchanges" is defined for the "issue"

and "issuewild" properties defined by [RFC6844]. The value of this

parameter, if specified, MUST be "yes".

5. Transferring a signed exchange

A signed exchange can be transferred in several ways, of which three

are described here.

¶

1.

¶

2.

¶

¶

¶

 id-ce-google OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 11129 }

 id-ce-canSignHttpExchangesDraft OBJECT IDENTIFIER ::= { id-ce-google 2 1 22 }

¶

¶

¶

*

¶

*

¶

¶

¶

¶

5.1. Same-origin response

The signature for a signed exchange can be included in a normal HTTP

response. Because different clients send different request header

fields, clients don't know how the server's content negotiation

algorithm works, and intermediate servers add response header

fields, it can be impossible to have a signature for the exchange's

exact request, content negotiation, and response. Therefore, when a

client calls the validation procedure in Section 3.5) to validate

the Signature header field for an exchange represented as a normal

HTTP request/response pair, it MUST pass:

The Signature header field,

The effective request URI (Section 5.5 of [RFC7230]) of the

request,

The serialized headers defined by Section 5.1.1, and

The response's payload.

If the client relies on signature validity for any aspect of its

behavior, it MUST ignore any header fields that it didn't pass to

the validation procedure.

If the signed response includes a Variants header field, the client

MUST use the cache behavior algorithm in Section 4 of [I-D.ietf-

httpbis-variants] to check that the signed response is an

appropriate representation for the request the client is trying to

fulfil. If the response is not an appropriate representation, the

client MUST treat the signature as invalid.

5.1.1. Serialized headers for a same-origin response

The serialized headers of an exchange represented as a normal HTTP

request/response pair (Section 2.1 of [RFC7230] or Section 8.1 of

[RFC7540]) are the canonical serialization (Section 3.4) of the CBOR

representation (Section 3.2) of the response status code (Section 6

of [RFC7231]) and the response header fields whose names are listed

in that response's Signed-Headers header field (Section 5.1.2). If a

response header field name from Signed-Headers does not appear in

the response's header fields, the exchange has no serialized

headers.

If the exchange's Signed-Headers header field is not present,

doesn't parse as a Structured Header ([I-D.ietf-httpbis-header-

structure]) or doesn't follow the constraints on its value described

in Section 5.1.2, the exchange has no serialized headers.

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

5.1.1.1. Open Questions

Do the serialized headers of an exchange need to include the Signed-

Headers header field itself?

5.1.2. The Signed-Headers Header

The Signed-Headers header field identifies an ordered list of

response header fields to include in a signature. The request URL

and response status are included unconditionally. This allows a TLS-

terminating intermediate to reorder headers without breaking the

signature. This can also allow the intermediate to add headers that

will be ignored by some higher-level protocols, but Section 3.5

provides a hook to let other higher-level protocols reject such

insecure headers.

This header field appears once instead of being incorporated into

the signatures' parameters because the signed header fields need to

be consistent across all signatures of an exchange, to avoid forcing

higher-level protocols to merge the header field lists of valid

signatures.

Signed-Headers is a Structured Header as defined by [I-D.ietf-

httpbis-header-structure]. Its value MUST be a list (Section 3.2 of

[I-D.ietf-httpbis-header-structure]). Its ABNF is:

Each element of the Signed-Headers list must be a lowercase string

(Section 3.8 of [I-D.ietf-httpbis-header-structure]) naming an HTTP

response header field. Pseudo-header field names (Section 8.1.2.1 of

[RFC7540]) MUST NOT appear in this list.

Higher-level protocols SHOULD place requirements on the minimum set

of headers to include in the Signed-Headers header field.

5.2. HTTP/2 extension for cross-origin Server Push

To allow servers to Server-Push (Section 8.2 of [RFC7540]) signed

exchanges (Section 3) signed by an authority for which the server is

not authoritative (Section 9.1 of [RFC7230]), this section defines

an HTTP/2 extension.

5.2.1. Indicating support for cross-origin Server Push

Clients that might accept signed Server Pushes with an authority for

which the server is not authoritative indicate this using the HTTP/2

SETTINGS parameter ENABLE_CROSS_ORIGIN_PUSH (0xSETTING-TBD).

¶

¶

¶

¶

Signed-Headers = sh-list¶

¶

¶

¶

¶

An ENABLE_CROSS_ORIGIN_PUSH value of 0 indicates that the client

does not support cross-origin Push. A value of 1 indicates that the

client does support cross-origin Push.

A client MUST NOT send a ENABLE_CROSS_ORIGIN_PUSH setting with a

value other than 0 or 1 or a value of 0 after previously sending a

value of 1. If a server receives a value that violates these rules,

it MUST treat it as a connection error (Section 5.4.1 of [RFC7540])

of type PROTOCOL_ERROR.

The use of a SETTINGS parameter to opt-in to an otherwise

incompatible protocol change is a use of "Extending HTTP/2" defined

by Section 5.5 of [RFC7540]. If a server were to send a cross-origin

Push without first receiving a ENABLE_CROSS_ORIGIN_PUSH setting with

the value of 1 it would be a protocol violation.

5.2.2. NO_TRUSTED_EXCHANGE_SIGNATURE error code

The signatures on a Pushed cross-origin exchange may be untrusted

for several reasons, for example that the certificate could not be

fetched, that the certificate does not chain to a trusted root, that

the signature itself doesn't validate, that the signature is

expired, etc. This draft conflates all of these possible failures

into one error code, NO_TRUSTED_EXCHANGE_SIGNATURE (0xERROR-TBD).

5.2.2.1. Open Questions

How fine-grained should this specification's error codes be?

5.2.3. Validating a cross-origin Push

If the client has set the ENABLE_CROSS_ORIGIN_PUSH setting to 1, the

server MAY Push a signed exchange for which it is not authoritative,

and the client MUST NOT treat a PUSH_PROMISE for which the server is

not authoritative as a stream error (Section 5.4.2 of [RFC7540]) of

type PROTOCOL_ERROR, as described in Section 8.2 of [RFC7540],

unless there is another error as described below.

Instead, the client MUST validate such a PUSH_PROMISE and its

response against the following list:

If the PUSH_PROMISE includes any non-pseudo request header

fields, the client MUST treat it as a stream error (Section

5.4.2 of [RFC7540]) of type PROTOCOL_ERROR.

If the PUSH_PROMISE's method is not GET, the client MUST treat

it as a stream error (Section 5.4.2 of [RFC7540]) of type

PROTOCOL_ERROR.

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

Run the algorithm in Section 4 over:

The Signature header field from the response.

The effective request URI from the PUSH_PROMISE.

The canonical serialization (Section 3.4) of the CBOR

representation (Section 3.2) of the pushed response's status

and its headers except for the Signature header field.

The response's payload.

If this returns "invalid", the client MUST treat the response

as a stream error (Section 5.4.2 of [RFC7540]) of type

NO_TRUSTED_EXCHANGE_SIGNATURE. Otherwise, the client MUST treat

the pushed response as if the server were authoritative for the

PUSH_PROMISE's authority.

5.2.3.1. Open Questions

Is it right that "validity-url" is required to be same-origin with

the exchange? This allows the mitigation against downgrades in

Section 6.3, but prohibits intermediates from providing a cache of

the validity information. We could do both with a list of URLs.

5.3. application/signed-exchange format

To allow signed exchanges to be the targets of <link rel=prefetch>

tags, we define the application/signed-exchange content type that

represents a signed HTTP exchange, including a request URL, response

metadata and header fields, and a response payload.

When served over HTTP, a response containing an application/signed-

exchange payload MUST include at least the following response header

fields, to reduce content sniffing vulnerabilities (Section 6.8):

Content-Type: application/signed-exchange;v=version

X-Content-Type-Options: nosniff

This content type consists of the concatenation of the following

items:

8 bytes consisting of the ASCII characters "sxg1" followed by 4

0x00 bytes, to serve as a file signature. This is redundant

with the MIME type, and recipients that receive both MUST check

that they match and stop parsing if they don't.

Note: RFC EDITOR PLEASE DELETE THIS NOTE; The implementation of

the final RFC MUST use this file signature, but implementations

3. ¶

* ¶

* ¶

*

¶

* ¶

¶

¶

¶

¶

* ¶

* ¶

¶

1.

¶

of drafts MUST NOT use it and MUST use another implementation-

specific 8-byte string beginning with "sxg1-".

2 bytes storing a big-endian integer fallbackUrlLength.

fallbackUrlLength bytes holding a fallbackUrl, which MUST UTF-8

decode to an absolute URL with a scheme of "https".

Note: The byte location of the fallback URL is intended to

remain invariant across versions of the application/signed-

exchange format so that parsers encountering unknown versions

can always find a URL to redirect to.

Issue: Should this fallback information also include the

method?

3 bytes storing a big-endian integer sigLength. If this is

larger than 16384 (16*1024), parsing MUST fail.

3 bytes storing a big-endian integer headerLength. If this is

larger than 524288 (512*1024), parsing MUST fail.

sigLength bytes holding the Signature header field's value

(Section 3.1).

headerLength bytes holding signedHeaders, the canonical

serialization (Section 3.4) of the CBOR representation of the

response headers of the exchange represented by the

application/signed-exchange resource (Section 3.2), excluding

the Signature header field.

The payload body (Section 3.3 of [RFC7230]) of the exchange

represented by the application/signed-exchange resource.

Note that the use of the payload body here means that a

Transfer-Encoding header field inside the application/signed-

exchange header block has no effect. A Transfer-Encoding header

field on the outer HTTP response that transfers this resource

still has its normal effect.

5.3.1. Cross-origin trust in application/signed-exchange

To determine whether to trust a cross-origin exchange stored in an

application/signed-exchange resource, pass the Signature header

field's value, fallbackUrl as the effective request URI,

signedHeaders, and the payload body to the algorithm in Section 4.

¶

2. ¶

3.

¶

¶

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

¶

¶

5.3.2. Example

An example application/signed-exchange file representing a possible

signed exchange with https://example.com/ follows, with lengths

represented by descriptions in <>s, CBOR represented in the extended

diagnostic format defined in Appendix G of [CDDL], and most of the

Signature header field and payload elided with a ...:

5.3.3. Open Questions

Should this be a CBOR format, or is the current mix of binary and

CBOR better?

Are the mime type, extension, and magic number right?

6. Security considerations

6.1. Over-signing

If a publisher blindly signs all responses as their origin, they can

cause at least two kinds of problems, described below. To avoid

this, publishers SHOULD design their systems to opt particular

public content that doesn't depend on authentication status into

signatures instead of signing by default.

Signing systems SHOULD also incorporate the following mitigations to

reduce the risk that private responses are signed:

Strip the Cookie request header field and other identifying

information like client authentication and TLS session IDs from

requests whose exchange is destined to be signed, before

forwarding the request to a backend.

Only sign exchanges where the response includes a Cache-

Control: public header. Clients are not required to fail

signature-checking for exchanges that omit this Cache-Control

response header field to reduce the risk that naive signing

systems blindly add it.

¶

sxg1\0\0\0\0<2-byte length of the following url string>

https://example.com/<3-byte length of the following header

value><3-byte length of the encoding of the

following map>sig1; sig=*...; integrity="digest/mi-sha256"; ...{

 ':status': '200',

 'content-type': 'text/html'

}<!doctype html>\r\n<html>...

¶

¶

¶

¶

¶

1.

¶

2.

¶

https://example.com/

6.1.1. Session fixation

Blind signing can sign responses that create session cookies or

otherwise change state on the client to identify a particular

session. This breaks certain kinds of CSRF defense and can allow an

attacker to force a user into the attacker's account, where the user

might unintentionally save private information, like credit card

numbers or addresses.

This specification defends against cookie-based attacks by blocking

the Set-Cookie response header, but it cannot prevent Javascript or

other response content from changing state.

6.1.2. Misleading content

If a site signs private information, an attacker might set up their

own account to show particular private information, forward that

signed information to a victim, and use that victim's confusion in a

more sophisticated attack.

Stripping authentication information from requests before sending

them to backends is likely to prevent the backend from showing

attacker-specific information in the signed response. It does not

prevent the attacker from showing their victim a signed-out page

when the victim is actually signed in, but while this is still

misleading, it seems less likely to be useful to the attacker.

6.2. Off-path attackers

Relaxing the requirement to consult DNS when determining authority

for an origin means that an attacker who possesses a valid

certificate no longer needs to be on-path to redirect traffic to

them; instead of modifying DNS or IP routing, they need only

convince the user to visit another Web site in order to serve

responses signed as the target. This consideration and mitigations

for it are shared by the combination of [RFC8336] and [I-D.ietf-

httpbis-http2-secondary-certs], and are discussed further in [I-

D.bishop-httpbis-origin-fed-up].

6.2.1. Mis-issued certificates

If a CA mis-issues a certificate for a domain, this specification

provides a way to detect the mis-issuance and mitigate harm within

approximately two weeks. Specifically, because all signed exchanges

must include a SignedCertificateTimestampList ([RFC6962], a CT log

has promised to publish the mis-issued certificate within that log's

Maximum Merge Delay, 1 day for many logs. The domain owner can then

detect the mis-issued certificate and notify the CA to revoke it,

which the [BRs], section 4.9.1.1, say they must do within another 5

days.

¶

¶

¶

¶

¶

¶

Once the mis-issued certificate is revoked, existing OCSP responses

begin to expire. The [BRs], section 4.9.10, require that OCSP

responses have a maximum expiration time of 10 days, after which

they can't be used to validate a certificate chain (Section 3.3).

This leads to a total compromised time of 16 days after a mis-

issuance.

However, CAs might future-date their OCSP responses, in which case

the mitigation doesn't work.

CAs are forbidden from future-dating their OCSP responses by the

[BRs] section 4.9.9, "OCSP responses MUST conform to RFC6960 and/or

RFC5019." [RFC6960] includes, "The time at which the status was

known to be correct SHALL be reflected in the thisUpdate field of

the response.", and [RFC5019] includes, "When pre-producing

OCSPResponse messages, the responder MUST set the thisUpdate,

nextUpdate, and producedAt times as follows: thisUpdate: The time at

which the status being indicated is known to be correct."

However, if a CA violates the [BRs] to sign future-dated OCSP

responses, attempts to keep the nonconformant OCSP responses

private, but then leaks them, it could cause clients to trust a

hostile signed exchange long after its certificate has been revoked.

Clients could use systems like [CRLSets] and [OneCrl] to revoke the

intermediate certificate that signed the future-dated OCSP

responses.

6.2.2. Stolen private keys

If the private key for a CanSignHttpExchanges certificate is stolen,

it can be used at scale until the certificate expires or is revoked,

and unlike for a stolen key for a normal TLS-terminating

certificate, the rightful owner can't detect the problem by watching

for attacks on the DNS or routing infrastructure.

This specification does not currently propose a way for the rightful

owner to detect that their keys are being used by an attacker, after

they've opted into the risk by requesting a CanSignHttpExchanges

certificate in the first place. Clients can fetch a signature's

"validity-url" (Section 3.1) to help owners detect key compromise,

but that compromises some of the privacy properties of this

specification.

6.3. Downgrades

Signing a bad response can affect more users than simply serving a

bad response, since a served response will only affect users who

make a request while the bad version is live, while an attacker can

forward a signed response until its signature expires. Publishers

¶

¶

¶

¶

¶

¶

¶

should consider shorter signature expiration times than they use for

cache expiration times.

Clients MAY also check the "validity-url" (Section 3.1) of an

exchange more often than the signature's expiration would require.

Doing so for an exchange with an HTTPS request URI provides a TLS

guarantee that the exchange isn't out of date (as long as Section

5.2.3.1 is resolved to keep the same-origin requirement).

6.4. Signing oracles are permanent

An attacker with temporary access to a signing oracle can sign

"still valid" assertions with arbitrary timestamps and expiration

times. As a result, when a signing oracle is removed, the keys it

provided access to MUST be revoked so that, even if the attacker

used them to sign future-dated exchange validity assertions, the

key's OCSP assertion will expire, causing the exchange as a whole to

become untrusted.

6.5. Unsigned headers

The use of a single Signed-Headers header field prevents us from

signing aspects of the request other than its effective request URI

(Section 5.5 of [RFC7230]). For example, if a publisher signs both

Content-Encoding: br and Content-Encoding: gzip variants of a

response, what's the impact if an attacker serves the brotli one for

a request with Accept-Encoding: gzip? This is mitigated by using [I-

D.ietf-httpbis-variants] instead of request headers to describe how

the client should run content negotiation.

The simple form of Signed-Headers also prevents us from signing less

than the full request URL. The SRI use case (Appendix A.3) may

benefit from being able to leave the authority less constrained.

Section 3.5 can succeed when some delivered headers aren't included

in the signed set. This accommodates current TLS-terminating

intermediates and may be useful for SRI (Appendix A.3), but is risky

for trusting cross-origin responses (Appendix A.1, Appendix A.2,

and Appendix A.6). Section 5.2 requires all headers to be included

in the signature before trusting cross-origin pushed resources, at

Ryan Sleevi's recommendation.

6.6. application/signed-exchange

Clients MUST NOT trust an effective request URI claimed by an

application/signed-exchange resource (Section 5.3) without either

ensuring the resource was transferred from a server that was

authoritative (Section 9.1 of [RFC7230]) for that URI's origin, or

calling the algorithm in Section 5.3.1 and getting "valid" back.

¶

¶

¶

¶

¶

¶

¶

6.7. Key re-use with TLS

In general, key re-use across multiple protocols is a bad idea.

Using an exchange-signing key in a TLS (or other directly-internet-

facing) server increases the risk that an attacker can steal the

private key, which will allow them to mint packages (similar to

Section 6.4) until their theft is discovered.

Using a TLS key in a CanSignHttpExchanges certificate makes it less

likely that the server operator will discover key theft, due to the

considerations in Section 6.2.

This specification uses the CanSignHttpExchanges X.509 extension

(Section 4.2) to discourage re-use of TLS keys to sign exchanges or

vice-versa.

We require that clients reject certificates with the

CanSignHttpExchanges extension when making TLS connections to

minimize the chance that servers will re-use keys like this.

Ideally, we would make the extension critical so that even clients

that don't understand it would reject such TLS connections, but this

proved impossible because certificate-validating libraries ship on

significantly different schedules from the clients that use them.

Even once all clients reject these certificates in TLS connections,

this will still just discourage and not prevent key re-use, since a

server operator can unwisely request two different certificates with

the same private key.

6.8. Content sniffing

While modern browsers tend to trust the Content-Type header sent

with a resource, especially when accompanied by X-Content-Type-

Options: nosniff, plugins will sometimes search for executable

content buried inside a resource and execute it in the context of

the origin that served the resource, leading to XSS vulnerabilities.

For example, some PDF reader plugins look for %PDF anywhere in the

first 1kB and execute the code that follows it.

The application/signed-exchange format (Section 5.3) includes a URL

and response headers early in the format, which an attacker could

use to cause these plugins to sniff a bad content type.

To avoid vulnerabilities, in addition to the response header

requirements in Section 5.3, servers are advised to only serve an

application/signed-exchange resource (SXG) from a domain if it would

¶

¶

¶

¶

¶

¶

¶

¶

also be safe for that domain to serve the SXG's content directly,

and to follow at least one of the following strategies:

Only serve signed exchanges from dedicated domains that don't

have access to sensitive cookies or user storage.

Generate signed exchanges "offline", that is, in response to a

trusted author submitting content or existing signatures

reaching a certain age, rather than in response to untrusted-

reader queries.

Do all of:

If the SXG's fallback URL (Section 5.3) is derived from

the request URL, percent-encode ([URL]) any bytes that are

greater than 0x7E or are not URL code points ([URL]) in

the fallback URL . It is particularly important to make

sure no unescaped nulls (0x00) or angle brackets (0x3C and

0x3E) appear.

Do not reflect request header fields into the set of

response headers.

There are still a few binary length fields that an attacker may

influence to contain sensitive bytes, but they're always followed by

lowercase alphabetic strings from a small set of possibilities,

which reduces the chance that a client will sniff them as indicating

a particular content type.

To encourage servers to include the X-Content-Type-Options: nosniff

header field, clients SHOULD reject signed exchanges served without

it.

7. Privacy considerations

7.1. Visibility of resource requests

Normally, when a client follows a link from https://source.example/

page.html to https://publisher.example/page.html, publisher.example

learns that the client is interested in the resource. source.example

also has several ways of discovering that the client has clicked the

link, including the use of Javascript to record the click or having

the link point to a URL that serves a 302 redirect to the real

target.

If publisher.example signs page.html into page.sxg,

distributor.example serves it as https://distributor.example/

publisher/page.sxg, and the client fetches it from there, then

distributor.example learns that the client is interested, and if the

client executes some Javascript on the page or makes subresource

¶

1.

¶

2.

¶

3. ¶

1.

¶

2.

¶

¶

¶

¶

https://url.spec.whatwg.org/#percent-encode
https://url.spec.whatwg.org/#url-code-points

requests, that could also report the client's interest back to

publisher.example.

To prevent network operators other than distributor.example or

publisher.example from learning which exchanges were read, clients

SHOULD only load exchanges fetched over a transport that's protected

from eavesdroppers. This can be difficult to determine when the

exchange is being loaded from local disk, but when the client itself

requested the exchange over a network it SHOULD require TLS

([RFC8446]) or a successor transport layer, and MUST NOT accept

exchanges transferred over plain HTTP without TLS.

If source.example and distributor.example are controlled by the same

entity, no extra information escapes here. If they are run by

different entities, a similar amount of information escapes as if

source.example had implemented its click tracking by outsourcing to

a service like https://bit.ly/.

There has been discussion of allowing a publisher to restrict the

set of distributors that can host its signed content. If that's

added, then the privacy situation becomes more similar to the

situation with CDNs, where a publisher chooses a CDN to serve their

content, and the CDN learns about all requests for that content.

Here the publisher would choose one or more distributors, and the

distributor(s) would learn about requests for the content.

For non-executable resource types, a signed response can improve the

privacy situation by hiding the client's interest from the original

publisher.

7.2. User ID transfer

If a request for https://distributor.example/publisher/page.sxg

comes with the source's or distributor's user ID for the user,

either because it's sent with the distributor's cookies or because

the source stashes an encoded user ID into either the request's path

or a subdomain, the distributor has a few ways to pass that user ID

on to the publisher that signed the page:

If the distributor has the publisher's signing keys, it can

sign a new page with its user ID directly embedded.

Otherwise, the publisher can sign lots of copies of their

package, and the distributor can choose a particular copy to

send a subset of the bits in its user ID to the publisher on

each click, which will eventually transfer the whole thing.

To prevent this, the request for a signed exchange needs to omit

credentials and block them from appearing in the URL in the same way

it would block them from appearing in a cross-origin URL. We're

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

https://bit.ly/

exploring ways the link can mark the request so user agents can take

the right counter-measures.

8. IANA considerations

TODO: possibly register the validity-url format.

8.1. Signature Header Field Registration

This section registers the Signature header field in the "Permanent

Message Header Field Names" registry ([RFC3864]).

Header field name: Signature

Applicable protocol: http

Status: standard

Author/Change controller: IETF

Specification document(s): Section 3.1 of this document

8.2. Accept-Signature Header Field Registration

This section registers the Accept-Signature header field in the

"Permanent Message Header Field Names" registry ([RFC3864]).

Header field name: Accept-Signature

Applicable protocol: http

Status: standard

Author/Change controller: IETF

Specification document(s): Section 3.7 of this document

8.3. Signed-Headers Header Field Registration

This section registers the Signed-Headers header field in the

"Permanent Message Header Field Names" registry ([RFC3864]).

Header field name: Signed-Headers

Applicable protocol: http

Status: standard

Author/Change controller: IETF

Specification document(s): Section 5.1.2 of this document

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

8.4. HTTP/2 Settings

This section establishes an entry for the HTTP/2 Settings Registry

that was established by Section 11.3 of [RFC7540]

Name: ENABLE_CROSS_ORIGIN_PUSH

Code: 0xSETTING-TBD

Initial Value: 0

Specification: This document

8.5. HTTP/2 Error code

This section establishes an entry for the HTTP/2 Error Code Registry

that was established by Section 11.4 of [RFC7540]

Name: NO_TRUSTED_EXCHANGE_SIGNATURE

Code: 0xERROR-TBD

Description: The client does not trust the signature for a cross-

origin Pushed signed exchange.

Specification: This document

8.6. Internet Media Type application/signed-exchange

IANA is requested to register the MIME media type ([IANA.media-

types]) for signed exchanges, application/signed-exchange, as

follows:

Type name: application

Subtype name: signed-exchange

Required parameters:

v: A string denoting the version of the file format. ([RFC5234]

ABNF: version = DIGIT/%x61-7A) The version defined in this

specification is 1. When used with the Accept header field

(Section 5.3.2 of [RFC7231]), this parameter can be a comma (,)-

separated list of version strings. ([RFC5234] ABNF: version-list

= version *("," version)) The server is then expected to reply

with a resource using a particular version from that list.

Note: RFC EDITOR PLEASE DELETE THIS NOTE; Implementations of

drafts of this specification MUST NOT use simple integers to

describe their versions, and MUST instead define implementation-

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

specific strings to identify which draft is implemented. The

newest version of [I-D.yasskin-httpbis-origin-signed-exchanges-

impl] describes the meaning of one such string.

Optional parameters: N/A

Encoding considerations: binary

Security considerations: see Section 6.6

Interoperability considerations: N/A

Published specification: This specification (see Section 5.3).

Applications that use this media type: N/A

Fragment identifier considerations: N/A

Additional information:

Deprecated alias names for this type: N/A

Magic number(s): 73 78 67 31 00

File extension(s): .sxg

Macintosh file type code(s): N/A

Person and email address to contact for further information: See

Authors' Addresses section.

Intended usage: COMMON

Restrictions on usage: N/A

Author: See Authors' Addresses section.

Change controller: IESG

Provisional registration? Yes

8.7. Internet Media Type application/cert-chain+cbor

IANA is requested to register the MIME media type ([IANA.media-

types]) for CBOR-format certificate chains, application/cert-

chain+cbor, as follows:

Type name: application

Subtype name: cert-chain+cbor

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[CDDL]

Required parameters: N/A

Optional parameters: N/A

Encoding considerations: binary

Security considerations: N/A

Interoperability considerations: N/A

Published specification: This specification (see Section 3.3).

Applications that use this media type: N/A

Fragment identifier considerations: N/A

Additional information:

Deprecated alias names for this type: N/A

Magic number(s): 1*9(??) 67 F0 9F 93 9C E2 9B 93

File extension(s): N/A

Macintosh file type code(s): N/A

Person and email address to contact for further information: See

Authors' Addresses section.

Intended usage: COMMON

Restrictions on usage: N/A

Author: See Authors' Addresses section.

Change controller: IESG

Provisional registration? Yes

8.8. The cansignhttpexchanges CAA Parameter

There are no IANA considerations for this parameter.

9. References

9.1. Normative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[FETCH]

[I-D.ietf-httpbis-header-structure]

[I-D.ietf-httpbis-variants]

[I-D.thomson-http-mice]

[IANA.media-types]

[POSIX]

[RFC2119]

[RFC3230]

[RFC3864]

[RFC5234]

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

WHATWG, "Fetch", July 2020, <https://

fetch.spec.whatwg.org/>.

Nottingham, M. and P. Kamp, "Structured Field Values for

HTTP", Work in Progress, Internet-Draft, draft-ietf-

httpbis-header-structure-19, 3 June 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-httpbis-header-

structure-19.txt>.

Nottingham, M., "HTTP Representation Variants", Work in

Progress, Internet-Draft, draft-ietf-httpbis-variants-06,

3 November 2019, <http://www.ietf.org/internet-drafts/

draft-ietf-httpbis-variants-06.txt>.

Thomson, M. and J. Yasskin, "Merkle Integrity Content

Encoding", Work in Progress, Internet-Draft, draft-

thomson-http-mice-03, 13 August 2018, <http://

www.ietf.org/internet-drafts/draft-thomson-http-

mice-03.txt>.

IANA, "Media Types", , <http://www.iana.org/

assignments/media-types>.

IEEE and The Open Group, "The Open Group Base

Specifications Issue 7", value 1003.1-2008, 2016 Edition,

name IEEE, 2016, <http://pubs.opengroup.org/onlinepubs/

9699919799/basedefs/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",

RFC 3230, DOI 10.17487/RFC3230, January 2002, <https://

www.rfc-editor.org/info/rfc3230>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

https://www.rfc-editor.org/info/rfc8610
https://fetch.spec.whatwg.org/
https://fetch.spec.whatwg.org/
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-variants-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-variants-06.txt
http://www.ietf.org/internet-drafts/draft-thomson-http-mice-03.txt
http://www.ietf.org/internet-drafts/draft-thomson-http-mice-03.txt
http://www.ietf.org/internet-drafts/draft-thomson-http-mice-03.txt
http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/media-types
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864

[RFC5280]

[RFC6844]

[RFC6960]

[RFC6962]

[RFC7049]

[RFC7230]

[RFC7231]

[RFC7234]

[RFC7540]

[RFC8032]

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Hallam-Baker, P. and R. Stradling, "DNS Certification

Authority Authorization (CAA) Resource Record", RFC 6844,

DOI 10.17487/RFC6844, January 2013, <https://www.rfc-

editor.org/info/rfc6844>.

Santesson, S., Myers, M., Ankney, R., Malpani, A.,

Galperin, S., and C. Adams, "X.509 Internet Public Key

Infrastructure Online Certificate Status Protocol -

OCSP", RFC 6960, DOI 10.17487/RFC6960, June 2013,

<https://www.rfc-editor.org/info/rfc6960>.

Laurie, B., Langley, A., and E. Kasper, "Certificate

Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,

<https://www.rfc-editor.org/info/rfc6962>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014, <https://

www.rfc-editor.org/info/rfc7234>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6844
https://www.rfc-editor.org/info/rfc6844
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6962
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540

[RFC8174]

[RFC8446]

[URL]

[BRs]

[CRLSets]

[I-D.bishop-httpbis-origin-fed-up]

[I-D.burke-content-signature]

[I-D.cavage-http-signatures]

[I-D.ietf-httpbis-cache]

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

WHATWG, "URL", July 2020, <https://url.spec.whatwg.org/>.

9.2. Informative References

CA/Browser Forum, "Baseline Requirements for the Issuance

and Management of Publicly-Trusted Certificates", 10

December 2018, <https://cabforum.org/baseline-

requirements-documents/>.

Langley, A., "Revocation checking and Chrome's CRL", 5

February 2012, <https://www.imperialviolet.org/

2012/02/05/crlsets.html>.

Bishop, M. and E. Nygren, "DNS Security with HTTP/2

ORIGIN", Work in Progress, Internet-Draft, draft-bishop-

httpbis-origin-fed-up-00, 8 January 2019, <http://

www.ietf.org/internet-drafts/draft-bishop-httpbis-origin-

fed-up-00.txt>.

Burke, B., "HTTP Header for digital signatures", Work in

Progress, Internet-Draft, draft-burke-content-

signature-00, 7 March 2011, <http://www.ietf.org/

internet-drafts/draft-burke-content-signature-00.txt>.

Cavage, M. and M. Sporny, "Signing HTTP Messages", Work

in Progress, Internet-Draft, draft-cavage-http-

signatures-12, 21 October 2019, <http://www.ietf.org/

internet-drafts/draft-cavage-http-signatures-12.txt>.

Fielding, R., Nottingham, M., and J. Reschke, "HTTP

Caching", Work in Progress, Internet-Draft, draft-ietf-

https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://url.spec.whatwg.org/
https://cabforum.org/baseline-requirements-documents/
https://cabforum.org/baseline-requirements-documents/
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-origin-fed-up-00.txt
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-origin-fed-up-00.txt
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-origin-fed-up-00.txt
http://www.ietf.org/internet-drafts/draft-burke-content-signature-00.txt
http://www.ietf.org/internet-drafts/draft-burke-content-signature-00.txt
http://www.ietf.org/internet-drafts/draft-cavage-http-signatures-12.txt
http://www.ietf.org/internet-drafts/draft-cavage-http-signatures-12.txt

[I-D.ietf-httpbis-http2-secondary-certs]

[I-D.thomson-http-content-signature]

[I-D.yasskin-httpbis-origin-signed-exchanges-impl]

[I-D.yasskin-wpack-use-cases]

[OneCrl]

[RFC2965]

[RFC5019]

[RFC6066]

httpbis-cache-10, 12 July 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-httpbis-cache-10.txt>.

Bishop, M., Sullivan, N., and M. Thomson, "Secondary

Certificate Authentication in HTTP/2", Work in Progress,

Internet-Draft, draft-ietf-httpbis-http2-secondary-

certs-06, 14 May 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-httpbis-http2-secondary-certs-06.txt>.

Thomson, M., "Content-Signature Header Field for HTTP",

Work in Progress, Internet-Draft, draft-thomson-http-

content-signature-00, 2 July 2015, <http://www.ietf.org/

internet-drafts/draft-thomson-http-content-

signature-00.txt>.

Yasskin, J. and K. Ueno, "Signed HTTP Exchanges

Implementation Checkpoints", Work in Progress, Internet-

Draft, draft-yasskin-httpbis-origin-signed-exchanges-

impl-03, 25 July 2019, <http://www.ietf.org/internet-

drafts/draft-yasskin-httpbis-origin-signed-exchanges-

impl-03.txt>.

Yasskin, J., "Use Cases and Requirements for Web

Packages", Work in Progress, Internet-Draft, draft-

yasskin-wpack-use-cases-00, 30 October 2019, <http://

www.ietf.org/internet-drafts/draft-yasskin-wpack-use-

cases-00.txt>.

Goodwin, M., "Revoking Intermediate Certificates:

Introducing OneCRL", 3 March 2015, <https://

blog.mozilla.org/security/2015/03/03/revoking-

intermediate-certificates-introducing-onecrl/>.

Kristol, D. and L. Montulli, "HTTP State Management

Mechanism", RFC 2965, DOI 10.17487/RFC2965, October 2000,

<https://www.rfc-editor.org/info/rfc2965>.

Deacon, A. and R. Hurst, "The Lightweight Online

Certificate Status Protocol (OCSP) Profile for High-

Volume Environments", RFC 5019, DOI 10.17487/RFC5019,

September 2007, <https://www.rfc-editor.org/info/

rfc5019>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

http://www.ietf.org/internet-drafts/draft-ietf-httpbis-cache-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-cache-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-http2-secondary-certs-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-http2-secondary-certs-06.txt
http://www.ietf.org/internet-drafts/draft-thomson-http-content-signature-00.txt
http://www.ietf.org/internet-drafts/draft-thomson-http-content-signature-00.txt
http://www.ietf.org/internet-drafts/draft-thomson-http-content-signature-00.txt
http://www.ietf.org/internet-drafts/draft-yasskin-httpbis-origin-signed-exchanges-impl-03.txt
http://www.ietf.org/internet-drafts/draft-yasskin-httpbis-origin-signed-exchanges-impl-03.txt
http://www.ietf.org/internet-drafts/draft-yasskin-httpbis-origin-signed-exchanges-impl-03.txt
http://www.ietf.org/internet-drafts/draft-yasskin-wpack-use-cases-00.txt
http://www.ietf.org/internet-drafts/draft-yasskin-wpack-use-cases-00.txt
http://www.ietf.org/internet-drafts/draft-yasskin-wpack-use-cases-00.txt
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://www.rfc-editor.org/info/rfc2965
https://www.rfc-editor.org/info/rfc5019
https://www.rfc-editor.org/info/rfc5019

[RFC6265]

[RFC6454]

[RFC6455]

[RFC6797]

[RFC7235]

[RFC7469]

[RFC7615]

[RFC8017]

[RFC8053]

[RFC8336]

[SRI]

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/info/rfc6265>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/info/rfc6454>.

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC

6455, DOI 10.17487/RFC6455, December 2011, <https://

www.rfc-editor.org/info/rfc6455>.

Hodges, J., Jackson, C., and A. Barth, "HTTP Strict

Transport Security (HSTS)", RFC 6797, DOI 10.17487/

RFC6797, November 2012, <https://www.rfc-editor.org/info/

rfc6797>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning

Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469,

April 2015, <https://www.rfc-editor.org/info/rfc7469>.

Reschke, J., "HTTP Authentication-Info and Proxy-

Authentication-Info Response Header Fields", RFC 7615,

DOI 10.17487/RFC7615, September 2015, <https://www.rfc-

editor.org/info/rfc7615>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,

T., and Y. Ioku, "HTTP Authentication Extensions for

Interactive Clients", RFC 8053, DOI 10.17487/RFC8053,

January 2017, <https://www.rfc-editor.org/info/rfc8053>.

Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",

RFC 8336, DOI 10.17487/RFC8336, March 2018, <https://

www.rfc-editor.org/info/rfc8336>.

Akhawe, D., Braun, F., Marier, F., and J. Weinberger,

"Subresource Integrity", World Wide Web Consortium

https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6797
https://www.rfc-editor.org/info/rfc6797
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7469
https://www.rfc-editor.org/info/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8053
https://www.rfc-editor.org/info/rfc8336
https://www.rfc-editor.org/info/rfc8336

[W3C.NOTE-OPS-OverHTTP]

[W3C.WD-clear-site-data-20171130]

Recommendation REC-SRI-20160623, 23 June 2016, <http://

www.w3.org/TR/2016/REC-SRI-20160623>.

Hensley, P., Metral, M., Shardanand, U., Converse, D.,

and M. Myers, "Implementation of OPS Over HTTP", W3C NOTE

NOTE-OPS-OverHTTP, 2 June 1997, <http://www.w3.org/TR/

NOTE-OPS-OverHTTP>.

West, M., "Clear Site Data", World

Wide Web Consortium WD WD-clear-site-data-20171130, 30

November 2017, <https://www.w3.org/TR/2017/WD-clear-site-

data-20171130>.

Appendix A. Use cases

A.1. PUSHed subresources

To reduce round trips, a server might use HTTP/2 Push (Section 8.2

of [RFC7540]) to inject a subresource from another server into the

client's cache. If anything about the subresource is expired or

can't be verified, the client would fetch it from the original

server.

For example, if https://example.com/index.html includes

Then to avoid the need to look up and connect to jquery.com in the

critical path, example.com might push that resource signed by

jquery.com.

A.2. Explicit use of a content distributor for subresources

In order to speed up loading but still maintain control over its

content, an HTML page in a particular origin O.com could tell

clients to load its subresources from an intermediate content

distributor that's not authoritative, but require that those

resources be signed by O.com so that the distributor couldn't modify

the resources. This is more constrained than the common CDN case

where O.com has a CNAME granting the CDN the right to serve

arbitrary content as O.com.

To make it easier to configure the right distributor for a given

request, computation of the physicalsrc could be encapsulated in a

custom element:

¶

¶

<script src="https://jquery.com/jquery-1.2.3.min.js">¶

¶

¶

<img logicalsrc="https://O.com/img.png"

 physicalsrc="https://distributor.com/O.com/img.png">

¶

¶

http://www.w3.org/TR/2016/REC-SRI-20160623
http://www.w3.org/TR/2016/REC-SRI-20160623
http://www.w3.org/TR/NOTE-OPS-OverHTTP
http://www.w3.org/TR/NOTE-OPS-OverHTTP
https://www.w3.org/TR/2017/WD-clear-site-data-20171130
https://www.w3.org/TR/2017/WD-clear-site-data-20171130

where the <dist-img> implementation generates an appropriate

based on, for example, a <meta name="dist-base"> tag elsewhere in

the page. However, this has the downside that the preloader can no

longer see the physical source to download it. The resulting delay

might cancel out the benefit of using a distributor.

This could be used for some of the same purposes as SRI (Appendix A.

3).

To implement this with the current proposal, the distributor would

respond to the physical request to https://distributor.com/O.com/

img.png with first a signed PUSH_PROMISE for https://O.com/img.png

and then a redirect to https://O.com/img.png.

A.3. Subresource Integrity

The W3C WebAppSec group is investigating using signatures in [SRI].

They need a way to transmit the signature with the response, which

this proposal provides.

Their needs are simpler than most other use cases in that the

integrity="ed25519-[public-key]" attribute and CSP-based ways of

expressing a public key don't need that key to be wrapped into a

certificate.

The "ed25519key" signature parameter supports this simpler way of

attaching a key.

The current proposal for signature-based SRI describes signing only

the content of a resource, while this specification requires them to

sign the request URI as well. This issue is tracked in https://

github.com/mikewest/signature-based-sri/issues/5. The details of

what they need to sign will affect whether and how they can use this

proposal.

A.4. Binary Transparency

So-called "Binary Transparency" may eventually allow users to verify

that a program they've been delivered is one that's available to the

public, and not a specially-built version intended to attack just

them. Binary transparency systems don't exist yet, but they're

likely to work similarly to the successful Certificate Transparency

logs described by [RFC6962].

Certificate Transparency depends on Signed Certificate Timestamps

that prove a log contained a particular certificate at a particular

time. To build the same thing for Binary Transparency logs

containing HTTP resources or full websites, we'll need a way to

<dist-img src="https://O.com/img.png"></dist-img>¶

¶

¶

¶

¶

¶

¶

¶

¶

https://calendar.perfplanet.com/2013/big-bad-preloader/
https://github.com/mikewest/signature-based-sri
https://github.com/mikewest/signature-based-sri/issues/5
https://github.com/mikewest/signature-based-sri/issues/5

provide signatures of those resources, which signed exchanges

provides.

A.5. Static Analysis

Native app stores like the Apple App Store and the Android Play

Store grant their contents powerful abilities, which they attempt to

make safe by analyzing the applications before offering them to

people. The web has no equivalent way for people to wait to run an

update of a web application until a trusted authority has vouched

for it.

While full application analysis probably needs to wait until the

authority can sign bundles of exchanges, authorities may be able to

guarantee certain properties by just checking a top-level resource

and its [SRI]-constrained sub-resources.

A.6. Offline websites

Fully-offline websites can be represented as bundles of signed

exchanges, although an optimization to reduce the number of

signature verifications may be needed. Work on this is in progress

in the https://github.com/WICG/webpackage repository.

Appendix B. Requirements

B.1. Proof of origin

To verify that a thing came from a particular origin, for use in the

same context as a TLS connection, we need someone to vouch for the

signing key with as much verification as the signing keys used in

TLS. The obvious way to do this is to re-use the web PKI and CA

ecosystem.

B.1.1. Certificate constraints

If we re-use existing TLS server certificates, we incur the risks

that:

TLS server certificates must be accessible from online servers,

so they're easier to steal or use as signing oracles than an

offline key. An exchange's signing key doesn't need to be

online.

A server using an origin-trusted key for one purpose (e.g. TLS)

might accidentally sign something that looks like an exchange,

or vice versa.

These risks are considered too high, so we define a new X.509

certificate extension in Section 4.2 that requires CAs to issue new

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

https://www.apple.com/ios/app-store/
https://play.google.com/store
https://play.google.com/store
https://github.com/WICG/webpackage

certificates for this purpose. We expect at least one low-cost CA to

be willing to sign certificates with this extension.

B.1.2. Signature constraints

In order to prevent an attacker who can convince the server to sign

some resource from causing those signed bytes to be interpreted as

something else the new X.509 extension here is forbidden from being

used in TLS servers. If Section 4.2 changes to allow re-use in TLS

servers, we would need to:

Avoid key types that are used for non-TLS protocols whose

output could be confused with a signature. That may be just the

rsaEncryption OID from [RFC8017].

Use the same format as TLS's signatures, specified in Section

4.4.3 of [RFC8446], with a context string that's specific to

this use.

The specification also needs to define which signing algorithm to

use. It currently specifies that as a function from the key type,

instead of allowing attacker-controlled data to specify it.

B.1.3. Retrieving the certificate

The client needs to be able to find the certificate vouching for the

signing key, a chain from that certificate to a trusted root, and

possibly other trust information like SCTs ([RFC6962]). One approach

would be to include the certificate and its chain in the signature

metadata itself, but this wastes bytes when the same certificate is

used for multiple HTTP responses. If we decide to put the signature

in an HTTP header, certificates are also unusually large for that

context.

Another option is to pass a URL that the client can fetch to

retrieve the certificate and chain. To avoid extra round trips in

fetching that URL, it could be bundled (Appendix A.6) with the

signed content or PUSHed (Appendix A.1) with it. The risks from the

client_certificate_url extension (Section 11.3 of [RFC6066]) don't

seem to apply here, since an attacker who can get a client to load

an exchange and fetch the certificates it references, can also get

the client to perform those fetches by loading other HTML.

To avoid using an unintended certificate with the same public key as

the intended one, the content of the leaf certificate or the chain

should be included in the signed data, like TLS does (Section 4.4.3

of [RFC8446]).

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

B.2. How much to sign

The previous [I-D.thomson-http-content-signature] and [I-D.burke-

content-signature] schemes signed just the content, while ([I-

D.cavage-http-signatures] could also sign the response headers and

the request method and path. However, the same path, response

headers, and content may mean something very different when

retrieved from a different server. Section 5.1.1 currently includes

the whole request URL in the signature, but it's possible we need a

more flexible scheme to allow some higher-level protocols to accept

a less-signed URL.

Servers might want to sign other request headers in order to capture

their effects on content negotiation. However, there's no standard

algorithm to check that a client's actual request headers match

request headers sent by a server. The most promising attempt at this

is [I-D.ietf-httpbis-variants], which encodes the content

negotiation algorithm into the Variants and Variant-Key response

headers. The proposal here (Section 3) assumes that is in use and

doesn't sign request headers.

B.2.1. Conveying the signed headers

HTTP headers are traditionally munged by proxies, making it

impossible to guarantee that the client will see the same sequence

of bytes as the publisher published. In the HTTPS world, we have

more end-to-end header integrity, but it's still likely that there

are enough TLS-terminating proxies that the publisher's signatures

would tend to break before getting to the client.

There's no way in current HTTP for the response to a client-

initiated request (Section 8.1 of [RFC7540]) to convey the request

headers it expected to respond to, but we sidestep that by conveying

content negotiation information in response headers, per [I-D.ietf-

httpbis-variants].

Since proxies are unlikely to modify unknown content types, we can

wrap the original exchange into an application/signed-exchange

format (Section 5.3) and include the Cache-Control: no-transform

header when sending it.

To reduce the likelihood of accidental modification by proxies, the

application/signed-exchange format includes a file signature that

doesn't collide with other known signatures.

To help the PUSHed subresources use case (Appendix A.1), we might

also want to extend the PUSH_PROMISE frame type to include a

signature, and that could tell intermediates not to change the

ensuing headers.

¶

¶

¶

¶

¶

¶

¶

B.3. Response lifespan

A normal HTTPS response is authoritative only for one client, for as

long as its cache headers say it should live. A signed exchange can

be re-used for many clients, and if it was generated while a server

was compromised, it can continue compromising clients even if their

requests happen after the server recovers. This signing scheme needs

to mitigate that risk.

B.3.1. Certificate revocation

Certificates are mis-issued and private keys are stolen, and in

response clients need to be able to stop trusting these certificates

as promptly as possible. Online revocation checks don't work, so the

industry has moved to pushed revocation lists and stapled OCSP

responses [RFC6066].

Pushed revocation lists work as-is to block trust in the certificate

signing an exchange, but the signatures need an explicit strategy to

staple OCSP responses. One option is to extend the certificate

download (Appendix B.1.3) to include the OCSP response too, perhaps

in the TLS 1.3 CertificateEntry format.

B.3.2. Response downgrade attacks

The signed content in a response might be vulnerable to attacks,

such as XSS, or might simply be discovered to be incorrect after

publication. Once the author fixes those vulnerabilities or

mistakes, clients should stop trusting the old signed content in a

reasonable amount of time. Similar to certificate revocation, I

expect the best option to be stapled "this version is still valid"

assertions with short expiration times.

These assertions could be structured as:

A signed minimum version number or timestamp for a set of

request headers: This requires that signed responses need to

include a version number or timestamp, but allows a server to

provide a single signature covering all valid versions.

A replacement for the whole exchange's signature. This requires

the publisher to separately re-sign each valid version and

requires each version to include a different update URL, but

allows intermediates to serve less data. This is the approach

taken in Section 3.

A replacement for the exchange's signature and an update for

the embedded expires and related cache-control HTTP headers

[RFC7234]. This naturally extends publishers' intuitions about

cache expiration and the existing cache revalidation behavior

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

https://www.imperialviolet.org/2012/02/05/crlsets.html
https://tlswg.github.io/tls13-spec/draft-ietf-tls-tls13.html#ocsp-and-sct

to signed exchanges. This is sketched and its downsides

explored in Appendix C.

The signature also needs to include instructions to intermediates

for how to fetch updated validity assertions.

B.4. Low implementation complexity

Simpler implementations are, all things equal, less likely to

include bugs. This section describes decisions that were made in the

rest of the specification to reduce complexity.

B.4.1. Limited choices

In general, we're trying to eliminate unnecessary choices in the

specification. For example, instead of requiring clients to support

two methods for verifying payload integrity, we only require one.

B.4.2. Bounded-buffering integrity checking

Clients can be designed with a more-trusted network layer that

decides how to trust resources and then provides those resources to

less-trusted rendering processes along with handles to the storage

and other resources they're allowed to access. If the network layer

can enforce that it only operates on chunks of data up to a certain

size, it can avoid the complexity of spooling large files to disk.

To allow the network layer to verify signed exchanges using a

bounded amount of memory, Section 5.3 requires the signature to be

less than 16kB and the headers to be less than 512kB, and Section

3.5 requires that the MI record size be less than 16kB. This allows

the network layer to validate a bounded chunk at a time, and pass

that chunk on to a renderer, and then forget about that chunk before

processing the next one.

The Digest header field from [RFC3230] requires the network layer to

buffer the entire response body, so it's disallowed.

Appendix C. Determining validity using cache control

This draft could expire signature validity using the normal HTTP

cache control headers ([RFC7234]) instead of embedding an expiration

date in the signature itself. This section specifies how that would

work, and describes why I haven't chosen that option.

The signatures in the Signature header field (Section 3.1) would no

longer contain "date" or "expires" fields.

The validity-checking algorithm (Section 3.5) would initialize date

from the resource's Date header field (Section 7.1.1.2 of [RFC7231])

¶

¶

¶

¶

¶

¶

¶

¶

¶

and initialize expires from either the Expires header field (Section

5.3 of [RFC7234]) or the Cache-Control header field's max-age

directive (Section 5.2.2.8 of [RFC7234]) (added to date), whichever

is present, preferring max-age (or failing) if both are present.

Validity updates (Section 3.6) would include a list of replacement

response header fields. For each header field name in this list, the

client would remove matching header fields from the stored

exchange's response header fields. Then the client would append the

replacement header fields to the stored exchange's response header

fields.

C.1. Example of updating cache control

For example, given a stored exchange of:

And an update listing the following headers:

The resulting stored exchange would be:

¶

¶

¶

GET / HTTP/1.1

Host: example.com

Accept: */*

HTTP/1.1 200

Date: Mon, 20 Nov 2017 10:00:00 UTC

Content-Type: text/html

Date: Tue, 21 Nov 2017 10:00:00 UTC

Expires: Sun, 26 Nov 2017 10:00:00 UTC

<!doctype html>

<html>

...

¶

¶

Expires: Fri, 1 Dec 2017 10:00:00 UTC

Date: Sat, 25 Nov 2017 10:00:00 UTC

¶

¶

GET / HTTP/1.1

Host: example.com

Accept: */*

HTTP/1.1 200

Content-Type: text/html

Expires: Fri, 1 Dec 2017 10:00:00 UTC

Date: Sat, 25 Nov 2017 10:00:00 UTC

<!doctype html>

<html>

...

¶

C.2. Downsides of updating cache control

In an exchange with multiple signatures, using cache control to

expire signatures forces all signatures to initially live for the

same period. Worse, the update from one signature's "validity-url"

might not match the update for another signature. Clients would need

to maintain a current set of headers for each signature, and then

decide which set to use when actually parsing the resource itself.

This need to store and reconcile multiple sets of headers for a

single signed exchange argues for embedding a signature's lifetime

into the signature.

Appendix D. Change Log

RFC EDITOR PLEASE DELETE THIS SECTION.

draft-09

No change

draft-08

Improve the privacy considerations.

draft-07

Provisionally register application/signed-exchange and

application/cert-chain+cbor.

draft-06

Add a security consideration for future-dated OCSP responses and

for stolen private keys.

Define a CAA parameter to opt into certificate issuance.

Limit certificate lifetimes to 90 days.

UTF-8 decode the fallback URL.

draft-05

Define absolute URLs, and limit the schemes each instance can

use.

Fill in TBD size limits.

Update to mice-03 including the Digest header.

¶

¶

¶

¶

* ¶

¶

* ¶

¶

*

¶

¶

*

¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

* ¶

Refer to draft-yasskin-httpbis-origin-signed-exchanges-impl for

draft version numbers.

Require exchange's response to be cachable by a shared cache.

Define the "integrity" field of the Signature header to include

subfields of the main integrity-protecting header, including the

digest algorithm.

Put a fallback URL at the beginning of the application/signed-

exchange format, which replaces the ':url' key from the CBOR

representation of the exchange's request and response metadata

and headers.

Remove the rest of the request headers from the signed data, in

favor of representing content negotiation with the Variants

response header.

Make the signed message format a concatenation of byte sequences,

which helps implementations avoid re-serializing the exchange's

request and response metadata and headers.

Explicitly check the response payload's integrity instead of

assuming the client did it elsewhere in processing the response.

Reject uncached header fields.

Update to draft-ietf-httpbis-header-structure-09.

Update to the final TLS 1.3 RFC.

draft-04

Update to draft-ietf-httpbis-header-structure-06.

Replace the application/http-exchange+cbor format with a simpler

application/signed-exchange format that:

Doesn't require a streaming CBOR parser parse it from a

network stream.

Doesn't allow request payloads or response trailers, which

don't fit into the signature model.

Allows checking the signature before parsing the exchange

headers.

Require absolute URLs.

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

-

¶

-

¶

-

¶

* ¶

Make all identifiers in headers lower-case, as required by

Structured Headers.

Switch back to the TLS 1.3 signature format.

Include the version and draft number in the signature context

string.

Remove support for integrity protection using the Digest header

field.

Limit the record size in the mi-sha256 encoding.

Forbid RSA keys, and only require clients to support secp256r1

keys.

Add a test OID for the CanSignHttpExchanges X.509 extension.

draft-03

Allow each method of transferring an exchange to define which

headers are signed, have the cross-origin methods use all

headers, and remove the allResponseHeaders flag.

Describe footguns around signing private content, and block

certain headers to make it less likely.

Define a CBOR structure to hold the certificate chain instead of

re-using the TLS1.3 message. The TLS 1.3 parser fails on

unexpected extensions while this format should ignore them, and

apparently TLS implementations don't expose their message parsers

enough to allow passing a message to a certificate verifier.

Require an X.509 extension for the signing certificate.

draft-02

Signatures identify a header (e.g. Digest or MI) to guard the

payload's integrity instead of directly signing over the payload.

The validityUrl is signed.

Use CBOR maps where appropriate, and define how they're

canonicalized.

Remove the update.url field from signature validity updates, in

favor of just re-fetching the original request URL.

Define an HTTP/2 extension to use a setting to enable cross-

origin Server Push.

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

Define an Accept-Signature header to negotiate whether to send

Signatures and which ones.

Define an application/http-exchange+cbor format to fetch signed

exchanges without HTTP/2 Push.

2 new use cases.

Appendix E. Acknowledgements

Thanks to Andrew Ayer, Devin Mullins, Ilari Liusvaara, John

Wilander, Justin Schuh, Mark Nottingham, Mike Bishop, Ryan Sleevi,

and Yoav Weiss for comments that improved this draft.

Author's Address

Jeffrey Yasskin

Google

Email: jyasskin@chromium.org

*

¶

*

¶

* ¶

¶

mailto:jyasskin@chromium.org

	Signed HTTP Exchanges
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Signing an exchange
	3.1. The Signature Header
	3.1.1. Examples
	3.1.2. Open Questions

	3.2. CBOR representation of exchange response headers
	3.2.1. Example

	3.3. Loading a certificate chain
	3.4. Canonical CBOR serialization
	3.5. Signature validity
	3.5.1. Open Questions

	3.6. Updating signature validity
	3.6.1. Examples

	3.7. The Accept-Signature header
	3.7.1. Integrity identifiers
	3.7.2. Key type identifiers
	3.7.3. Key value identifiers
	3.7.4. Examples
	3.7.5. Open Questions

	4. Cross-origin trust
	4.1. Uncached header fields
	4.1.1. Stateful header fields

	4.2. Certificate Requirements
	4.2.1. Extensions to the CAA Record: cansignhttpexchanges Parameter

	5. Transferring a signed exchange
	5.1. Same-origin response
	5.1.1. Serialized headers for a same-origin response
	5.1.1.1. Open Questions

	5.1.2. The Signed-Headers Header

	5.2. HTTP/2 extension for cross-origin Server Push
	5.2.1. Indicating support for cross-origin Server Push
	5.2.2. NO_TRUSTED_EXCHANGE_SIGNATURE error code
	5.2.2.1. Open Questions

	5.2.3. Validating a cross-origin Push
	5.2.3.1. Open Questions

	5.3. application/signed-exchange format
	5.3.1. Cross-origin trust in application/signed-exchange
	5.3.2. Example
	5.3.3. Open Questions

	6. Security considerations
	6.1. Over-signing
	6.1.1. Session fixation
	6.1.2. Misleading content

	6.2. Off-path attackers
	6.2.1. Mis-issued certificates
	6.2.2. Stolen private keys

	6.3. Downgrades
	6.4. Signing oracles are permanent
	6.5. Unsigned headers
	6.6. application/signed-exchange
	6.7. Key re-use with TLS
	6.8. Content sniffing

	7. Privacy considerations
	7.1. Visibility of resource requests
	7.2. User ID transfer

	8. IANA considerations
	8.1. Signature Header Field Registration
	8.2. Accept-Signature Header Field Registration
	8.3. Signed-Headers Header Field Registration
	8.4. HTTP/2 Settings
	8.5. HTTP/2 Error code
	8.6. Internet Media Type application/signed-exchange
	8.7. Internet Media Type application/cert-chain+cbor
	8.8. The cansignhttpexchanges CAA Parameter

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Use cases
	A.1. PUSHed subresources
	A.2. Explicit use of a content distributor for subresources
	A.3. Subresource Integrity
	A.4. Binary Transparency
	A.5. Static Analysis
	A.6. Offline websites
	Appendix B. Requirements
	B.1. Proof of origin
	B.1.1. Certificate constraints
	B.1.2. Signature constraints
	B.1.3. Retrieving the certificate

	B.2. How much to sign
	B.2.1. Conveying the signed headers

	B.3. Response lifespan
	B.3.1. Certificate revocation
	B.3.2. Response downgrade attacks

	B.4. Low implementation complexity
	B.4.1. Limited choices
	B.4.2. Bounded-buffering integrity checking

	Appendix C. Determining validity using cache control
	C.1. Example of updating cache control
	C.2. Downsides of updating cache control
	Appendix D. Change Log
	Appendix E. Acknowledgements
	Author's Address

