
Network Working Group J. Yasskin
Internet-Draft Google
Intended status: Informational October 30, 2019
Expires: May 2, 2020

Use Cases and Requirements for Web Packages
draft-yasskin-webpackage-use-cases-02

Abstract

 This document lists use cases for signing and/or bundling collections
 of web pages, and extracts a set of requirements from them.

Note to Readers

 Discussion of this draft takes place on the ART area mailing list
 (art@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=art [1].

 The source code and issues list for this draft can be found in
https://github.com/WICG/webpackage [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 2, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Yasskin Expires May 2, 2020 [Page 1]

https://mailarchive.ietf.org/arch/search/?email_list=art
https://github.com/WICG/webpackage
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Use cases . 3
2.1. Essential . 4
2.1.1. Offline installation 4
2.1.2. Offline browsing 5
2.1.3. Save and share a web page 6
2.1.4. Privacy-preserving prefetch 6

2.2. Nice-to-have . 7
2.2.1. Packaged Web Publications 7
2.2.2. Avoiding Censorship 8
2.2.3. Third-party security review 9
2.2.4. Building packages from multiple libraries 9
2.2.5. Cross-CDN Serving 10
2.2.6. Pre-installed applications 11
2.2.7. Protecting Users from a Compromised Frontend 11
2.2.8. Installation from a self-extracting executable . . . 12
2.2.9. Packages in version control 13
2.2.10. Subresource bundling 13
2.2.11. Archival . 14

3. Requirements . 14
3.1. Essential . 14
3.1.1. Indexed by URL 14
3.1.2. Request headers 15
3.1.3. Response headers 15
3.1.4. Signing as an origin 15
3.1.5. Random access . 15
3.1.6. Resources from multiple origins in a package 16
3.1.7. Cryptographic agility 16
3.1.8. Unsigned content 16
3.1.9. Certificate revocation 16
3.1.10. Downgrade prevention 16
3.1.11. Metadata . 16
3.1.12. Implementations are hard to get wrong 16

3.2. Nice to have . 17
3.2.1. Streamed loading 17
3.2.2. Signing without origin trust 17
3.2.3. Additional signatures 17
3.2.4. Binary . 17
3.2.5. Deduplication of diamond dependencies 17

Yasskin Expires May 2, 2020 [Page 2]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

3.2.6. Old crypto can be removed 17
3.2.7. Compress transfers 18
3.2.8. Compress stored packages 18
3.2.9. Subsetting and reordering 18
3.2.10. Packaged validity information 18
3.2.11. Signing uses existing TLS certificates 18
3.2.12. External dependencies 18
3.2.13. Trailing length 18
3.2.14. Time-shifting execution 18
3.2.15. Service Worker integration 19

4. Non-goals . 19
4.1. Store confidential data 19
4.2. Generate packages on the fly 19
4.3. Non-origin identity 19
4.4. DRM . 19
4.5. Ergonomic replacement for HTTP/2 PUSH 20

5. Security Considerations 20
6. IANA Considerations . 21
7. References . 21
7.1. Informative References 21
7.2. URIs . 23

Appendix A. Acknowledgements 24
 Author's Address . 24

1. Introduction

 People would like to use content offline and in other situations
 where there isn't a direct connection to the server where the content
 originates. However, it's difficult to distribute and verify the
 authenticity of applications and content without a connection to the
 network. The W3C has addressed running applications offline with
 Service Workers ([ServiceWorkers]), but not the problem of
 distribution.

 Previous attempts at packaging web resources (e.g. Resource Packages
 [3] and the W3C TAG's packaging proposal [4]) were motivated by
 speeding up the download of resources from a single server, which is
 probably better achieved through other mechanisms like HTTP/2 PUSH,
 possibly augmented with a simple manifest of URLs a page plans to use
 [5]. This attempt is instead motivated by avoiding a connection to
 the origin server at all. It may still be useful for the earlier use
 cases, so they're still listed, but they're not primary.

2. Use cases

 These use cases are in rough descending priority order. If use cases
 have conflicting requirements, the design should enable more
 important use cases.

Yasskin Expires May 2, 2020 [Page 3]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

2.1. Essential

2.1.1. Offline installation

 Alex can download a file containing a website (a PWA [6]) including a
 Service Worker from origin "O", and transmit it to their peer Bailey,
 and then Bailey can install the Service Worker with a proof that it
 came from "O". This saves Bailey the bandwidth costs of transferring
 the website.

 There are roughly two ways to accomplish this:

 1. Package just the Service Worker Javascript and any other
 Javascript that it importScripts() [7], with their URLs and
 enough metadata to synthesize a
 navigator.serviceWorker.register(scriptURL, options) call [8],
 along with an uninterpreted but signature-checked blob of data
 that the Service Worker can interpret to fill in its caches.

 2. Package the resources so that the Service Worker can fetch() them
 to populate its cache.

 Associated requirements for just the Service Worker:

 o Indexed by URL: The "register()" and "importScripts()" calls have
 semantics that depend on the URL.

 o Signing as an origin: To prove that the file came from "O".

 o Signing uses existing TLS certificates: So "O" doesn't have to
 spend lots of money buying a specialized certificate.

 o Cryptographic agility: Today's algorithms will eventually be
 obsolete and will need to be replaced.

 o Certificate revocation: "O"'s certificate might be compromised or
 mis-issued, and the attacker shouldn't then get an infinite
 ability to mint packages.

 o Downgrade prevention: "O"'s site might have an XSS vulnerability,
 and attackers with an old signed package shouldn't be able to take
 advantage of the XSS forever.

 o Metadata: Just enough to generate the "register()" call, which is
 less than a full W3C Application Manifest.

 Additional associated requirements for packaged resources:

Yasskin Expires May 2, 2020 [Page 4]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 o Indexed by URL: Resources on the web are addressed by URL.

 o Request headers: If Bailey's running a different browser from Alex
 or has a different language configured, the "accept*" headers are
 important for selecting which resource to use at each URL.

 o Response headers: The meaning of a resource is heavily influenced
 by its HTTP response headers.

 o Resources from multiple origins in a package: So the site can be
 built from multiple components (Section 2.2.4).

 o Metadata: The browser needs to know which resource within a
 package file to treat as its Service Worker and/or initial HTML
 page.

2.1.1.1. Online use

 Bailey may have an internet connection through which they can, in
 real time, fetch updates to the package they received from Alex.

2.1.1.2. Fully offline use

 Or Bailey may not have any internet connection a significant fraction
 of the time, either because they have no internet at all, because
 they turn off internet except when intentionally downloading content,
 or because they use up their plan partway through each month.

 Associated requirements beyond Offline installation:

 o Packaged validity information: Even without a direct internet
 connection, Bailey should be able to check that their package is
 still valid.

2.1.2. Offline browsing

 Alex can download a file containing a large website (e.g. Wikipedia)
 from its origin, save it to transferrable storage (e.g. an SD card),
 and hand it to their peer Bailey. Then Bailey can browse the website
 with a proof that it came from "O". Bailey may not have the storage
 space to copy the website before browsing it.

 This use case is harder for publishers to support if we specialize
Section 2.1.1 for Service Workers since it requires the publisher to

 adopt Service Workers before they can sign their site.

 Associated requirements beyond Offline installation:

Yasskin Expires May 2, 2020 [Page 5]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 o Random access: To avoid needing a long linear scan before using
 the content.

 o Compress stored packages: So that more content can fit on the same
 storage device.

2.1.3. Save and share a web page

 Casey is viewing a web page and wants to save it either for offline
 use or to show it to their friend Dakota. Since Casey isn't the web
 page's publisher, they don't have the private key needed to sign the
 page. Browsers currently allow their users to save pages, but each
 browser uses a different format (MHTML, Web Archive, or files in a
 directory), so Dakota and Casey would need to be using the same
 browser. Casey could also take a screenshot, at the cost of losing
 links and accessibility.

 Associated requirements:

 o Unsigned content: A client can't sign content as another origin.

 o Resources from multiple origins in a package: General web pages
 include resources from multiple origins.

 o Indexed by URL: Resources on the web are addressed by URL.

 o Response headers: The meaning of a resource is heavily influenced
 by its HTTP response headers.

2.1.4. Privacy-preserving prefetch

 Lots of websites link to other websites. Many of these source sites
 would like the targets of these links to load quickly. The source
 could use "<link rel="prefetch">" to prefetch the target of a link,
 but if the user doesn't actually click that link, that leaks the fact
 that the user saw a page that linked to the target. This can be true
 even if the prefetch is made without browser credentials because of
 mechanisms like TLS session IDs.

 Because clients have limited data budgets to prefetch link targets,
 this use case is probably limited to sites that can accurately
 predict which link their users are most likely to click. For
 example, search engines can predict that their users will click one
 of the first couple results, and news aggreggation sites like Reddit
 or Slashdot can hope that users will read the article if they've
 navigated to its discussion.

Yasskin Expires May 2, 2020 [Page 6]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 Two search engines have built systems to do this with today's
 technology: Google's AMP [9] and Baidu's MIP [10] formats and caches
 allow them to prefetch search results while preserving privacy, at
 the cost of showing the wrong URLs for the results once the user has
 clicked. A good solution to this problem would show the right URLs
 but still avoid a request to the publishing origin until after the
 user clicks.

 Associated requirements:

 o Signing as an origin: To prove the content came from the original
 origin.

 o Streamed loading: If the user clicks before the target page is
 fully transferred, the browser should be able to start loading
 early parts before the source site finishes sending the whole
 page.

 o Compress transfers

 o Subsetting and reordering: If a prefetched page includes
 subresources, its publisher might want to provide and sign both
 WebP and PNG versions of an image, but the source site should be
 able to transfer only best one for each client.

2.2. Nice-to-have

2.2.1. Packaged Web Publications

 The W3C's Publishing Working Group [11], merged from the
 International Digital Publishing Forum (IDPF) and in charge of EPUB
 maintenance, wants to be able to create publications on the web and
 then let them be copied to different servers or to other users via
 arbitrary protocols. See their Packaged Web Publications use cases
 [12] for more details.

 Associated requirements:

 o Indexed by URL: Resources on the web are addressed by URL.

 o Signing as an origin: So that readers can be sure their copy is
 authentic and so that copying the package preserves the URLs of
 the content inside it.

 o Downgrade prevention: An early version of a publication might
 contain incorrect content, and a publisher should be able to
 update that without worrying that an attacker can still show the
 old content to users.

Yasskin Expires May 2, 2020 [Page 7]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 o Metadata: A publication can have copyright and licensing concerns;
 a title, author, and cover image; an ISBN or DOI name; etc.; which
 should be included when that publication is packaged.

 Other requirements are similar to those from Offline installation:

 o Random access: To avoid needing a long linear scan before using
 the content.

 o Compress stored packages: So that more content can fit on the same
 storage device.

 o Request headers: If different users' browsers have different
 capabilities or preferences, the "accept*" headers are important
 for selecting which resource to use at each URL.

 o Response headers: The meaning of a resource is heavily influenced
 by its HTTP response headers.

 o Signing uses existing TLS certificates: So a publisher doesn't
 have to spend lots of money buying a specialized certificate.

 o Cryptographic agility: Today's algorithms will eventually be
 obsolete and will need to be replaced.

 o Certificate revocation: The publisher's certificate might be
 compromised or mis-issued, and an attacker shouldn't then get an
 infinite ability to mint packages.

2.2.2. Avoiding Censorship

 Some users want to retrieve resources that their governments or
 network providers don't want them to see. Right now, it's
 straightforward for someone in a privileged network position to block
 access to particular hosts, but TLS makes it difficult to block
 access to particular resources on those hosts.

 Today it's straightforward to retrieve blocked content from a third
 party, but there's no guarantee that the third-party has sent the
 user an accurate representation of the content: the user has to trust
 the third party.

 With signed web packages, the user can re-gain assurance that the
 content is authentic, while still bypassing the censorship. Packages
 don't do anything to help discover this content.

 Systems that make censorship more difficult can also make legitimate
 content filtering more difficult. Because the client that processes

Yasskin Expires May 2, 2020 [Page 8]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 a web package always knows the true URL, this forces content
 filtering to happen on the client instead of on the network.

 Associated requirements:

 o Indexed by URL: So the user can see that they're getting the
 content they expected.

 o Signing as an origin: So that readers can be sure their copy is
 authentic and so that copying the package preserves the URLs of
 the content inside it.

2.2.3. Third-party security review

 Some users may want to grant certain permissions only to applications
 that have been reviewed for security by a trusted third party. These
 third parties could provide guarantees similar to those provided by
 the iOS, Android, or Chrome OS app stores, which might allow browsers
 to offer more powerful capabilities than have been deemed safe for
 unaudited websites.

 Binary transparency for websites is similar: like with Certificate
 Transparency [RFC6962], the transparency logs would sign the content
 of the package to provide assurance that experts had a chance to
 audit the exact package a client received.

 Associated requirements:

 o Additional signatures

2.2.4. Building packages from multiple libraries

 Large programs are built from smaller components. In the case of the
 web, components can be included either as Javascript files or as
 "<iframe>"d subresources. In the first case, the packager could copy
 the JS files to their own origin; but in the second, it may be
 important for the "<iframe>"d resources to be able to make same-
 origin [13] requests back to their own origin, for example to
 implement federated sign-in.

 Associated requirements:

 o Resources from multiple origins in a package: Each component may
 come from its own origin.

 o Deduplication of diamond dependencies: If we have dependencies
 A->B->D and A->C->D, it's important that a request for a D

https://datatracker.ietf.org/doc/html/rfc6962

Yasskin Expires May 2, 2020 [Page 9]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 resource resolves to a single resource that both B and C can
 handle.

2.2.4.1. Shared libraries

 In ecosystems like Electron [14] and Node [15], many packages may
 share some common dependencies. The cost of downloading each package
 can be greatly reduced if the package can merely point at other
 dependencies to download instead of including them all inline.

 Associated requirements:

 o External dependencies

2.2.5. Cross-CDN Serving

 When a web page has subresources from a different origin, retrieval
 of those subresources can be optimized if they're transferred over
 the same connection as the main resource. If both origins are
 distributed by the same CDN, in-progress mechanisms like
 [I-D.ietf-httpbis-http2-secondary-certs] allow the server to use a
 single connection to send both resources, but if the resource and
 subresource don't share a CDN or don't use a CDN at all, existing
 mechanisms don't help.

 If the subresource is signed by its publisher, the main resource's
 server can forward it to the client.

 There are some yet-to-be-solved privacy problems if the client and
 server want to avoid transferring subresources that are already in
 the client's cache: naively telling the server that a resource is
 already present is a privacy leak.

 Associated requirements:

 o Streamed loading: To get optimal performance, the browser should
 be able to start loading early parts of a resource before the
 distributor finishes sending the whole resource.

 o Signing as an origin: To prove the content came from the original
 origin.

 o Compress transfers

Yasskin Expires May 2, 2020 [Page 10]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

2.2.6. Pre-installed applications

 Device manufacturers would like to ship their devices with some web
 applications pre-installed and usable even if the application is
 first used without an internet connection. Thereafter, the
 application should use the normal Service Worker update mechanism to
 stay up to date.

 One way to accomplish this would be to pre-create a browser profile
 in the device's default browser and navigate it to each of the pre-
 installed apps before recording the device image. However, this
 means end-users miss the browser's initial setup flow and possibly
 that any "unique" cookies the sites set are now shared across
 everyone who bought the device. It also doesn't help users who
 change their default browser.

 If multiple browsers supported an unsigned web package format, with
 an option to trust it as if it were signed if it's in a particular
 section of the filesystem that's as protected as the browser's
 executable, and if registering a Service Worker from a page inside a
 package passed the full package contents to the Service Worker's
 "install" event, the device manufacturer could provide web packages
 for each pre-installed application that would work in the user's
 chosen browser.

 Associated requirements:

 o Service Worker integration: To pass the package into the "install"
 event and from there get its contents into a "Cache".

2.2.7. Protecting Users from a Compromised Frontend

 If an attacker gains control over a frontend server, any user who
 visits that server while they have control can have their web app
 upgraded to a hostile version. On the other hand, native
 applications either control their own update process or delegate it
 to an app store, which allows them to protect users by requiring that
 updates are signed by a trusted key. This protection isn't perfect--
 it's a Trust-On-First-Use mechanism that doesn't protect users who
 first install the application while the attacker controls the server
 they get it from, and attackers can bypass it by compromising the
 app's build system--but since both of those risks also apply to web
 apps, it does make the attack surface for native applications smaller
 than for web apps.

 Not all application developers should choose to require signed
 updates, since doing so adds the risk of losing the signing key, but

Yasskin Expires May 2, 2020 [Page 11]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 having this option gives security-sensitive applications like
 Dashlane [16] an incentive to build native apps instead of web apps.

 It has been difficult to add a signature requirement for web app
 upgrades because we haven't had a way to sign web resources. Web
 Packaging is expected to provide that, so we'll be able to consider
 the best way to do it.

 Both HTTP Strict Transport Security (HSTS, [RFC6797]) and HTTP Public
 Key Pinning (HPKP, [RFC7469]) have established ways to pin assertions
 about a site's security for a bounded time after a visit. We could
 do the same with a web app's signing key.

 Note that HPKP has been turned off in Chromium [17] because it was
 difficult to use and made it too easy to "brick" a website. To
 reduce the chance of bricking the website, this key pinning design
 could require an active Service Worker before enforcing the pins. It
 could also avoid the need for users to take manual action to recover
 from a lost signing key by allowing a new key to be used if it's seen
 consistently for a site-chosen amount of time, instead of waiting for
 the whole pin to expire. However, these mitigations don't guarantee
 that browsers would find the tradeoffs more acceptable than they did
 for HPKP.

 One can think of a CDN as a potentially-compromised frontend and use
 this mechanism to limit the damage it can cause. However, this
 doesn't make it safe to use a wholly-untrustworthy CDN because of the
 risk to first-time users.

 Associated requirements:

 o Signing without origin trust: To let a backend system vouch for
 the content. This would likely be augmented with origin trust by
 receiving the signed content over TLS.

 o Streamed loading: To get optimal performance, the browser should
 be able to start loading early parts of a resource before the
 server finishes sending the whole resource.

2.2.8. Installation from a self-extracting executable

 The Node and Electron communities would like to install packages
 using self-extracting executables. The traditional way to design a
 self-extracting executable is to concatenate the package to the end
 of the executable, have the executable look for a length at its own
 end, and seek backwards from there for the start of the package.

 Associated requirements:

https://datatracker.ietf.org/doc/html/rfc6797
https://datatracker.ietf.org/doc/html/rfc7469

Yasskin Expires May 2, 2020 [Page 12]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 o Trailing length

2.2.9. Packages in version control

 Once packages are generated, they should be stored in version
 control. Many popular VC systems auto-detect text files in order to
 "fix" their line endings. If the first bytes of a package look like
 text, while later bytes store binary data, VC may break the package.

 Associated requirements:

 o Binary

2.2.10. Subresource bundling

 Text based subresources often benefit from improved compression
 ratios when bundled together.

 At the same time, the current practice of JS and CSS bundling, by
 compiling everything into a single JS file, also has negative side-
 effects:

 1. Dependent execution - in order to start executing _any_ of the
 bundled resources, it is required to download, parse and execute
 all of them.

 2. Loss of caching granularity - Modification of _any_ of the
 resources results in caching invalidation of _all_ of them.

 3. Loss of module semantics - ES6 modules must be delivered as
 independent resources. Therefore, current bundling methods,
 which deliver them with other resources under a common URL,
 require transpilation to ES5 and result in loss of ES6 module
 semantics.

 An on-the-fly readable packaging format, that will enable resources
 to maintain their own URLs while being physically delivered with
 other resources, can resolve the above downsides while keeping the
 upsides of improved compression ratios.

 To improve cache granularity, the client needs to tell the server
 which versions of which resources are already cached, which it could
 do with a Service Worker or perhaps with
 [I-D.ietf-httpbis-cache-digest].

 Associated requirements:

 o Indexed by URL

Yasskin Expires May 2, 2020 [Page 13]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 o Streamed loading: To solve downside 1.

 o Compress transfers: To keep the upside.

 o Response headers: At least the Content-Type is needed to load JS
 and CSS.

 o Unsigned content: Signing same-origin content wastes space.

2.2.11. Archival

 Existing formats like WARC ([ISO28500]) do a good job of accurately
 representing the state of a web server at a particular time, but a
 browser can't currently use them to give a person the experience of
 that website at the time it was archived. It's not obvious to the
 author of this draft that a new packaging format is likely to improve
 on WARC, compared to, for example, implementing support for WARC in
 browsers, but folks who know about archiving seem interested, e.g.:

https://twitter.com/anjacks0n/status/950861384266416134 [18].

 Because of the time scales involved in archival, any signatures from
 the original host would likely not be trusted anymore by the time the
 archive is viewed, so implementations would need to sandbox the
 content instead of running it on the original origin.

 Associated requirements:

 o Indexed by URL

 o Response headers: To accurately record the server's response.

 o Unsigned content: To deal with expired signatures.

 o Time-shifting execution

3. Requirements

3.1. Essential

3.1.1. Indexed by URL

 Resources should be keyed by URLs, matching how browsers look
 resources up over HTTP.

https://twitter.com/anjacks0n/status/950861384266416134

Yasskin Expires May 2, 2020 [Page 14]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

3.1.2. Request headers

 Resource keys should include request headers like "accept" and
 "accept-language", which allows content-negotiated resources to be
 represented.

 This would require an extension to [MHTML], which uses the "content-
 location" response header to encode the requested URL, but has no way
 to encode other request headers. MHTML also has no instructions for
 handling multiple resources with the same "content-location".

 This also requires an extension to [ZIP]: we'd need to encode the
 request headers into ZIP's filename fields.

3.1.3. Response headers

 Resources should include their HTTP response headers, like "content-
 type", "content-encoding", "expires", "content-security-policy", etc.

 This requires an extension to [ZIP]: we'd need something like [JAR]'s
 "META-INF" directory to hold extra metadata beyond the resource's
 body.

3.1.4. Signing as an origin

 Resources within a package are provably from an entity with the
 ability to serve HTTPS requests for those resources' origin
 [RFC6454].

 Note that previous attempts to sign HTTP messages
 ([I-D.thomson-http-content-signature], [I-D.burke-content-signature],
 and [I-D.cavage-http-signatures]) omit a description of how a client
 should use a signature to prove that a resource comes from a
 particular origin, and they're probably not usable for that purpose.

 This would require an extension to the [ZIP] format, similar to
 [JAR]'s signatures.

 In any cryptographic system, the specification is responsible to make
 correct implementations easier to deploy than incorrect
 implementations (Section 3.1.12).

3.1.5. Random access

 When a package is stored on disk, the browser can access arbitrary
 resources without a linear scan.

https://datatracker.ietf.org/doc/html/rfc6454

Yasskin Expires May 2, 2020 [Page 15]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 [MHTML] would need to be extended with an index of the byte offsets
 of each contained resource.

3.1.6. Resources from multiple origins in a package

 A package from origin "A" can contain resources from origin "B"
 authenticated at the same level as those from "A".

3.1.7. Cryptographic agility

 Obsolete cryptographic algorithms can be replaced.

 Planning to upgrade the cryptography also means we should include
 some way to know when it's safe to remove old cryptography
 (Section 3.2.6).

3.1.8. Unsigned content

 Alex can create their own package without a CA-signed certificate,
 and Bailey can view the content of the package.

3.1.9. Certificate revocation

 When a package is signed by a revoked certificate, online browsers
 can detect this reasonably quickly.

3.1.10. Downgrade prevention

 Attackers can't cause a browser to trust an older, vulnerable version
 of a package after the browser has seen a newer version.

3.1.11. Metadata

 Metadata like that found in the W3C's Application Manifest
 [W3C.WD-appmanifest-20170828] can help a client know how to load and
 display a package.

3.1.12. Implementations are hard to get wrong

 The design should incorporate aspects that tend to cause incorrect
 implementations to get noticed quickly, and avoid aspects that are
 easy to implement incorrectly. For example:

 o Explicitly specifying a cryptographic algorithm identifier in
 [RFC7515] made it easy for implementations to trust that
 algorithm, which caused vulnerabilities [19].

https://datatracker.ietf.org/doc/html/rfc7515

Yasskin Expires May 2, 2020 [Page 16]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 o [ZIP]'s duplicate specification of filenames makes it easy for
 implementations to check the signature of one copy but use the
 other [20].

 o Following Langley's Law [21] when possible makes it hard to deploy
 incorrect implementations.

3.2. Nice to have

3.2.1. Streamed loading

 The browser can load a package as it downloads.

 This conflicts with ZIP, since ZIP's index is at the end.

3.2.2. Signing without origin trust

 It's possible to sign a resource with a key that has some effect on
 trust other than asserting that the origin's owner vouches for it.
 These keys could be expressed as raw public keys or as certificates
 with other key usages.

3.2.3. Additional signatures

 Third-parties can vouch for packages by signing them.

3.2.4. Binary

 The format is identified as binary by tools that might try to "fix"
 line endings.

 This conflicts with using an [MHTML]-based format.

3.2.5. Deduplication of diamond dependencies

 Nested packages that have multiple dependency routes to the same sub-
 package, can be transmitted and stored with only one copy of that
 sub-package.

3.2.6. Old crypto can be removed

 The ecosystem can identify when an obsolete cryptographic algorithm
 is no longer needed and can be removed.

Yasskin Expires May 2, 2020 [Page 17]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

3.2.7. Compress transfers

 Transferring a package over the network takes as few bytes as
 possible. This is an easier problem than Compress stored packages
 since it doesn't have to preserve Random access.

3.2.8. Compress stored packages

 Storing a package on disk takes as few bytes as possible.

3.2.9. Subsetting and reordering

 Resources can be removed from and reordered within a package, without
 breaking signatures (Section 3.1.4).

3.2.10. Packaged validity information

 Certificate revocation and Downgrade prevention information can
 itself be packaged or included in other packages.

3.2.11. Signing uses existing TLS certificates

 A "normal" TLS certificate can be used for signing packages.
 Avoiding extra requirements like "code signing" certificates makes
 packaging more accessible to all sites.

3.2.12. External dependencies

 Sub-packages can be "external" to the main package, meaning the
 browser will need to either fetch them separately or already have
 them. (#35, App Installer Story [22])

3.2.13. Trailing length

 The package's length in bytes appears a fixed offset from the end of
 the package.

 This conflicts with [MHTML].

3.2.14. Time-shifting execution

 In some unsigned packages, Javascript time-telling functions should
 return the timestamp of the package, rather than the true current
 time.

 We should explore if this has security implications.

Yasskin Expires May 2, 2020 [Page 18]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

3.2.15. Service Worker integration

 When a web page inside a package registers a Service Worker, that
 Service Worker's "install" event should receive a reference to the
 full package, with a way to copy the package's contents into a
 "Cache" object. ([ServiceWorkers])

4. Non-goals

 Some features often come along with packaging and signing, and it's
 important to explicitly note that they don't appear in the list of
 Requirements.

4.1. Store confidential data

 Packages are designed to hold public information and to be shared to
 people with whom the original publisher never has an interactive
 connection. In that situation, there's no way to keep the contents
 confidential: even if they were encrypted, to make the data public,
 anyone would have to be able to get the decryption key.

 It's possible to maintain something similar to confidentiality for
 non-public packaged data, but doing so complicates the format design
 and can give users a false sense of security.

 We believe we'll cause fewer privacy breaches if we omit any
 mechanism for encrypting data, than if we include something and try
 to teach people when it's unsafe to use.

4.2. Generate packages on the fly

 See discussion at WICG/webpackage#6 [23].

4.3. Non-origin identity

 A package can be primarily identified as coming from something other
 than a Web Origin [24].

4.4. DRM

 Special support for blocking access to downloaded content based on
 licensing. Note that DRM systems can be shipped inside the package
 even if the packaging format doesn't specifically support them.

Yasskin Expires May 2, 2020 [Page 19]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

4.5. Ergonomic replacement for HTTP/2 PUSH

 HTTP/2 PUSH ([RFC7540], section 8.2) is hard for developers to
 configure, and an explicit package format might be easier. However,
 experts in this area believe we should focus on improving PUSH
 directly instead of routing around it with a bundling format.

 Trying to bundle resources in order to speed up page loads has a long
 history, including Resource Packages [25] from 2010 and the W3C TAG's
 packaging proposal [26] from 2015.

 However, the HTTPWG is doing a lot of work to let servers optimize
 the PUSHed data, and packaging would either have to re-do that or
 accept lower performance. For example:

 o [I-D.vkrasnov-h2-compression-dictionaries] should allow individual
 small resources to be compressed as well as they would be in a
 bundle.

 o [I-D.ietf-httpbis-cache-digest] tells the server which resources
 it doesn't need to PUSH.

 Associated requirements:

 o Streamed loading: If the whole package has to be downloaded before
 the browser can load a piece, this will definitely be slower than
 PUSH.

 o Compress transfers: Keep up with
 [I-D.vkrasnov-h2-compression-dictionaries].

 o Indexed by URL: Resources on the web are addressed by URL.

 o Request headers: PUSH_PROMISE [27] ([RFC7540], section 6.6)
 includes request headers.

 o Response headers: PUSHed resources include their response headers.

5. Security Considerations

 The security considerations will depend on the solution designed to
 satisfy the above requirements. See
 [I-D.yasskin-dispatch-web-packaging] for one possible set of security
 considerations.

https://datatracker.ietf.org/doc/html/rfc7540#section-8.2
https://datatracker.ietf.org/doc/html/rfc7540#section-6.6

Yasskin Expires May 2, 2020 [Page 20]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

6. IANA Considerations

 This document has no actions for IANA.

7. References

7.1. Informative References

 [I-D.burke-content-signature]
 Burke, B., "HTTP Header for digital signatures", draft-

burke-content-signature-00 (work in progress), March 2011.

 [I-D.cavage-http-signatures]
 Cavage, M. and M. Sporny, "Signing HTTP Messages", draft-

cavage-http-signatures-12 (work in progress), October
 2019.

 [I-D.ietf-httpbis-cache-digest]
 Oku, K. and Y. Weiss, "Cache Digests for HTTP/2", draft-

ietf-httpbis-cache-digest-05 (work in progress), July
 2018.

 [I-D.ietf-httpbis-http2-secondary-certs]
 Bishop, M., Sullivan, N., and M. Thomson, "Secondary
 Certificate Authentication in HTTP/2", draft-ietf-httpbis-

http2-secondary-certs-04 (work in progress), April 2019.

 [I-D.thomson-http-content-signature]
 Thomson, M., "Content-Signature Header Field for HTTP",

draft-thomson-http-content-signature-00 (work in
 progress), July 2015.

 [I-D.vkrasnov-h2-compression-dictionaries]
 Krasnov, V. and Y. Weiss, "Compression Dictionaries for
 HTTP/2", draft-vkrasnov-h2-compression-dictionaries-03
 (work in progress), March 2018.

 [I-D.yasskin-dispatch-web-packaging]
 Yasskin, J., "Web Packaging", draft-yasskin-dispatch-web-

packaging-00 (work in progress), June 2017.

 [ISO28500]
 "WARC file format", ISO 28500:2017, 2017,
 <https://www.iso.org/standard/68004.html>.

 [JAR] "JAR File Specification", 2014,
 <https://docs.oracle.com/javase/7/docs/technotes/guides/

jar/jar.html>.

https://datatracker.ietf.org/doc/html/draft-burke-content-signature-00
https://datatracker.ietf.org/doc/html/draft-burke-content-signature-00
https://datatracker.ietf.org/doc/html/draft-cavage-http-signatures-12
https://datatracker.ietf.org/doc/html/draft-cavage-http-signatures-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-digest-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-digest-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-04
https://datatracker.ietf.org/doc/html/draft-thomson-http-content-signature-00
https://datatracker.ietf.org/doc/html/draft-vkrasnov-h2-compression-dictionaries-03
https://datatracker.ietf.org/doc/html/draft-yasskin-dispatch-web-packaging-00
https://datatracker.ietf.org/doc/html/draft-yasskin-dispatch-web-packaging-00
https://www.iso.org/standard/68004.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

Yasskin Expires May 2, 2020 [Page 21]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 [MHTML] Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,
 <https://www.rfc-editor.org/info/rfc2557>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6797] Hodges, J., Jackson, C., and A. Barth, "HTTP Strict
 Transport Security (HSTS)", RFC 6797,
 DOI 10.17487/RFC6797, November 2012,
 <https://www.rfc-editor.org/info/rfc6797>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [ServiceWorkers]
 "Service Workers Nightly", W3C ED, n.d.,
 <https://w3c.github.io/ServiceWorker/>.

 [W3C.WD-appmanifest-20170828]
 Caceres, M., Christiansen, K., Lamouri, M., Kostiainen,
 A., and R. Dolin, "Web App Manifest", World Wide Web
 Consortium WD WD-appmanifest-20170828, August 2017,
 <https://www.w3.org/TR/2017/WD-appmanifest-20170828>.

 [ZIP] "APPNOTE.TXT - .ZIP File Format Specification", October
 2014, <https://pkware.cachefly.net/webdocs/casestudies/

APPNOTE.TXT>.

https://datatracker.ietf.org/doc/html/rfc2557
https://www.rfc-editor.org/info/rfc2557
https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc6797
https://www.rfc-editor.org/info/rfc6797
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7469
https://www.rfc-editor.org/info/rfc7469
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://w3c.github.io/ServiceWorker/
https://www.w3.org/TR/2017/WD-appmanifest-20170828
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

Yasskin Expires May 2, 2020 [Page 22]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

7.2. URIs

 [1] https://mailarchive.ietf.org/arch/search/?email_list=art

 [2] https://github.com/WICG/webpackage

 [3] https://www.mnot.net/blog/2010/02/18/resource_packages

 [4] https://w3ctag.github.io/packaging-on-the-web/

 [5] https://lists.w3.org/Archives/Public/public-web-
perf/2015Jan/0038.html

 [6] https://developers.google.com/web/progressive-web-apps/checklist

 [7] https://w3c.github.io/ServiceWorker/#importscripts

 [8] https://w3c.github.io/ServiceWorker/#navigator-service-worker-
register

 [9] https://www.ampproject.org/

 [10] https://www.mipengine.org/

 [11] https://www.w3.org/publishing/groups/publ-wg/

 [12] https://www.w3.org/TR/pwp-ucr/#pwp

 [13] https://html.spec.whatwg.org/multipage/origin.html#same-origin

 [14] https://electron.atom.io/

 [15] https://nodejs.org/en/

 [16] https://app.dashlane.com/

 [17] https://groups.google.com/a/chromium.org/d/topic/blink-
dev/he9tr7p3rZ8/discussion

 [18] https://twitter.com/anjacks0n/status/950861384266416134

 [19] https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-
standard-that-everyone-should-avoid

 [20] https://nakedsecurity.sophos.com/2013/07/10/anatomy-of-a-
security-hole-googles-android-master-key-debacle-explained/

https://mailarchive.ietf.org/arch/search/?email_list=art
https://github.com/WICG/webpackage
https://www.mnot.net/blog/2010/02/18/resource_packages
https://w3ctag.github.io/packaging-on-the-web/
https://lists.w3.org/Archives/Public/public-web-perf/2015Jan/0038.html
https://lists.w3.org/Archives/Public/public-web-perf/2015Jan/0038.html
https://developers.google.com/web/progressive-web-apps/checklist
https://w3c.github.io/ServiceWorker/#importscripts
https://w3c.github.io/ServiceWorker/#navigator-service-worker-register
https://w3c.github.io/ServiceWorker/#navigator-service-worker-register
https://www.ampproject.org/
https://www.mipengine.org/
https://www.w3.org/publishing/groups/publ-wg/
https://www.w3.org/TR/pwp-ucr/#pwp
https://html.spec.whatwg.org/multipage/origin.html#same-origin
https://electron.atom.io/
https://nodejs.org/en/
https://app.dashlane.com/
https://groups.google.com/a/chromium.org/d/topic/blink-dev/he9tr7p3rZ8/discussion
https://groups.google.com/a/chromium.org/d/topic/blink-dev/he9tr7p3rZ8/discussion
https://twitter.com/anjacks0n/status/950861384266416134
https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid
https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid
https://nakedsecurity.sophos.com/2013/07/10/anatomy-of-a-security-hole-googles-android-master-key-debacle-explained/
https://nakedsecurity.sophos.com/2013/07/10/anatomy-of-a-security-hole-googles-android-master-key-debacle-explained/

Yasskin Expires May 2, 2020 [Page 23]

Internet-Draft Use Cases and Requirements for Web Packages October 2019

 [21] https://blog.gerv.net/2016/09/introducing-deliberate-protocol-
errors-langleys-law/

 [22] https://github.com/WICG/webpackage/issues/35

 [23] https://github.com/WICG/webpackage/
issues/6#issuecomment-275746125

 [24] https://html.spec.whatwg.org/multipage/browsers.html#concept-
origin

 [25] https://www.mnot.net/blog/2010/02/18/resource_packages

 [26] https://w3ctag.github.io/packaging-on-the-web/

 [27] http://httpwg.org/specs/rfc7540.html#PUSH_PROMISE

Appendix A. Acknowledgements

 Thanks to Yoav Weiss for the Subresource bundling use case and
 discussions about content distributors.

Author's Address

 Jeffrey Yasskin
 Google

 Email: jyasskin@chromium.org

https://blog.gerv.net/2016/09/introducing-deliberate-protocol-errors-langleys-law/
https://blog.gerv.net/2016/09/introducing-deliberate-protocol-errors-langleys-law/
https://github.com/WICG/webpackage/issues/35
https://github.com/WICG/webpackage/issues/6#issuecomment-275746125
https://github.com/WICG/webpackage/issues/6#issuecomment-275746125
https://html.spec.whatwg.org/multipage/browsers.html#concept-origin
https://html.spec.whatwg.org/multipage/browsers.html#concept-origin
https://www.mnot.net/blog/2010/02/18/resource_packages
https://w3ctag.github.io/packaging-on-the-web/
http://httpwg.org/specs/rfc7540.html#PUSH_PROMISE

Yasskin Expires May 2, 2020 [Page 24]

