
Network Working Group J. Yasskin
Internet-Draft K. Ueno
Intended status: Standards Track Google
Expires: January 25, 2020 July 24, 2019

Signed HTTP Exchanges Implementation Checkpoints
draft-yasskin-httpbis-origin-signed-exchanges-impl-03

Abstract

 This document describes checkpoints of draft-yasskin-http-origin-
signed-responses to synchronize implementation between clients,

 intermediates, and publishers.

Note to Readers

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 The source code and issues list for this draft can be found in
https://github.com/WICG/webpackage [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 25, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Yasskin & Ueno Expires January 25, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/WICG/webpackage
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Signing an exchange . 4
3.1. The Signature Header 4
3.1.1. Examples . 5

3.2. CBOR representation of exchange response headers 6
3.2.1. Example . 6

3.3. Loading a certificate chain 7
3.4. Canonical CBOR serialization 8
3.5. Signature validity 9
3.6. Updating signature validity 12
3.6.1. Examples . 13

3.7. The Accept-Signature header 14
4. Cross-origin trust . 14
4.1. Uncached header fields 16
4.1.1. Stateful header fields 17

4.2. Certificate Requirements 17
 4.2.1. Extensions to the CAA Record: cansignhttpexchanges
 Parameter . 19

5. Transferring a signed exchange 19
5.1. Same-origin response 19
5.2. HTTP/2 extension for cross-origin Server Push 19
5.3. application/signed-exchange format 19
5.3.1. Cross-origin trust in application/signed-exchange . . 20
5.3.2. Content negotiation 21
5.3.3. Example . 21

6. Security considerations 21
7. Privacy considerations 21
8. IANA considerations . 22
8.1. Internet Media Type application/signed-exchange 22

9. References . 23
9.1. Normative References 23
9.2. Informative References 25
9.3. URIs . 26

Appendix A. Change Log . 27
Appendix B. Acknowledgements 29

 Authors' Addresses . 30

https://trustee.ietf.org/license-info

Yasskin & Ueno Expires January 25, 2020 [Page 2]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

1. Introduction

 Each version of this document describes a checkpoint of
 [I-D.yasskin-http-origin-signed-responses] that can be implemented in
 sync by clients, intermediates, and publishers. It defines a
 technique to detect which version each party has implemented so that
 mismatches can be detected up-front.

2. Terminology

 Absolute URL A string for which the URL parser [3] ([URL]), when run
 without a base URL, returns a URL rather than a failure, and for
 which that URL has a null fragment. This is similar to the
 absolute-URL string [4] concept defined by ([URL]) but might not
 include exactly the same strings.

 Author The entity that wrote the content in a particular resource.
 This specification deals with publishers rather than authors.

 Publisher The entity that controls the server for a particular
 origin [RFC6454]. The publisher can get a CA to issue
 certificates for their private keys and can run a TLS server for
 their origin.

 Exchange (noun) An HTTP request URL, content negotiation
 information, and an HTTP response. This are encoded into the
 dedicated format in Section 5.3, which uses
 [I-D.ietf-httpbis-variants-05] to encode the content negotiation
 information. This is not quite the same meaning as defined by

Section 8 of [RFC7540], which assumes the content negotiation
 information is embedded into HTTP request headers.

 Intermediate An entity that fetches signed HTTP exchanges from a
 publisher or another intermediate and forwards them to another
 intermediate or a client.

 Client An entity that uses a signed HTTP exchange and needs to be
 able to prove that the publisher vouched for it as coming from its
 claimed origin.

 Unix time Defined by [POSIX] section 4.16 [5].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc7540#section-8
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Yasskin & Ueno Expires January 25, 2020 [Page 3]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

3. Signing an exchange

 In the response of an HTTP exchange the server MAY include a
 "Signature" header field (Section 3.1) holding a list of one or more
 parameterised signatures that vouch for the content of the exchange.
 Exactly which content the signature vouches for can depend on how the
 exchange is transferred (Section 5).

 The client categorizes each signature as "valid" or "invalid" by
 validating that signature with its certificate or public key and
 other metadata against the exchange's URL, response headers, and
 content (Section 3.5). This validity then informs higher-level
 protocols.

 Each signature is parameterised with information to let a client
 fetch assurance that a signed exchange is still valid, in the face of
 revoked certificates and newly-discovered vulnerabilities. This
 assurance can be bundled back into the signed exchange and forwarded
 to another client, which won't have to re-fetch this validity
 information for some period of time.

3.1. The Signature Header

 The "Signature" header field conveys a single signature for an
 exchange, accompanied by information about how to determine the
 authority of and refresh that signature. Each signature directly
 signs the exchange's URL and response headers and identifies one of
 those headers that enforces the integrity of the exchange's payload.

 The "Signature" header is a Structured Header as defined by
 [I-D.ietf-httpbis-header-structure-10]. Its value MUST be a
 parameterised list (Section 3.4 of
 [I-D.ietf-httpbis-header-structure-10]), and the list MUST contain
 exactly one element. Its ABNF is:

 Signature = sh-param-list

 The parameterised identifier in the list MUST have parameters named
 "sig", "integrity", "validity-url", "date", "expires", "cert-url",
 and "cert-sha256". This specification gives no meaning to the
 identifier itself, which can be used as a human-readable identifier
 for the signature. The present parameters MUST have the following
 values:

 "sig" Byte sequence (Section 3.10 of
 [I-D.ietf-httpbis-header-structure-10]) holding the signature of
 most of these parameters and the exchange's URL and response
 headers.

Yasskin & Ueno Expires January 25, 2020 [Page 4]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 "integrity" A string (Section 3.8 of
 [I-D.ietf-httpbis-header-structure-10]) containing a "/"-separated
 sequence of names starting with the lowercase name of the response
 header field that guards the response payload's integrity. The
 meaning of subsequent names depends on the response header field,
 but for the "digest" header field, the single following name is
 the name of the digest algorithm that guards the payload's
 integrity.

 "cert-url" A string (Section 3.8 of
 [I-D.ietf-httpbis-header-structure-10]) containing an absolute URL
 (Section 2) with a scheme of "https" or "data".

 "cert-sha256" Byte sequence (Section 3.10 of
 [I-D.ietf-httpbis-header-structure-10]) holding the SHA-256 hash
 of the first certificate found at "cert-url".

 "validity-url" A string (Section 3.8 of
 [I-D.ietf-httpbis-header-structure-10]) containing an absolute URL
 (Section 2) with a scheme of "https".

 "date" and "expires" An integer (Section 3.6 of
 [I-D.ietf-httpbis-header-structure-10]) representing a Unix time.

 The "cert-url" parameter is _not_ signed, so intermediates can update
 it with a pointer to a cached version.

3.1.1. Examples

 The following header is included in the response for an exchange with
 effective request URI "https://example.com/resource.html". Newlines
 are added for readability.

Signature:
 sig1;

sig=*MEUCIQDXlI2gN3RNBlgFiuRNFpZXcDIaUpX6HIEwcZEc0cZYLAIga9DsVOMM+g5YpwEBdGW3sS+bvnmAJJiSMwhuBdqp5UY=*;
 integrity="digest/mi-sha256-03";
 validity-url="https://example.com/resource.validity.1511128380";
 cert-url="https://example.com/oldcerts";
 cert-sha256=*W7uB969dFW3Mb5ZefPS9Tq5ZbH5iSmOILpjv2qEArmI=*;
 date=1511128380; expires=1511733180

 The signature uses a secp256r1 certificate within
 "https://example.com/".

 It relies on the "Digest" response header with the mi-sha256-03
 digest algorithm to guard the integrity of the response payload.

Yasskin & Ueno Expires January 25, 2020 [Page 5]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 The signature includes a "validity-url" that includes the first time
 the resource was seen. This allows multiple versions of a resource
 at the same URL to be updated with new signatures, which allows
 clients to avoid transferring extra data while the old versions don't
 have known security bugs.

 The certificate at "https://example.com/certs" has a "subjectAltName"
 of "example.com", meaning that if it and its signature validate, the
 exchange can be trusted as having an origin of
 "https://example.com/".

3.2. CBOR representation of exchange response headers

 To sign an exchange's response headers, they need to be serialized
 into a byte string. Since intermediaries and distributors might
 rearrange, add, or just reserialize headers, we can't use the literal
 bytes of the headers as this serialization. Instead, this section
 defines a CBOR representation that can be embedded into other CBOR,
 canonically serialized (Section 3.4), and then signed.

 The CBOR representation of a set of response metadata and headers is
 the CBOR ([RFC7049]) map with the following mappings:

 o The byte string ':status' to the byte string containing the
 response's 3-digit status code, and

 o For each response header field, the header field's lowercase name
 as a byte string to the header field's value as a byte string.

3.2.1. Example

 Given the HTTP exchange:

 GET / HTTP/1.1
 Host: example.com
 Accept: */*

 HTTP/1.1 200
 Content-Type: text/html
 Digest: mi-sha256-03=dcRDgR2GM35DluAV13PzgnG6+pvQwPywfFvAu1UeFrs=
 Signed-Headers: "content-type", "digest"

 <!doctype html>
 <html>
 ...

 The cbor representation consists of the following item, represented
 using the extended diagnostic notation from [CDDL] appendix G:

https://datatracker.ietf.org/doc/html/rfc7049

Yasskin & Ueno Expires January 25, 2020 [Page 6]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 {
 'digest': 'mi-sha256-03=dcRDgR2GM35DluAV13PzgnG6+pvQwPywfFvAu1UeFrs=',
 ':status': '200',
 'content-type': 'text/html'
 }

3.3. Loading a certificate chain

 The resource at a signature's "cert-url" MUST have the "application/
 cert-chain+cbor" content type, MUST be canonically-encoded CBOR
 (Section 3.4), and MUST match the following CDDL:

 cert-chain = [
 "📜⛓", ; U+1F4DC U+26D3
 + {
 cert: bytes,
 ? ocsp: bytes,
 ? sct: bytes,
 * tstr => any,
 }
]

 The first map (second item) in the CBOR array is treated as the end-
 entity certificate, and the client will attempt to build a path
 ([RFC5280]) to it from a trusted root using the other certificates in
 the chain.

 1. Each "cert" value MUST be a DER-encoded X.509v3 certificate
 ([RFC5280]). Other key/value pairs in the same array item define
 properties of this certificate.

 2. The first certificate's "ocsp" value MUST be a complete, DER-
 encoded OCSP response for that certificate (using the ASN.1 type
 "OCSPResponse" defined in [RFC6960]). Subsequent certificates
 MUST NOT have an "ocsp" value.

 3. Each certificate's "sct" value if any MUST be a
 "SignedCertificateTimestampList" for that certificate as defined
 by Section 3.3 of [RFC6962].

 Loading a "cert-url" takes a "forceFetch" flag. The client MUST:

 1. Let "raw-chain" be the result of fetching ([FETCH]) "cert-url".
 If "forceFetch" is _not_ set, the fetch can be fulfilled from a
 cache using normal HTTP semantics [RFC7234]. If this fetch
 fails, return "invalid".

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6962#section-3.3
https://datatracker.ietf.org/doc/html/rfc7234

Yasskin & Ueno Expires January 25, 2020 [Page 7]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 2. Let "certificate-chain" be the array of certificates and
 properties produced by parsing "raw-chain" using the CDDL above.
 If any of the requirements above aren't satisfied, return
 "invalid". Note that this validation requirement might be
 impractical to completely achieve due to certificate validation
 implementations that don't enforce DER encoding or other standard
 constraints.

 3. Return "certificate-chain".

3.4. Canonical CBOR serialization

 Within this specification, the canonical serialization of a CBOR item
 uses the following rules derived from Section 3.9 of [RFC7049] with
 erratum 4964 applied:

 o Integers and the lengths of arrays, maps, and strings MUST use the
 smallest possible encoding.

 o Items MUST NOT be encoded with indefinite length.

 o The keys in every map MUST be sorted in the bytewise lexicographic
 order of their canonical encodings. For example, the following
 keys are correctly sorted:

 1. 10, encoded as 0A.

 2. 100, encoded as 18 64.

 3. -1, encoded as 20.

 4. "z", encoded as 61 7A.

 5. "aa", encoded as 62 61 61.

 6. [100], encoded as 81 18 64.

 7. [-1], encoded as 81 20.

 8. false, encoded as F4.

 Note: this specification does not use floating point, tags, or other
 more complex data types, so it doesn't need rules to canonicalize
 those.

https://datatracker.ietf.org/doc/html/rfc7049#section-3.9

Yasskin & Ueno Expires January 25, 2020 [Page 8]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

3.5. Signature validity

 The client MUST parse the "Signature" header field as the
 parameterised list (Section 4.2.5 of
 [I-D.ietf-httpbis-header-structure-10]) described in Section 3.1. If
 an error is thrown during this parsing or any of the requirements
 described there aren't satisfied, the exchange has no valid
 signatures. Otherwise, each member of this list represents a
 signature with parameters.

 The client MUST use the following algorithm to determine whether each
 signature with parameters is invalid or potentially-valid for an
 exchange's

 o "requestUrl", a byte sequence that can be parsed into the
 exchange's effective request URI (Section 5.5 of [RFC7230]),

 o "responseHeaders", a byte sequence holding the canonical
 serialization (Section 3.4) of the CBOR representation
 (Section 3.2) of the exchange's response metadata and headers, and

 o "payload", a stream of bytes constituting the exchange's payload
 body (Section 3.3 of [RFC7230]). Note that the payload body is
 the message body with any transfer encodings removed.

 Potentially-valid results include:

 o The signed headers of the exchange so that higher-level protocols
 can avoid relying on unsigned headers, and

 o Either a certificate chain or a public key so that a higher-level
 protocol can determine whether it's actually valid.

 This algorithm accepts a "forceFetch" flag that avoids the cache when
 fetching URLs. A client that determines that a potentially-valid
 certificate chain is actually invalid due to an expired OCSP response
 MAY retry with "forceFetch" set to retrieve an updated OCSP from the
 original server.

 1. Let:

 * "signature" be the signature (byte sequence in the
 parameterised identifier's "sig" parameter).

 * "integrity" be the signature's "integrity" parameter.

 * "validity-url" be the signature's "validity-url" parameter.

https://datatracker.ietf.org/doc/html/rfc7230#section-5.5
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3

Yasskin & Ueno Expires January 25, 2020 [Page 9]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 * "cert-url" be the signature's "cert-url" parameter, if any.

 * "cert-sha256" be the signature's "cert-sha256" parameter, if
 any.

 * "date" be the signature's "date" parameter, interpreted as a
 Unix time.

 * "expires" be the signature's "expires" parameter, interpreted
 as a Unix time.

 2. Set "publicKey" and "signing-alg" depending on which key fields
 are present:

 1. Assert: "cert-url" is present.

 1. Let "certificate-chain" be the result of loading the
 certificate chain at "cert-url" passing the "forceFetch"
 flag (Section 3.3). If this returns "invalid", return
 "invalid".

 2. Let "main-certificate" be the first certificate in
 "certificate-chain".

 3. Set "publicKey" to "main-certificate"'s public key.

 4. If "publicKey" is an RSA key, return "invalid".

 5. If "publicKey" is a key using the secp256r1 elliptic
 curve, set "signing-alg" to ecdsa_secp256r1_sha256 as
 defined in Section 4.2.3 of [TLS1.3].

 6. Otherwise, return "invalid".

 3. If "expires" is more than 7 days (604800 seconds) after "date",
 return "invalid".

 4. If the current time is before "date" or after "expires", return
 "invalid".

 5. Let "message" be the concatenation of the following byte
 strings. This matches the [TLS1.3] format to avoid cross-
 protocol attacks if anyone uses the same key in a TLS
 certificate and an exchange-signing certificate.

 1. A string that consists of octet 32 (0x20) repeated 64 times.

Yasskin & Ueno Expires January 25, 2020 [Page 10]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 2. A context string: the ASCII encoding of "HTTP Exchange 1
 b3".

 Note: As this is a snapshot of a draft of
 [I-D.yasskin-http-origin-signed-responses], it uses a
 distinct context string.

 3. A single 0 byte which serves as a separator.

 4. If "cert-sha256" is set, a byte holding the value 32
 followed by the 32 bytes of the value of "cert-sha256".
 Otherwise a 0 byte.

 5. The 8-byte big-endian encoding of the length in bytes of
 "validity-url", followed by the bytes of "validity-url".

 6. The 8-byte big-endian encoding of "date".

 7. The 8-byte big-endian encoding of "expires".

 8. The 8-byte big-endian encoding of the length in bytes of
 "requestUrl", followed by the bytes of "requestUrl".

 9. The 8-byte big-endian encoding of the length in bytes of
 "responseHeaders", followed by the bytes of
 "responseHeaders".

 6. If "cert-url" is present and the SHA-256 hash of "main-
 certificate"'s "cert_data" is not equal to "cert-sha256" (whose
 presence was checked when the "Signature" header field was
 parsed), return "invalid".

 Note that this intentionally differs from TLS 1.3, which signs
 the entire certificate chain in its Certificate Verify
 (Section 4.4.3 of [TLS1.3]), in order to allow updating the
 stapled OCSP response without updating signatures at the same
 time.

 7. If "signature" is not a valid signature of "message" by
 "publicKey" using "signing-alg", return "invalid".

 8. If "headers", interpreted according to Section 3.2, does not
 contain a "Content-Type" response header field (Section 3.1.1.5
 of [RFC7231]), return "invalid".

 Clients MUST interpret the signed payload as this specified
 media type instead of trying to sniff a media type from the
 bytes of the payload, for example by attaching an "X-Content-

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.5
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.5

Yasskin & Ueno Expires January 25, 2020 [Page 11]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 Type-Options: nosniff" header field ([FETCH]) to the extracted
 response.

 9. If "integrity" does not match "digest/mi-sha256-03", return
 "invalid".

 10. If "payload" doesn't match the integrity information in the
 header described by "integrity", return "invalid".

 11. Return "potentially-valid" with "certificate-chain".

 Note that the above algorithm can determine that an exchange's
 headers are potentially-valid before the exchange's payload is
 received. Similarly, if "integrity" identifies a header field and
 parameter like "Digest: mi-sha256-03" ([I-D.thomson-http-mice]) that
 can incrementally validate the payload, early parts of the payload
 can be determined to be potentially-valid before later parts of the
 payload. Higher-level protocols MAY process parts of the exchange
 that have been determined to be potentially-valid as soon as that
 determination is made but MUST NOT process parts of the exchange that
 are not yet potentially-valid. Similarly, as the higher-level
 protocol determines that parts of the exchange are actually valid,
 the client MAY process those parts of the exchange and MUST wait to
 process other parts of the exchange until they too are determined to
 be valid.

3.6. Updating signature validity

 Both OCSP responses and signatures are designed to expire a short
 time after they're signed, so that revoked certificates and signed
 exchanges with known vulnerabilities are distrusted promptly.

 This specification provides no way to update OCSP responses by
 themselves. Instead, clients need to re-fetch the "cert-url"
 (Section 3.5, Paragraph 6) to get a chain including a newer OCSP
 response.

 The "validity-url" parameter (Paragraph 5) of the signatures provides
 a way to fetch new signatures or learn where to fetch a complete
 updated exchange.

 Each version of a signed exchange SHOULD have its own validity URLs,
 since each version needs different signatures and becomes obsolete at
 different times.

 The resource at a "validity-url" is "validity data", a CBOR map
 matching the following CDDL ([CDDL]):

Yasskin & Ueno Expires January 25, 2020 [Page 12]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 validity = {
 ? signatures: [+ bytes]
 ? update: {
 ? size: uint,
 }
]

 The elements of the "signatures" array are parameterised identifiers
 (Section 4.2.6 of [I-D.ietf-httpbis-header-structure-10]) meant to
 replace the signatures within the "Signature" header field pointing
 to this validity data. If the signed exchange contains a bug severe
 enough that clients need to stop using the content, the "signatures"
 array MUST NOT be present.

 If the the "update" map is present, that indicates that a new version
 of the signed exchange is available at its effective request URI
 (Section 5.5 of [RFC7230]) and can give an estimate of the size of
 the updated exchange ("update.size"). If the signed exchange is
 currently the most recent version, the "update" SHOULD NOT be
 present.

 If both the "signatures" and "update" fields are present, clients can
 use the estimated size to decide whether to update the whole resource
 or just its signatures.

3.6.1. Examples

 For example, say a signed exchange whose URL is "https://example.com/
 resource" has the following "Signature" header field (with line
 breaks included and irrelevant fields omitted for ease of reading).

 Signature:
 sig1;
 sig=*MEUCIQ...*;
 ...
 validity-url="https://example.com/resource.validity.1511157180";
 cert-url="https://example.com/oldcerts";
 date=1511128380; expires=1511733180

 At 2017-11-27 11:02 UTC, "sig1" has expired, so the client needs to
 fetch "https://example.com/resource.validity.1511157180" (the
 "validity-url" of "sig1") if it wishes to update that signature.
 This URL might contain:

https://datatracker.ietf.org/doc/html/rfc7230#section-5.5

Yasskin & Ueno Expires January 25, 2020 [Page 13]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

{
 "signatures": [
 'sig1; '
 'sig=*MEQCIC/I9Q+7BZFP6cSDsWx43pBAL0ujTbON/
+7RwKVk+ba5AiB3FSFLZqpzmDJ0NumNwN04pqgJZE99fcK86UjkPbj4jw==*; '
 'validity-url="https://example.com/resource.validity.1511157180"; '
 'integrity="digest/mi-sha256-03"; '
 'cert-url="https://example.com/newcerts"; '
 'cert-sha256=*J/lEm9kNRODdCmINbvitpvdYKNQ+YgBj99DlYp4fEXw=*; '
 'date=1511733180; expires=1512337980'
],
 "update": {
 "size": 5557452
 }
}

 This indicates that the client could fetch a newer version at
 "https://example.com/resource" (the original URL of the exchange), or
 that the validity period of the old version can be extended by
 replacing the original signature with the new signature provided.
 The signature of the updated signed exchange would be:

 Signature:
 sig1;
 sig=*MEQCIC...*;
 ...
 validity-url="https://example.com/resource.validity.1511157180";
 cert-url="https://example.com/newcerts";
 date=1511733180; expires=1512337980

3.7. The Accept-Signature header

 The "Accept-Signature" request header is not used.

4. Cross-origin trust

 To determine whether to trust a cross-origin exchange, the client
 takes a "Signature" header field (Section 3.1) and the exchange's

 o "requestUrl", a byte sequence that can be parsed into the
 exchange's effective request URI (Section 5.5 of [RFC7230]),

 o "responseHeaders", a byte sequence holding the canonical
 serialization (Section 3.4) of the CBOR representation
 (Section 3.2) of the exchange's response metadata and headers, and

 o "payload", a stream of bytes constituting the exchange's payload
 body (Section 3.3 of [RFC7230]).

https://datatracker.ietf.org/doc/html/rfc7230#section-5.5
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3

Yasskin & Ueno Expires January 25, 2020 [Page 14]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 The client MUST parse the "Signature" header into a list of
 signatures according to the instructions in Section 3.5, and run the
 following algorithm for each signature, stopping at the first one
 that returns "valid". If any signature returns "valid", return
 "valid". Otherwise, return "invalid".

 1. If the signature's "validity-url" parameter (Paragraph 5) is not
 same-origin [6] with "requestUrl", return "invalid".

 2. Use Section 3.5 to determine the signature's validity for
 "requestUrl", "responseHeaders", and "payload", getting
 "certificate-chain" back. If this returned "invalid" or didn't
 return a certificate chain, return "invalid".

 3. Let "response" be the response metadata and headers parsed out of
 "responseHeaders".

 4. If Section 3 of [RFC7234] forbids a shared cache from storing
 "response", return "invalid".

 5. If "response"'s headers contain an uncached header field, as
 defined in Section 4.1, return "invalid".

 6. Let "authority" be the host component of "requestUrl".

 7. Validate the "certificate-chain" using the following substeps.
 If any of them fail, re-run Section 3.5 once over the signature
 with the "forceFetch" flag set, and restart from step 2. If a
 substep fails again, return "invalid".

 1. Use "certificate-chain" to validate that its first entry,
 "main-certificate" is trusted as "authority"'s server
 certificate ([RFC5280] and other undocumented conventions).
 Let "path" be the path that was used from the "main-
 certificate" to a trusted root, including the "main-
 certificate" but excluding the root.

 2. Validate that "main-certificate" has the CanSignHttpExchanges
 extension (Section 4.2).

 3. Validate that either "main-certificate" has a Validity Period
 no longer than 90 days, or that the current date is
 2019-08-01 or before and "main-certificate" was issued on
 2019-05-01 or before.

 4. Validate that "main-certificate" has an "ocsp" property
 (Section 3.3) with a valid OCSP response whose lifetime
 ("nextUpdate - thisUpdate") is less than 7 days ([RFC6960]).

https://datatracker.ietf.org/doc/html/rfc7234#section-3
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960

Yasskin & Ueno Expires January 25, 2020 [Page 15]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 Note that this does not check for revocation of intermediate
 certificates, and clients SHOULD implement another mechanism
 for that.

 5. Validate that valid SCTs from trusted logs are available from
 any of:

 + The "SignedCertificateTimestampList" in "main-
 certificate"'s "sct" property (Section 3.3),

 + An OCSP extension in the OCSP response in "main-
 certificate"'s "ocsp" property, or

 + An X.509 extension in the certificate in "main-
 certificate"'s "cert" property,

 as described by Section 3.3 of [RFC6962].

 8. Return "valid".

4.1. Uncached header fields

 Hop-by-hop and other uncached headers MUST NOT appear in a signed
 exchange. These will eventually be listed in
 [I-D.ietf-httpbis-cache], but for now they're listed here:

 o Hop-by-hop header fields listed in the Connection header field
 (Section 6.1 of [RFC7230]).

 o Header fields listed in the no-cache response directive in the
 Cache-Control header field (Section 5.2.2.2 of [RFC7234]).

 o Header fields defined as hop-by-hop:

 * Connection

 * Keep-Alive

 * Proxy-Connection

 * Trailer

 * Transfer-Encoding

 * Upgrade

 o Stateful headers as defined below.

https://datatracker.ietf.org/doc/html/rfc6962#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-6.1
https://datatracker.ietf.org/doc/html/rfc7234#section-5.2.2.2

Yasskin & Ueno Expires January 25, 2020 [Page 16]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

4.1.1. Stateful header fields

 As described in Section 6.1 of
 [I-D.yasskin-http-origin-signed-responses], a publisher can cause
 problems if they sign an exchange that includes private information.
 There's no way for a client to be sure an exchange does or does not
 include private information, but header fields that store or convey
 stored state in the client are a good sign.

 A stateful response header field modifies state, including
 authentication status, in the client. The HTTP cache is not
 considered part of this state. These include but are not limited to:

 o "Authentication-Control", [RFC8053]

 o "Authentication-Info", [RFC7615]

 o "Clear-Site-Data", [W3C.WD-clear-site-data-20171130]

 o "Optional-WWW-Authenticate", [RFC8053]

 o "Proxy-Authenticate", [RFC7235]

 o "Proxy-Authentication-Info", [RFC7615]

 o "Public-Key-Pins", [RFC7469]

 o "Sec-WebSocket-Accept", [RFC6455]

 o "Set-Cookie", [RFC6265]

 o "Set-Cookie2", [RFC2965]

 o "SetProfile", [W3C.NOTE-OPS-OverHTTP]

 o "Strict-Transport-Security", [RFC6797]

 o "WWW-Authenticate", [RFC7235]

4.2. Certificate Requirements

 We define a new X.509 extension, CanSignHttpExchanges to be used in
 the certificate when the certificate permits the usage of signed
 exchanges. When this extension is not present the client MUST NOT
 accept a signature from the certificate as proof that a signed
 exchange is authoritative for a domain covered by the certificate.
 When it is present, the client MUST follow the validation procedure
 in Section 4.

https://datatracker.ietf.org/doc/html/rfc8053
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc8053
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc7469
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc6797
https://datatracker.ietf.org/doc/html/rfc7235

Yasskin & Ueno Expires January 25, 2020 [Page 17]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 CanSignHttpExchanges ::= NULL

 Note that this extension contains an ASN.1 NULL (bytes "05 00")
 because some implementations have bugs with empty extensions.

 Leaf certificates without this extension need to be revoked if the
 private key is exposed to an unauthorized entity, but they generally
 don't need to be revoked if a signing oracle is exposed and then
 removed.

 CA certificates, by contrast, need to be revoked if an unauthorized
 entity is able to make even one unauthorized signature.

 Certificates with this extension MUST be revoked if an unauthorized
 entity is able to make even one unauthorized signature.

 Starting 2019-05-01, certificates with this extension MUST have a
 Validity Period no greater than 90 days.

 Conforming CAs MUST NOT mark this extension as critical.

 Starting 2019-05-01, a conforming CA MUST NOT issue certificates with
 this extension unless, for each dNSName in the subjectAltName
 extension of the certificate to be issued:

 1. An "issue" or "issuewild" CAA property ([RFC6844]) exists that
 authorizes the CA to issue the certificate; and

 2. The "cansignhttpexchanges" parameter (Section 4.2.1) is present
 on the property and is equal to "yes"

 Clients MUST NOT accept certificates with this extension in TLS
 connections (Section 4.4.2.2 of [TLS1.3]).

 This draft of the specification identifies the CanSignHttpExchanges
 extension with the id-ce-canSignHttpExchangesDraft OID:

 id-ce-google OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 11129 }
 id-ce-canSignHttpExchangesDraft OBJECT IDENTIFIER ::= { id-ce-google 2 1
22 }

 This OID might or might not be used as the final OID for the
 extension, so certificates including it might need to be reissued
 once the final RFC is published.

 Some certificates have already been issued with this extension and
 with validity periods longer than 90 days. These certificates will
 not immediately be treated as invalid. Instead:

https://datatracker.ietf.org/doc/html/rfc6844

Yasskin & Ueno Expires January 25, 2020 [Page 18]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 o Clients MUST reject certificates with this extension that were
 issued after 2019-05-01 and have a Validity Period longer than 90
 days.

 o After 2019-08-01, clients MUST reject all certificates with this
 extension that have a Validity Period longer than 90 days.

4.2.1. Extensions to the CAA Record: cansignhttpexchanges Parameter

 A CAA parameter "cansignhttpexchanges" is defined for the "issue" and
 "issuewild" properties defined by [RFC6844]. The value of this
 parameter, if specified, MUST be "yes".

5. Transferring a signed exchange

 A signed exchange can be transferred in several ways, of which three
 are described here.

5.1. Same-origin response

 Same-origin responses are not implemented.

5.2. HTTP/2 extension for cross-origin Server Push

 Cross origin push is not implemented.

5.3. application/signed-exchange format

 To allow signed exchanges to be the targets of "<link rel=prefetch>"
 tags, we define the "application/signed-exchange" content type that
 represents a signed HTTP exchange, including a request URL, response
 metadata and header fields, and a response payload.

 When served over HTTP, a response containing an "application/signed-
 exchange" payload MUST include at least the following response header
 fields, to reduce content sniffing vulnerabilities:

 o Content-Type: application/signed-exchange;v=_version_

 o X-Content-Type-Options: nosniff

 This content type consists of the concatenation of the following
 items:

 1. 8 bytes consisting of the ASCII characters "sxg1-b3" followed by
 a 0 byte, to serve as a file signature. This is redundant with
 the MIME type, and recipients that receive both MUST check that

https://datatracker.ietf.org/doc/html/rfc6844

Yasskin & Ueno Expires January 25, 2020 [Page 19]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 they match and, if they don't, either stop parsing or redirect to
 the "fallbackUrl" in the next two entries.

 Note: As this is a snapshot of a draft of
 [I-D.yasskin-http-origin-signed-responses], it uses a distinct
 file signature.

 2. 2 bytes storing a big-endian integer "fallbackUrlLength".

 3. "fallbackUrlLength" bytes holding a "fallbackUrl", which MUST
 UTF-8 decode to an absolute URL with a scheme of "https".

 Note: The byte location of the fallback URL is intended to remain
 invariant across versions of the "application/signed-exchange"
 format so that parsers encountering unknown versions can always
 find a URL to redirect to.

 4. 3 bytes storing a big-endian integer "sigLength". If this is
 larger than 16384 (16*1024), parsing MUST fail.

 5. 3 bytes storing a big-endian integer "headerLength". If this is
 larger than 524288 (512*1024), parsing MUST fail.

 6. "sigLength" bytes holding the "Signature" header field's value
 (Section 3.1).

 7. "headerLength" bytes holding "signedHeaders", the canonical
 serialization (Section 3.4) of the CBOR representation of the
 response headers of the exchange represented by the "application/
 signed-exchange" resource (Section 3.2), excluding the
 "Signature" header field.

 8. The payload body (Section 3.3 of [RFC7230]) of the exchange
 represented by the "application/signed-exchange" resource.

 Note that the use of the payload body here means that a
 "Transfer-Encoding" header field inside the "application/signed-
 exchange" header block has no effect. A "Transfer-Encoding"
 header field on the outer HTTP response that transfers this
 resource still has its normal effect.

5.3.1. Cross-origin trust in application/signed-exchange

 To determine whether to trust a cross-origin exchange stored in an
 "application/signed-exchange" resource, pass the "Signature" header
 field's value, "fallbackUrl" as the effective request URI,
 "signedHeaders", and the payload body to the algorithm in Section 4.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.3

Yasskin & Ueno Expires January 25, 2020 [Page 20]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

5.3.2. Content negotiation

 If the signed response headers include a "Variants-04" header field,
 the client MUST use the cache behavior algorithm in Section 4 of
 [I-D.ietf-httpbis-variants-05] to check that the signed response is
 an appropriate representation for the request the client is trying to
 fulfil. If the response is not an appropriate representation, the
 client MUST treat the signature as invalid. Note the mismatch
 between the name of the header field and the version of the Variants
 draft.

5.3.3. Example

 An example "application/signed-exchange" file representing a possible
 signed exchange with https://example.com/ [7] follows, with lengths
 represented by descriptions in "<>"s, CBOR represented in the
 extended diagnostic format defined in Appendix G of [CDDL], and most
 of the "Signature" header field and payload elided with a ...:

 sxg1-b3\0<2-byte length of the following url string>
 https://example.com/<3-byte length of the following header
 value><3-byte length of the encoding of the
 following map>sig1; sig=*...; integrity="digest/mi-sha256-03"; ...{
 ':status': '200',
 'content-type': 'text/html'
 }<!doctype html>\r\n<html>...

6. Security considerations

 All of the security considerations from Section 6 of
 [I-D.yasskin-http-origin-signed-responses] apply.

7. Privacy considerations

 Normally, when a client fetches "https://o1.com/resource.js",
 "o1.com" learns that the client is interested in the resource. If
 "o1.com" signs "resource.js", "o2.com" serves it as "https://o2.com/
 o1resource.js", and the client fetches it from there, then "o2.com"
 learns that the client is interested, and if the client executes the
 Javascript, that could also report the client's interest back to
 "o1.com".

 Often, "o2.com" already knew about the client's interest, because
 it's the entity that directed the client to "o1resource.js", but
 there may be cases where this leaks extra information.

Yasskin & Ueno Expires January 25, 2020 [Page 21]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 For non-executable resource types, a signed response can improve the
 privacy situation by hiding the client's interest from the original
 publisher.

 To prevent network operators other than "o1.com" or "o2.com" from
 learning which exchanges were read, clients SHOULD only load
 exchanges fetched over a transport that's protected from
 eavesdroppers. This can be difficult to determine when the exchange
 is being loaded from local disk, but when the client itself requested
 the exchange over a network it SHOULD require TLS ([TLS1.3]) or a
 successor transport layer, and MUST NOT accept exchanges transferred
 over plain HTTP without TLS.

8. IANA considerations

 This depends on the following IANA registrations in
 [I-D.yasskin-http-origin-signed-responses]:

 o The "Signature" header field

 o The application/cert-chain+cbor media type

 This document also modifies the registration for:

8.1. Internet Media Type application/signed-exchange

 Type name: application

 Subtype name: signed-exchange

 Required parameters:

 o v: A string denoting the version of the file format. ([RFC5234]
 ABNF: "version = DIGIT/%x61-7A") The version defined in this
 specification is "b3". When used with the "Accept" header field
 (Section 5.3.1 of [RFC7231]), this parameter can be a comma
 (,)-separated list of version strings. ([RFC5234] ABNF: "version-
 list = version *("," version)") The server is then expected to
 reply with a resource using a particular version from that list.

 Note: As this is a snapshot of a draft of
 [I-D.yasskin-http-origin-signed-responses], it uses a distinct
 version number.

 Magic number(s): 73 78 67 31 2D 62 33 00

 The other fields are the same as the registration in
 [I-D.yasskin-http-origin-signed-responses].

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc5234

Yasskin & Ueno Expires January 25, 2020 [Page 22]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

9. References

9.1. Normative References

 [CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [FETCH] WHATWG, "Fetch", July 2019,
 <https://fetch.spec.whatwg.org/>.

 [I-D.ietf-httpbis-header-structure-10]
 Nottingham, M. and P. Kamp, "Structured Headers for HTTP",

draft-ietf-httpbis-header-structure-10 (work in progress),
 April 2019, <https://tools.ietf.org/html/

draft-ietf-httpbis-header-structure-10>.

 [I-D.ietf-httpbis-variants-05]
 Nottingham, M., "HTTP Representation Variants", draft-

ietf-httpbis-variants-05 (work in progress), March 2019,
 <https://tools.ietf.org/html/ietf-httpbis-variants-05>.

 [I-D.yasskin-http-origin-signed-responses]
 Yasskin, J., "Signed HTTP Exchanges", draft-yasskin-http-

origin-signed-responses-06 (work in progress), July 2019.

 [POSIX] IEEE and The Open Group, "The Open Group Base
 Specifications Issue 7", name IEEE, value 1003.1-2008,
 2016 Edition, 2016,
 <http://pubs.opengroup.org/onlinepubs/9699919799/

basedefs/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://fetch.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-10
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-10
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-05
https://tools.ietf.org/html/ietf-httpbis-variants-05
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-06
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-06
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234

Yasskin & Ueno Expires January 25, 2020 [Page 23]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6844] Hallam-Baker, P. and R. Stradling, "DNS Certification
 Authority Authorization (CAA) Resource Record", RFC 6844,
 DOI 10.17487/RFC6844, January 2013,
 <https://www.rfc-editor.org/info/rfc6844>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [TLS1.3] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6844
https://www.rfc-editor.org/info/rfc6844
https://datatracker.ietf.org/doc/html/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Yasskin & Ueno Expires January 25, 2020 [Page 24]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 [URL] WHATWG, "URL", July 2019, <https://url.spec.whatwg.org/>.

9.2. Informative References

 [I-D.ietf-httpbis-cache]
 Fielding, R., Nottingham, M., and J. Reschke, "HTTP
 Caching", draft-ietf-httpbis-cache-05 (work in progress),
 July 2019.

 [I-D.thomson-http-mice]
 Thomson, M. and J. Yasskin, "Merkle Integrity Content
 Encoding", draft-thomson-http-mice-03 (work in progress),
 August 2018.

 [I-D.yasskin-http-origin-signed-responses-03]
 Yasskin, J., "Signed HTTP Exchanges", draft-yasskin-http-

origin-signed-responses-03 (work in progress), March 2018,
 <https://tools.ietf.org/html/

draft-yasskin-http-origin-signed-responses-03>.

 [I-D.yasskin-http-origin-signed-responses-04]
 Yasskin, J., "Signed HTTP Exchanges", draft-yasskin-http-

origin-signed-responses-04 (work in progress), June 2018,
 <https://tools.ietf.org/html/

draft-yasskin-http-origin-signed-responses-04>.

 [I-D.yasskin-http-origin-signed-responses-05]
 Yasskin, J., "Signed HTTP Exchanges", draft-yasskin-http-

origin-signed-responses-05 (work in progress), January
 2019, <https://tools.ietf.org/html/

draft-yasskin-http-origin-signed-responses-05>.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, DOI 10.17487/RFC2965, October 2000,
 <https://www.rfc-editor.org/info/rfc2965>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, DOI 10.17487/RFC6455, December 2011,

 <https://www.rfc-editor.org/info/rfc6455>.

https://url.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-05
https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-03
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-03
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-03
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-03
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-03
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-04
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-04
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-04
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-04
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-05
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-05
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-05
https://tools.ietf.org/html/draft-yasskin-http-origin-signed-responses-05
https://datatracker.ietf.org/doc/html/rfc2965
https://www.rfc-editor.org/info/rfc2965
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc6455
https://www.rfc-editor.org/info/rfc6455

Yasskin & Ueno Expires January 25, 2020 [Page 25]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 [RFC6797] Hodges, J., Jackson, C., and A. Barth, "HTTP Strict
 Transport Security (HSTS)", RFC 6797,
 DOI 10.17487/RFC6797, November 2012,
 <https://www.rfc-editor.org/info/rfc6797>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
 Authentication-Info Response Header Fields", RFC 7615,
 DOI 10.17487/RFC7615, September 2015,
 <https://www.rfc-editor.org/info/rfc7615>.

 [RFC8053] Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,
 T., and Y. Ioku, "HTTP Authentication Extensions for
 Interactive Clients", RFC 8053, DOI 10.17487/RFC8053,
 January 2017, <https://www.rfc-editor.org/info/rfc8053>.

 [W3C.NOTE-OPS-OverHTTP]
 Hensley, P., Metral, M., Shardanand, U., Converse, D., and
 M. Myers, "Implementation of OPS Over HTTP", W3C NOTE
 NOTE-OPS-OverHTTP, June 1997.

 [W3C.WD-clear-site-data-20171130]
 West, M., "Clear Site Data", World Wide Web Consortium WD
 WD-clear-site-data-20171130, November 2017,
 <https://www.w3.org/TR/2017/WD-clear-site-data-20171130>.

9.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] https://github.com/WICG/webpackage

 [3] https://url.spec.whatwg.org/#concept-url-parser

 [4] https://url.spec.whatwg.org/#absolute-url-string

https://datatracker.ietf.org/doc/html/rfc6797
https://www.rfc-editor.org/info/rfc6797
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7469
https://www.rfc-editor.org/info/rfc7469
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://datatracker.ietf.org/doc/html/rfc8053
https://www.rfc-editor.org/info/rfc8053
https://www.w3.org/TR/2017/WD-clear-site-data-20171130
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/WICG/webpackage
https://url.spec.whatwg.org/#concept-url-parser
https://url.spec.whatwg.org/#absolute-url-string

Yasskin & Ueno Expires January 25, 2020 [Page 26]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 [5] http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap04.html#tag_04_16

 [6] https://html.spec.whatwg.org/multipage/origin.html#same-origin

 [7] https://example.com/

Appendix A. Change Log

draft-03

 Vs. draft-02

 o Updates to match [I-D.yasskin-http-origin-signed-responses-05].

 o UTF-8 decode the fallback URL.

 o Define a CAA parameter to opt into certificate issuance, which CAs
 need to enforce after May 1.

 o Limit lifetimes of certificates issued after May 1 to 90 days.

 o Accept-Signature and same-origin responses are removed.

 Vs. [I-D.yasskin-http-origin-signed-responses-05]:

 o Versions in file signatures and context strings are "b3".

 o Signed exchanges can only be transmitted in the application/
 signed-exchange format, not HTTP/2 Push or plain HTTP request/
 response pairs.

 o The Accept-Signature request header isn't used.

 o Removed non-normative sections.

 o Only 1 signature is supported.

 o Removed support for ed25519 signatures.

 o The above UTF-8 decoding.

 o The above CAA parameter and certificate lifetimes.

 o Versioned the Variants header field at draft-ietf-httpbis-
variants-05 (but spelled Variants-04) and the mi-sha256 digest

 algorithm at draft-thomson-http-mice-03.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://html.spec.whatwg.org/multipage/origin.html#same-origin
https://datatracker.ietf.org/doc/html/draft-03
https://datatracker.ietf.org/doc/html/draft-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-05
https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-03

Yasskin & Ueno Expires January 25, 2020 [Page 27]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 o Allow mismatches between the MIME type and file signature to
 redirect to the fallback URL.

draft-02

 Vs. draft-01:

 o Define absolute URLs, and limit the schemes each instance can use.

 o Update to mice-03 including the Digest header.

 o Define the "integrity" field of the Signature header to include
 the digest algorithm.

 o Put a fallback URL at the beginning of the "application/signed-
 exchange" format, and remove ':url' key from the CBOR
 representation of the exchange's request and response metadata and
 headers.

 o The new signed message format which embeds the exact bytes of the
 CBOR representation of the exchange's request and response
 metadata and headers.

 o When validating the signature validity, move the "payload"
 integrity check steps to after verifying "header".

 o Versions in file signatures and context strings are "b2".

draft-01

 Vs. [I-D.yasskin-http-origin-signed-responses-04]:

 o The MI header and mi-sha256 content-encoding are renamed to MI-
 Draft2 and mi-sha256-draft2 in case [I-D.thomson-http-mice]
 changes.

 o Signed exchanges cannot be transmitted using HTTP/2 Push.

 o Removed non-normative sections.

 o The mi-sha256 encoding must have records <= 16kB.

 o The signature must be <=16kB long.

 o The HTTP request and response headers together must be <=512kB.

 o Versions in file signatures and context strings are "b1".

https://datatracker.ietf.org/doc/html/draft-02
https://datatracker.ietf.org/doc/html/draft-01
https://datatracker.ietf.org/doc/html/draft-01

Yasskin & Ueno Expires January 25, 2020 [Page 28]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

 o Only 1 signature is supported.

 o Removed support for ed25519 signatures.

draft-00

 Vs. [I-D.yasskin-http-origin-signed-responses-03]:

 o Removed non-normative sections.

 o Only 1 signature is supported.

 o Only 2048-bit RSA keys are supported.

 o The certificate chain resource uses the TLS 1.3 Certificate
 message format rather than a CBOR-based format.

 o OCSP responses and SCTs are not checked.

 o Certificates without the CanSignHttpExchanges extension are
 allowed.

 o The signature string starts with 64 0x20 octets like the TLS 1.3
 signature format.

 o The application/http-exchange+cbor format is replaced with a more
 specialized application/signed-exchange format.

 o Signed exchanges can only be transmitted using the application/
 signed-exchange format, not HTTP/2 Push or plain HTTP request/
 response pairs.

 o Only the MI payload-integrity header is supported.

 o The mi-sha256 encoding must have records <= 16kB.

 o The Accept-Signature header isn't used.

 o Require absolute URLs.

Appendix B. Acknowledgements

 Thanks to Andrew Ayer, Devin Mullins, Ilari Liusvaara, Justin Schuh,
 Mark Nottingham, Mike Bishop, Ryan Sleevi, and Yoav Weiss for
 comments that improved this draft.

https://datatracker.ietf.org/doc/html/draft-00

Yasskin & Ueno Expires January 25, 2020 [Page 29]

Internet-DraSigned HTTP Exchanges Implementation Checkpoints July 2019

Authors' Addresses

 Jeffrey Yasskin
 Google

 Email: jyasskin@chromium.org

 Kouhei Ueno
 Google

 Email: kouhei@chromium.org

Yasskin & Ueno Expires January 25, 2020 [Page 30]

