
Network Working Group J. Yasskin
Internet-Draft K. Ueno
Intended status: Standards Track Google
Expires: October 8, 2018 April 06, 2018

Signed HTTP Exchanges Implementation Checkpoints
draft-yasskin-httpbis-origin-signed-exchanges-impl-00

Abstract

 This document describes checkpoints of
 [I-D.yasskin-http-origin-signed-responses] to synchronize
 implementation between clients, intermediates, and publishers.

Note to Readers

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 The source code and issues list for this draft can be found in
https://github.com/WICG/webpackage [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 8, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Yasskin & Ueno Expires October 8, 2018 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/WICG/webpackage
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Signing an exchange . 3
3.1. The Signature Header 4
3.1.1. Examples . 5
3.1.2. Open Questions 5

3.2. CBOR representation of exchange headers 6
3.2.1. Example . 6

3.3. Loading a certificate chain 7
3.4. Canonical CBOR serialization 8
3.5. Signature validity 9
3.5.1. Open Questions 12

3.6. Updating signature validity 12
3.6.1. Examples . 13

3.7. The Accept-Signature header 14
4. Cross-origin trust . 14
4.1. Stateful header fields 15
4.2. Certificate Requirements 16

5. Transferring a signed exchange 16
5.1. Same-origin response 16
5.2. HTTP/2 extension for cross-origin Server Push 16
5.3. application/signed-exchange format 16

6. Security considerations 17
7. Privacy considerations 17
8. IANA considerations . 18
8.1. Internet Media Type application/signed-exchange 18

9. References . 19
9.1. Normative References 19
9.2. Informative References 21
9.3. URIs . 22

Appendix A. Change Log . 22
Appendix B. Acknowledgements 23

 Authors' Addresses . 23

https://trustee.ietf.org/license-info

Yasskin & Ueno Expires October 8, 2018 [Page 2]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

1. Introduction

 Each version of this document describes a checkpoint of
 [I-D.yasskin-http-origin-signed-responses] that can be implemented in
 sync by clients, intermediates, and publishers. It defines a
 technique to detect which version each party has implemented so that
 mismatches can be detected up-front.

2. Terminology

 Publisher The entity that controls the server for a particular
 origin [RFC6454]. The publisher can get a CA to issue
 certificates for their private keys and can run a TLS server for
 their origin.

 Exchange (noun) An HTTP request/response pair. This can either be a
 request from a client and the matching response from a server or
 the request in a PUSH_PROMISE and its matching response stream.
 Defined by Section 8 of [RFC7540].

 Intermediate An entity that fetches signed HTTP exchanges from an
 publisher or another intermediate and forwards them to another
 intermediate or a client.

 Client An entity that uses a signed HTTP exchange and needs to be
 able to prove that the publisher vouched for it as coming from its
 claimed origin.

 Unix time Defined by [POSIX] section 4.16 [3].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Signing an exchange

 In the response of an HTTP exchange the server MAY include a
 "Signature" header field (Section 3.1) holding a list of one or more
 parameterised signatures that vouch for the content of the exchange.
 Exactly which content the signature vouches for can depend on how the
 exchange is transferred (Section 5).

 The client categorizes each signature as "valid" or "invalid" by
 validating that signature with its certificate or public key and
 other metadata against the exchange's headers and content
 (Section 3.5). This validity then informs higher-level protocols.

https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc7540#section-8
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Yasskin & Ueno Expires October 8, 2018 [Page 3]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 Each signature is parameterised with information to let a client
 fetch assurance that a signed exchange is still valid, in the face of
 revoked certificates and newly-discovered vulnerabilities. This
 assurance can be bundled back into the signed exchange and forwarded
 to another client, which won't have to re-fetch this validity
 information for some period of time.

3.1. The Signature Header

 The "Signature" header field conveys a single signature for an
 exchange, accompanied by information about how to determine the
 authority of and refresh that signature. Each signature directly
 signs the exchange's headers and identifies one of those headers that
 enforces the integrity of the exchange's payload.

 The "Signature" header is a Structured Header as defined by
 [I-D.ietf-httpbis-header-structure-02]. Its value MUST be a list
 (Section 4.8 of [I-D.ietf-httpbis-header-structure-02]) of
 parameterised labels (Section 4.4 of
 [I-D.ietf-httpbis-header-structure-02]), and the list MUST contain
 exactly one element.

 Each parameterised label MUST have parameters named "sig",
 "integrity", "validityUrl", "date", and "expires". Each
 parameterised label MUST also have "certUrl" and "certSha256"
 parameters. This specification gives no meaning to the label itself,
 which can be used as a human-readable identifier for the signature
 (see Section 3.1.2, Paragraph 1). The present parameters MUST have
 the following values:

 "sig" Binary content (Section 4.5 of
 [I-D.ietf-httpbis-header-structure-02]) holding the signature of
 most of these parameters and the exchange's headers.

 "integrity" A string (Section 4.2 of
 [I-D.ietf-httpbis-header-structure-02]) containing the lowercase
 name of the response header field that guards the response
 payload's integrity.

 "certUrl" A string (Section 4.2 of
 [I-D.ietf-httpbis-header-structure-02]) containing an absolute-URL
 string [4] ([URL]).

 "certSha256" Binary content (Section 4.5 of
 [I-D.ietf-httpbis-header-structure-02]) holding the SHA-256 hash
 of the first certificate found at "certUrl".

Yasskin & Ueno Expires October 8, 2018 [Page 4]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 "validityUrl" A string (Section 4.2 of
 [I-D.ietf-httpbis-header-structure-02]) containing an absolute-URL
 string [5] ([URL]).

 "date" and "expires" An unsigned integer (Section 4.1 of
 [I-D.ietf-httpbis-header-structure-02]) representing a Unix time.

 The "certUrl" parameter is _not_ signed, so intermediates can update
 it with a pointer to a cached version.

3.1.1. Examples

 The following header is included in the response for an exchange with
 effective request URI "https://example.com/resource.html". Newlines
 are added for readability.

Signature:
 sig1;
 sig=*t7LoYw6vwL2FSZRNJPYdNdYjfZSQkaCQeqpBD1whcy/
6AAamVJ2OryXoXv6ACVBQgPV13o5de9oOVcOGGMX9fsf2ve1UDw/
ITpeimB7n3zcuDEePzIcPbUnicicN2yodZAfr5il7BBJTs8L+V2ZERI16nJfrOZOvUfhvuUaMDGQXx5StIj7XLiX7/
caxPz5ctwglgVAwCmoVPhmYFLq391O+hEssHSk2xkY6r/D9V2cKMikBBOTZ+JFyrnS/
f2B4li7YASIY0YX64ifCmCw97cQTngXax6Upoie44IAe+6JngOie9JlDgcMF3YZ1uxNGWl9VwlalSwWgi1YA9Ff7mQ;
 integrity="mi";
 validityUrl="https://example.com/resource.validity.1511128380";
 certUrl="https://example.com/certs";
 certSha256=*W7uB969dFW3Mb5ZefPS9Tq5ZbH5iSmOILpjv2qEArmI;
 date=1511128380; expires=1511733180

 The signatures uses a 2048-bit RSA certificate within
 "https://example.com/".

 It relies on the "MI" response header to guard the integrity of the
 response payload.

 The signature includes a "validityUrl" that includes the first time
 the resource was seen. This allows multiple versions of a resource
 at the same URL to be updated with new signatures, which allows
 clients to avoid transferring extra data while the old versions don't
 have known security bugs.

 The certificate at "https://example.com/certs" has a "subjectAltName"
 of "example.com", meaning that if it and its signature validate, the
 exchange can be trusted as having an origin of
 "https://example.com/".

3.1.2. Open Questions

 [I-D.ietf-httpbis-header-structure-02] provides a way to parameterise

 labels but not other supported types like binary content. If the
 "Signature" header field is notionally a list of parameterised

Yasskin & Ueno Expires October 8, 2018 [Page 5]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 signatures, maybe we should add a "parameterised binary content"
 type.

 Should the certUrl and validityUrl be lists so that intermediates can
 offer a cache without losing the original URLs? Putting lists in
 dictionary fields is more complex than
 [I-D.ietf-httpbis-header-structure-02] allows, so they're single
 items for now.

3.2. CBOR representation of exchange headers

 To sign an exchange's headers, they need to be serialized into a byte
 string. Since intermediaries and distributors might rearrange, add,
 or just reserialize headers, we can't use the literal bytes of the
 headers as this serialization. Instead, this section defines a CBOR
 representation that can be embedded into other CBOR, canonically
 serialized (Section 3.4), and then signed.

 The CBOR representation of an exchange "exchange"'s headers is the
 CBOR ([RFC7049]) array with the following content:

 1. The map mapping:

 * The byte string ':method' to the byte string containing
 "exchange"'s request's method.

 * The byte string ':url' to the byte string containing
 "exchange"'s request's effective request URI, which MUST be an
 absolute-URL string [6] ([URL]).

 * For each request header field in "exchange", the header
 field's lowercase name as a byte string to the header field's
 value as a byte string.

 2. The map mapping:

 * the byte string ':status' to the byte string containing
 "exchange"'s response's 3-digit status code, and

 * for each response header field in "exchange", the header
 field's lowercase name as a byte string to the header field's
 value as a byte string.

3.2.1. Example

 Given the HTTP exchange:

https://datatracker.ietf.org/doc/html/rfc7049

Yasskin & Ueno Expires October 8, 2018 [Page 6]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

GET https://example.com/ HTTP/1.1
Accept: */*

HTTP/1.1 200
Content-Type: text/html
Content-Encoding: mi-sha256
MI: mi-sha256=20addcf7368837f616d549f035bf6784ea6d4bf4817a3736cd2fc7a763897fe3

<0x0000000000004000><!doctype html>
<html>
...

 The cbor representation consists of the following item, represented
 using the extended diagnostic notation from [I-D.ietf-cbor-cddl]

appendix G:

[
 {
 ':url': 'https://example.com/'
 ':method': 'GET',
 },
 {
 'mi': 'mi-
sha256=20addcf7368837f616d549f035bf6784ea6d4bf4817a3736cd2fc7a763897fe3',
 ':status': '200',
 'content-type': 'text/html'
 'content-encoding': 'mi-sha256',
 }
]

3.3. Loading a certificate chain

 The resource at a signature's "certUrl" MUST contain a TLS 1.3
 Certificate message (Section 4.4.2 of [I-D.ietf-tls-tls13])
 containing X.509v3 certificates.

 Parsing notes:

 1. This resource MUST NOT include the 4-byte header that would
 appear in a Handshake message.

 2. Since this fetch is not in response to a CertificateRequest, the
 certificate_request_context MUST be empty, and a non-empty value
 MUST cause the parse to fail.

 The client MUST ignore unknown or unexpected extensions.

 Loading a "certUrl" takes a "forceFetch" flag. The client MUST:

Yasskin & Ueno Expires October 8, 2018 [Page 7]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 1. Let "raw-chain" be the result of fetching ([FETCH]) "certUrl".
 If "forceFetch" is _not_ set, the fetch can be fulfilled from a
 cache using normal HTTP semantics [RFC7234]. If this fetch
 fails, return "invalid".

 2. Let "certificate-chain" be the array of certificates and
 properties produced by parsing "raw-chain" as the TLS Certificate
 message as described above. If any of the requirements above
 aren't satisfied, return "invalid". Note that this validation
 requirement might be impractical to completely achieve due to
 certificate validation implementations that don't enforce DER
 encoding or other standard constraints.

 3. Return "certificate-chain".

3.4. Canonical CBOR serialization

 Within this specification, the canonical serialization of a CBOR item
 uses the following rules derived from Section 3.9 of [RFC7049] with
 erratum 4964 applied:

 o Integers and the lengths of arrays, maps, and strings MUST use the
 smallest possible encoding.

 o Items MUST NOT be encoded with indefinite length.

 o The keys in every map MUST be sorted in the bytewise lexicographic
 order of their canonical encodings. For example, the following
 keys are correctly sorted:

 1. 10, encoded as 0A.

 2. 100, encoded as 18 64.

 3. -1, encoded as 20.

 4. "z", encoded as 61 7A.

 5. "aa", encoded as 62 61 61.

 6. [100], encoded as 81 18 64.

 7. [-1], encoded as 81 20.

 8. false, encoded as F4.

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Yasskin & Ueno Expires October 8, 2018 [Page 8]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 Note: this specification does not use floating point, tags, or other
 more complex data types, so it doesn't need rules to canonicalize
 those.

3.5. Signature validity

 The client MUST parse the "Signature" header field as the list of
 parameterised values (Section 4.8.1 of
 [I-D.ietf-httpbis-header-structure-02]) described in Section 3.1. If
 an error is thrown during this parsing or any of the requirements
 described there aren't satisfied, the exchange has no valid
 signatures. Otherwise, each member of this list represents a
 signature with parameters.

 The client MUST use the following algorithm to determine whether each
 signature with parameters is invalid or potentially-valid for an
 "exchange". Potentially-valid results include:

 o The signed headers of the exchange so that higher-level protocols
 can avoid relying on unsigned headers, and

 o Either a certificate chain or a public key so that a higher-level
 protocol can determine whether it's actually valid.

 This algorithm accepts a "forceFetch" flag that avoids the cache when
 fetching URLs.

 1. Let "payload" be the payload body (Section 3.3 of [RFC7230]) of
 "exchange". Note that the payload body is the message body with
 any transfer encodings removed.

 2. Let:

 * "signature" be the signature (binary content in the
 parameterised label's "sig" parameter).

 * "integrity" be the signature's "integrity" parameter.

 * "validityUrl" be the signature's "validityUrl" parameter.

 * "certUrl" be the signature's "certUrl" parameter, if any.

 * "certSha256" be the signature's "certSha256" parameter, if
 any.

 * "date" be the signature's "date" parameter, interpreted as a
 Unix time.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.3

Yasskin & Ueno Expires October 8, 2018 [Page 9]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 * "expires" be the signature's "expires" parameter, interpreted
 as a Unix time.

 3. If "integrity" names a header field other than "MI"
 ([I-D.thomson-http-mice]) or this header field is not present in
 "exchange"'s response headers or which the client cannot use to
 check the integrity of "payload" (for example, the header field
 is new and hasn't been implemented yet), then return "invalid".
 Clients MUST be able to check the integrity of "payload" using
 the "MI" ([I-D.thomson-http-mice]) header field.

 4. Set "publicKey" and "signing-alg" depending on which key fields
 are present:

 1. Assert: "certUrl" is present.

 1. Let "certificate-chain" be the result of loading the
 certificate chain at "certUrl" passing the "forceFetch"
 flag (Section 3.3). If this returns "invalid", return
 "invalid".

 2. Let "main-certificate" be the first certificate in
 "certificate-chain".

 3. Set "publicKey" to "main-certificate"'s public key.

 4. If "publicKey" is not a 2048-bit RSA public key, return
 "invalid".

 5. The client MUST define a partial function from public key
 types to signing algorithms, and this function must at
 the minimum include the following mappings:

 RSA, 2048 bits: rsa_pss_rsae_sha256 or
 rsa_pss_pss_sha256, as defined in Section 4.2.3 of
 [I-D.ietf-tls-tls13], depending on which of the
 rsaEncryption OID or RSASSA-PSS OID [RFC8017] is used.

 Set "signing-alg" to the result of applying this function
 to the type of "main-certificate"'s public key. If the
 function is undefined on this input, return "invalid".

 5. If "expires" is more than 7 days (604800 seconds) after "date",
 return "invalid".

 6. If the current time is before "date" or after "expires", return
 "invalid".

https://datatracker.ietf.org/doc/html/rfc8017

Yasskin & Ueno Expires October 8, 2018 [Page 10]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 7. Let "message" be the concatenation of the following byte strings.
 This matches the [I-D.ietf-tls-tls13] format to avoid cross-
 protocol attacks when TLS certificates are used to sign
 manifests.

 1. A string that consists of octet 32 (0x20) repeated 64 times.

 2. A context string: the ASCII encoding of "HTTP Exchange".

 3. A single 0 byte which serves as a separator.

 4. The bytes of the canonical CBOR serialization (Section 3.4)
 of a CBOR map mapping:

 1. If "certSha256" is set:

 1. The text string "certSha256" to the byte string value
 of "certSha256".

 2. The text string "validityUrl" to the byte string value of
 "validityUrl".

 3. The text string "date" to the integer value of "date".

 4. The text string "expires" to the integer value of
 "expires".

 5. The text string "headers" to the CBOR representation
 (Section 3.2) of "exchange"'s headers.

 8. If "certUrl" is present and the SHA-256 hash of "main-
 certificate"'s "cert_data" is not equal to "certSha256" (whose
 presence was checked when the "Signature" header field was
 parsed), return "invalid".

 Note that this intentionally differs from TLS 1.3, which signs
 the entire certificate chain in its Certificate Verify
 (Section 4.4.3 of [I-D.ietf-tls-tls13]), in order to allow
 updating the stapled OCSP response without updating signatures at
 the same time. Note that this difference doesn't matter for this
 version of this draft since OCSP responses aren't checked.

 9. If "signature" is a valid signature of "message" by "publicKey"
 using "signing-alg", return "potentially-valid" with
 "certificate-chain". Otherwise, return "invalid".

 Note that the above algorithm can determine that an exchange's
 headers are potentially-valid before the exchange's payload is

Yasskin & Ueno Expires October 8, 2018 [Page 11]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 received. Similarly, if "integrity" identifies a header field like
 "MI" ([I-D.thomson-http-mice]) that can incrementally validate the
 payload, early parts of the payload can be determined to be
 potentially-valid before later parts of the payload. Higher-level
 protocols MAY process parts of the exchange that have been determined
 to be potentially-valid as soon as that determination is made but
 MUST NOT process parts of the exchange that are not yet potentially-
 valid. Similarly, as the higher-level protocol determines that parts
 of the exchange are actually valid, the client MAY process those
 parts of the exchange and MUST wait to process other parts of the
 exchange until they too are determined to be valid.

3.5.1. Open Questions

 Should the signed message use the TLS format (with an initial 64
 spaces) even though these certificates can't be used in TLS servers?

3.6. Updating signature validity

 Signatures are designed to expire a short time after they're signed,
 so that revoked certificates and signed exchanges with known
 vulnerabilities are distrusted promptly.

 The "validityUrl" parameter (Paragraph 5) of the signatures provides
 a way to fetch new signatures or learn where to fetch a complete
 updated exchange.

 Each version of a signed exchange SHOULD have its own validity URLs,
 since each version needs different signatures and becomes obsolete at
 different times.

 The resource at a "validityUrl" is "validity data", a CBOR map
 matching the following CDDL ([I-D.ietf-cbor-cddl]):

 validity = {
 ? signatures: [+ bytes]
 ? update: {
 ? size: uint,
 }
]

 The elements of the "signatures" array are parameterised labels
 (Section 4.4 of [I-D.ietf-httpbis-header-structure-02]) meant to
 replace the signatures within the "Signature" header field pointing
 to this validity data. If the signed exchange contains a bug severe
 enough that clients need to stop using the content, the "signatures"
 array MUST NOT be present.

Yasskin & Ueno Expires October 8, 2018 [Page 12]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 If the the "update" map is present, that indicates that a new version
 of the signed exchange is available at its effective request URI
 (Section 5.5 of [RFC7230]) and can give an estimate of the size of
 the updated exchange ("update.size"). If the signed exchange is
 currently the most recent version, the "update" SHOULD NOT be
 present.

 If both the "signatures" and "update" fields are present, clients can
 use the estimated size to decide whether to update the whole resource
 or just its signatures.

3.6.1. Examples

 For example, say a signed exchange whose URL is "https://example.com/
 resource" has the following "Signature" header field (with line
 breaks included and irrelevant fields omitted for ease of reading).

 Signature:
 sig1;
 sig=*MEUCIQ...;
 ...
 validityUrl="https://example.com/resource.validity.1511157180";
 certUrl="https://example.com/oldcerts";
 date=1511128380; expires=1511733180

 At 2017-11-27 11:02 UTC, "sig1" has expired, so the client needs to
 fetch "https://example.com/resource.validity.1511157180" (the
 "validityUrl" of "sig1") to update that signatures. This URL might
 contain:

{
 "signatures": [
 'sig1; '
 'sig=*MEQCIC/I9Q+7BZFP6cSDsWx43pBAL0ujTbON/
+7RwKVk+ba5AiB3FSFLZqpzmDJ0NumNwN04pqgJZE99fcK86UjkPbj4jw; '
 'validityUrl="https://example.com/resource.validity.1511157180"; '
 'integrity="mi"; '
 'certUrl="https://example.com/newcerts"; '
 'certSha256=*J/lEm9kNRODdCmINbvitpvdYKNQ+YgBj99DlYp4fEXw; '
 'date=1511733180; expires=1512337980'
],
 "update": {
 "size": 5557452
 }
}

 This indicates that the client could fetch a newer version at
 "https://example.com/resource" (the original URL of the exchange), or

https://datatracker.ietf.org/doc/html/rfc7230#section-5.5

 that the validity period of the old version can be extended by

Yasskin & Ueno Expires October 8, 2018 [Page 13]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 replacing the original signature with the new signature provided.
 The signature of the updated signed exchange would be:

 Signature:
 sig1;
 sig=*MEQCIC...;
 ...
 validityUrl="https://example.com/resource.validity.1511157180";
 certUrl="https://example.com/newcerts";
 date=1511733180; expires=1512337980

3.7. The Accept-Signature header

 This section isn't implemented.

4. Cross-origin trust

 To determine whether to trust a cross-origin exchange, the client
 takes a "Signature" header field (Section 3.1) and the "exchange".
 The client MUST parse the "Signature" header into a list of
 signatures according to the instructions in Section 3.5, and run the
 following algorithm for each signature, stopping at the first one
 that returns "valid". If any signature returns "valid", return
 "valid". Otherwise, return "invalid".

 1. If the signature's "validityUrl" parameter (Paragraph 5) is not
 same-origin [7] with "exchange"'s effective request URI
 (Section 5.5 of [RFC7230]), return "invalid".

 2. Use Section 3.5 to determine the signature's validity for
 "exchange", getting "certificate-chain" back. If this returned
 "invalid" or didn't return a certificate chain, return "invalid".

 3. If "exchange"'s request method is not safe (Section 4.2.1 of
 [RFC7231]) or not cacheable (Section 4.2.3 of [RFC7231]), return
 "invalid".

 4. If "exchange"'s headers contain a stateful header field, as
 defined in Section 4.1, return "invalid".

 5. Let "authority" be the host component of "exchange"'s effective
 request URI.

 6. Validate the "certificate-chain" using the following substeps.
 If any of them fail, re-run Section 3.5 once over the signature
 with the "forceFetch" flag set, and restart from step 2. If a
 substep fails again, return "invalid".

https://datatracker.ietf.org/doc/html/rfc7230#section-5.5
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.3

Yasskin & Ueno Expires October 8, 2018 [Page 14]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 1. Use "certificate-chain" to validate that its first entry,
 "main-certificate" is trusted as "authority"'s server
 certificate ([RFC5280] and other undocumented conventions).
 Let "path" be the path that was used from the "main-
 certificate" to a trusted root, including the "main-
 certificate" but excluding the root.

 7. Return "valid".

4.1. Stateful header fields

 As described in Section 6.1 of
 [I-D.yasskin-http-origin-signed-responses], a publisher can cause
 problems if they sign an exchange that includes private information.
 There's no way for a client to be sure an exchange does or does not
 include private information, but header fields that store or convey
 stored state in the client are a good sign.

 A stateful request header field informs the server of per-client
 state. These include but are not limited to:

 o "Authorization", [RFC7235]

 o "Cookie", [RFC6265]

 o "Cookie2", [RFC2965]

 o "Proxy-Authorization", [RFC7235]

 o "Sec-WebSocket-Key", [RFC6455]

 A stateful response header field modifies state, including
 authentication status, in the client. The HTTP cache is not
 considered part of this state. These include but are not limited to:

 o "Authentication-Control", [RFC8053]

 o "Authentication-Info", [RFC7615]

 o "Optional-WWW-Authenticate", [RFC8053]

 o "Proxy-Authenticate", [RFC7235]

 o "Proxy-Authentication-Info", [RFC7615]

 o "Sec-WebSocket-Accept", [RFC6455]

 o "Set-Cookie", [RFC6265]

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc8053
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc8053
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6265

Yasskin & Ueno Expires October 8, 2018 [Page 15]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 o "Set-Cookie2", [RFC2965]

 o "SetProfile", [W3C.NOTE-OPS-OverHTTP]

 o "WWW-Authenticate", [RFC7235]

4.2. Certificate Requirements

 For this draft, no new X.509 extension is required.

5. Transferring a signed exchange

 A signed exchange can be transferred in several ways, of which three
 are described here.

5.1. Same-origin response

 Receiving a Signature header as part of a normal HTTP exchange is not
 implemented.

5.2. HTTP/2 extension for cross-origin Server Push

 Cross origin push is not implemented.

5.3. application/signed-exchange format

 To parse a resource with content type "application/signed-
 exchange;v=b0", the client MUST run the following algorithm:

 Read 3 bytes and interpret them as a big-endian integer
 "headerLength".

 If "headerLength" is larger than 524288 (512kB), parsing MUST fail.

 Read "headerLength" bytes, and parse them as a CBOR item. If this
 item isn't canonically encoded (Section 3.4) or doesn't match the
 following CDDL, parsing MUST fail:

 signed-exchange-header = [
 { ':method': bytes,
 ':url': bytes,
 * bytes => bytes,
 },
 { ':status': bytes,
 'signature': bytes,
 * bytes => bytes,
 },
]

https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc7235

Yasskin & Ueno Expires October 8, 2018 [Page 16]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 The first element of the array is interpreted as the exchange's
 request headers with lowercase names, with the request method in the
 ':method' key's value, and the effective request URI, which MUST be
 an absolute-URL string [8] ([URL]), in the ':url' key's value.

 The second element of the array is interpreted as the exchange's
 response headers with lowercase names, with the 3-digit response
 status code in the ':status' key's value.

 If any header field name includes uppercase characters, parsing MUST
 fail.

 Pass the "Signature" response header and the exchange with that
 header removed to the algorithm in Section 4. Fail if this returns
 "invalid".

 The remainder of the resource is the exchange's payload, encoded with
 the "mi-sha256" content encoding ([I-D.thomson-http-mice]). If the
 "mi-sha256" record length (the first 8 bytes of the payload) is
 greater than 16kB, or if any of the integrity proofs fail validation,
 parsing MUST fail.

6. Security considerations

 All of the security considerations from Section 6 of
 [I-D.yasskin-http-origin-signed-responses] apply.

 In addition, because this draft does not check for certificate
 revocation and allows signatures from certificates that can be used
 in normal TLS servers with no defense against future-dated
 signatures, clients MUST NOT trust signed exchanges as authoritative
 for their claimed origin without some explicit opt-in by their user.

7. Privacy considerations

 Normally, when a client fetches "https://o1.com/resource.js",
 "o1.com" learns that the client is interested in the resource. If
 "o1.com" signs "resource.js", "o2.com" serves it as "https://o2.com/
 o1resource.js", and the client fetches it from there, then "o2.com"
 learns that the client is interested, and if the client executes the
 Javascript, that could also report the client's interest back to
 "o1.com".

 Often, "o2.com" already knew about the client's interest, because
 it's the entity that directed the client to "o1resource.js", but
 there may be cases where this leaks extra information.

Yasskin & Ueno Expires October 8, 2018 [Page 17]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 For non-executable resource types, a signed response can improve the
 privacy situation by hiding the client's interest from the original
 publisher.

 To prevent network operators other than "o1.com" or "o2.com" from
 learning which exchanges were read, clients SHOULD only load
 exchanges fetched over a transport that's protected from
 eavesdroppers. This can be difficult to determine when the exchange
 is being loaded from local disk, but when the client itself requested
 the exchange over a network it SHOULD require TLS
 ([I-D.ietf-tls-tls13]) or a successor transport layer, and MUST NOT
 accept exchanges transferred over plain HTTP without TLS.

8. IANA considerations

 This depends on the following IANA registration in
 [I-D.yasskin-http-origin-signed-responses]:

 o The "Signature" header field

 This document also registers:

8.1. Internet Media Type application/signed-exchange

 Type name: application

 Subtype name: signed-exchange

 Required parameters:

 o v: A string denoting the version of the file format. ([RFC5234]
 ABNF: "version = DIGIT/%x61-7A") The version defined in this
 specification is "b0". When used with the "Accept" header field
 (Section 5.3.1 of [RFC7231]), this parameter can be a comma
 (,)-separated list of version strings. ([RFC5234] ABNF: "version-
 list = version *("," version)") The server is then expected to
 reply with a resource using a particular version from that list.

 Note: As this is a snapshot of a draft of
 [I-D.yasskin-http-origin-signed-responses], it does not use a
 simple integer to describe its version.

 Optional parameters: N/A

 Encoding considerations: binary

 Security considerations: see Section 6.6 of
 [I-D.yasskin-http-origin-signed-responses]

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc5234

Yasskin & Ueno Expires October 8, 2018 [Page 18]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 Interoperability considerations: N/A

 Published specification: This specification (see Section 5.3).

 Applications that use this media type: N/A

 Fragment identifier considerations: N/A

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): 82 A?

 File extension(s): .sxg

 Macintosh file type code(s): N/A

 Person and email address to contact for further information: See
 Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See Authors' Addresses section.

 Change controller: IESG

9. References

9.1. Normative References

 [FETCH] WHATWG, "Fetch", April 2018,
 <https://fetch.spec.whatwg.org/>.

 [HTML] WHATWG, "HTML", April 2018,
 <https://html.spec.whatwg.org/multipage>.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-ietf-cbor-cddl-02
 (work in progress), February 2018.

https://fetch.spec.whatwg.org/
https://html.spec.whatwg.org/multipage
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-02

Yasskin & Ueno Expires October 8, 2018 [Page 19]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 [I-D.ietf-httpbis-header-structure-02]
 Nottingham, M. and P. Kamp, "Structured Headers for HTTP",

draft-ietf-httpbis-header-structure-02 (work in progress),
 November 2017, <https://tools.ietf.org/html/

draft-ietf-httpbis-header-structure-02>.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [I-D.thomson-http-mice]
 Thomson, M., "Merkle Integrity Content Encoding", draft-

thomson-http-mice-02 (work in progress), October 2016.

 [I-D.yasskin-http-origin-signed-responses]
 Yasskin, J., "Signed HTTP Exchanges", draft-yasskin-http-

origin-signed-responses-03 (work in progress), March 2018.

 [POSIX] IEEE and The Open Group, "The Open Group Base
 Specifications Issue 7", name IEEE, value 1003.1-2008,
 2016 Edition, 2016,
 <http://pubs.opengroup.org/onlinepubs/9699919799/

basedefs/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-02
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-02
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-28
https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-02
https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-02
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-03
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-03
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049

Yasskin & Ueno Expires October 8, 2018 [Page 20]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [URL] WHATWG, "URL", April 2018, <https://url.spec.whatwg.org/>.

9.2. Informative References

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, DOI 10.17487/RFC2965, October 2000,
 <https://www.rfc-editor.org/info/rfc2965>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, DOI 10.17487/RFC6455, December 2011,

 <https://www.rfc-editor.org/info/rfc6455>.

https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://url.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/rfc2965
https://www.rfc-editor.org/info/rfc2965
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc6455
https://www.rfc-editor.org/info/rfc6455

Yasskin & Ueno Expires October 8, 2018 [Page 21]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
 Authentication-Info Response Header Fields", RFC 7615,
 DOI 10.17487/RFC7615, September 2015,
 <https://www.rfc-editor.org/info/rfc7615>.

 [RFC8053] Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,
 T., and Y. Ioku, "HTTP Authentication Extensions for
 Interactive Clients", RFC 8053, DOI 10.17487/RFC8053,
 January 2017, <https://www.rfc-editor.org/info/rfc8053>.

 [W3C.NOTE-OPS-OverHTTP]
 Hensley, P., Metral, M., Shardanand, U., Converse, D., and
 M. Myers, "Implementation of OPS Over HTTP", W3C NOTE
 NOTE-OPS-OverHTTP, June 1997.

9.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] https://github.com/WICG/webpackage

 [3] http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap04.html#tag_04_16

 [4] https://url.spec.whatwg.org/#absolute-url-string

 [5] https://url.spec.whatwg.org/#absolute-url-string

 [6] https://url.spec.whatwg.org/#absolute-url-string

 [7] https://html.spec.whatwg.org/multipage/origin.html#same-origin

 [8] https://url.spec.whatwg.org/#absolute-url-string

Appendix A. Change Log

draft-00

 Vs. [I-D.yasskin-http-origin-signed-responses]:

 o Removed non-normative sections.

 o Only 1 signature is supported.

https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://datatracker.ietf.org/doc/html/rfc8053
https://www.rfc-editor.org/info/rfc8053
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/WICG/webpackage
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://url.spec.whatwg.org/#absolute-url-string
https://url.spec.whatwg.org/#absolute-url-string
https://url.spec.whatwg.org/#absolute-url-string
https://html.spec.whatwg.org/multipage/origin.html#same-origin
https://url.spec.whatwg.org/#absolute-url-string
https://datatracker.ietf.org/doc/html/draft-00

Yasskin & Ueno Expires October 8, 2018 [Page 22]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints April 2018

 o Only 2048-bit RSA keys are supported.

 o The certificate chain resource uses the TLS 1.3 Certificate
 message format rather than a CBOR-based format.

 o OCSP responses and SCTs are not checked.

 o Certificates without the CanSignHttpExchanges extension are
 allowed.

 o The signature string starts with 64 0x20 octets like the TLS 1.3
 signature format.

 o The application/http-exchange+cbor format is replaced with a more
 specialized application/signed-exchange format.

 o Signed exchanges can only be transmitted using the application/
 signed-exchange format, not HTTP/2 Push or plain HTTP request/
 response pairs.

 o Only the MI payload-integrity header is supported.

 o The mi-sha256 encoding must have records <= 16kB.

 o The Accept-Signature header isn't used.

 o Require absolute URLs.

Appendix B. Acknowledgements

Authors' Addresses

 Jeffrey Yasskin
 Google

 Email: jyasskin@chromium.org

 Kouhei Ueno
 Google

 Email: kouhei@chromium.org

Yasskin & Ueno Expires October 8, 2018 [Page 23]

