
Network Working Group J. Yasskin
Internet-Draft Google
Intended status: Standards Track July 08, 2019
Expires: January 9, 2020

Bundled HTTP Exchanges
draft-yasskin-wpack-bundled-exchanges-01

Abstract

 Bundled exchanges provide a way to bundle up groups of HTTP
 request+response pairs to transmit or store them together. They can
 include multiple top-level resources with one identified as the
 default by a manifest, provide random access to their component
 exchanges, and efficiently store 8-bit resources.

Note to Readers

 Discussion of this draft takes place on the wpack mailing list
 (wpack@ietf.org), which is archived at

https://www.ietf.org/mailman/listinfo/wpack [1].

 The source code and issues list for this draft can be found in
https://github.com/WICG/webpackage [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Yasskin Expires January 9, 2020 [Page 1]

https://www.ietf.org/mailman/listinfo/wpack
https://github.com/WICG/webpackage
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Bundled HTTP Exchanges July 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3
1.2. Mode of specification 3

2. Semantics . 3
2.1. Stream attributes and operations 4
2.2. Load a bundle's metadata 4
2.2.1. Load a bundle's metadata from the end 5

2.3. Load a response from a bundle 5
3. Format . 6
3.1. Top-level structure 6
3.2. Serving constraints 7
3.3. Load a bundle's metadata 7
3.3.1. Parsing the index section 10
3.3.2. Parsing the manifest section 13
3.3.3. Parsing the signatures section 14
3.3.4. Parsing the critical section 15
3.3.5. The responses section 16
3.3.6. Starting from the end 16

3.4. Load a response from a bundle 17
3.5. Parsing CBOR items 19
3.5.1. Parse a known-length item 19
3.5.2. Parsing variable-length data from a bytestring . . . 19
3.5.3. Parsing the type and argument of a CBOR item 20

3.6. Interpreting CBOR HTTP headers 20
4. Guidelines for bundle authors 21
5. Security Considerations 22
5.1. Version skew . 22
5.2. Content sniffing . 22

6. IANA considerations . 23
6.1. Internet Media Type Registration 23
6.2. Web Bundle Section Name Registry 24

7. References . 25
7.1. Normative References 25
7.2. Informative References 27
7.3. URIs . 27

Appendix A. Change Log . 27

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Yasskin Expires January 9, 2020 [Page 2]

Internet-Draft Bundled HTTP Exchanges July 2019

Appendix B. Acknowledgements 28
 Author's Address . 28

1. Introduction

 To satisfy the use cases in [I-D.yasskin-webpackage-use-cases], this
 document proposes a new bundling format to group HTTP resources.
 Several of the use cases require the resources to be signed: that's
 provided by bundling signed exchanges
 ([I-D.yasskin-http-origin-signed-responses]) rather than natively in
 this format.

1.1. Terminology

 Exchange (noun) An HTTP request+response pair. This can either be a
 request from a client and the matching response from a server or
 the request in a PUSH_PROMISE and its matching response stream.
 Defined by Section 8 of [RFC7540].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Mode of specification

 This specification defines how conformant bundle parsers work. It
 does not constrain how encoders produce a bundle: although there are
 some guidelines in Section 4, encoders MAY produce any sequence of
 bytes that a conformant parser would parse into the intended
 semantics.

 This specification uses the conventions and terminology defined in
 the Infra Standard ([INFRA]).

2. Semantics

 A bundle is logically a set of HTTP exchanges, with a URL identifying
 the manifest(s) of the bundle itself.

 While the order of the exchanges is not semantically meaningful, it
 can significantly affect performance when the bundle is loaded from a
 network stream.

 A bundle is parsed from a stream of bytes, which is assumed to have
 the attributes and operations described in Section 2.1.

https://datatracker.ietf.org/doc/html/rfc7540#section-8
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Yasskin Expires January 9, 2020 [Page 3]

Internet-Draft Bundled HTTP Exchanges July 2019

 Bundle parsers support two operations, Load a bundle's metadata
 (Section 2.2) and Load a response from a bundle (Section 2.3) each of
 which can return an error instead of their normal result.

 A client is expected to load the metadata for a bundle as soon as it
 starts downloading it or otherwise discovers it. Then, when fetching
 ([FETCH]) a request, the client is expected to match it against the
 requests in the metadata, and if one matches, load that request's
 response.

2.1. Stream attributes and operations

 o A sequence of *available bytes*. As the stream delivers bytes,
 these are appended to the available bytes.

 o An *EOF* flag that's true if the available bytes include the
 entire stream.

 o A *current offset* within the available bytes.

 o A *seek to offset N* operation to set the current offset to N
 bytes past the beginning of the available bytes. A seek past the
 end of the available bytes blocks until N bytes are available. If
 the stream ends before enough bytes are received, either due to a
 network error or because the stream has a finite length, the seek
 fails.

 o A *read N bytes* operation, which blocks until N bytes are
 available past the current offset, and then returns them and seeks
 forward by N bytes. If the stream ends before enough bytes are
 received, either due to a network error or because the stream has
 a finite length, the read operation returns an error instead.

2.2. Load a bundle's metadata

 This takes the bundle's stream and returns either an error (where an
 error is a "format error" or a "version error"), an error with a
 fallback URL (which is also the primaryUrl when the bundle parses
 successfully), or a map ([INFRA]) of metadata containing at least
 keys named:

 primaryUrl The URL of the main resource in the bundle. If the
 client can't process the bundle for any reason, this is also the
 fallback URL, a reasonable URL to try to load instead.

 requests A map ([INFRA]) whose keys are URLs and whose values
 consist of either:

Yasskin Expires January 9, 2020 [Page 4]

Internet-Draft Bundled HTTP Exchanges July 2019

 * A single "ResponseMetadata" value for a non-content-negotiated
 resource or

 * A set of content-negotiated resources represented by

 + A "Variants" header field value
 ([I-D.ietf-httpbis-variants]) and

 + A map ([INFRA]) from each of the possible combinations of
 one available-value for each variant-axis to a
 "ResponseMetadata" structure. Load a response from a bundle
 can use the "ResponseMetadata" structures to find the
 matching response.

 manifest The URL of the bundle's manifest(s). This is a URL to
 support bundles with multiple different manifests, where the
 client uses content negotiation to select the most appropriate
 one.

 The map may include other items added by sections defined in the
 Web Bundle Section Name Registry.

 This operation only waits for a prefix of the stream that, if the
 bundle is encoded with the "responses" section last, ends before the
 first response.

 This operation's implementation is in Section 3.3.

2.2.1. Load a bundle's metadata from the end

 If a bundle's bytes are embedded in a longer sequence rather than
 being streamed, a parser can also load them starting from a pointer
 to the last byte of the bundle. This returns the same data as

Section 2.2.

 This operation's implementation is in Section 3.3.6.

2.3. Load a response from a bundle

 This takes the stream of bytes representing the bundle, a request
 ([FETCH]), and the "ResponseMetadata" returned from Section 2.2 for
 the appropriate content-negotiated resource within the request's URL,
 and returns the response ([FETCH]) matching that request.

 This operation can be completed without inspecting bytes other than
 those that make up the loaded response, although higher-level
 operations like proving that an exchange is correctly signed

Yasskin Expires January 9, 2020 [Page 5]

Internet-Draft Bundled HTTP Exchanges July 2019

 ([I-D.yasskin-http-origin-signed-responses]) may need to load other
 responses.

 A client will generally want to load the response for a request that
 the client generated. For a URL with multiple variants, the client
 SHOULD use the algorithm in Section 4 of [I-D.ietf-httpbis-variants]
 to select the best variant.

 This operation's implementation is in Section 3.4.

3. Format

3.1. Top-level structure

 This section is non-normative.

 A bundle holds a series of named sections. The beginning of the
 bundle maps section names to the range of bytes holding that section.
 The most important section is the "index" (Section 3.3.1), which
 similarly maps serialized HTTP requests to the range of bytes holding
 that request's serialized response. Byte ranges are represented
 using an offset from some point in the bundle _after_ the encoding of
 the range itself, to reduce the amount of work needed to use the
 shortest possible encoding of the range.

 Future specifications can define new sections with extra data, and if
 necessary, these sections can be marked "critical" (Section 3.3.4) to
 prevent older parsers from using the rest of the bundle incorrectly.

 The bundle is a CBOR item ([CBORbis]) with the following CDDL
 ([CDDL]) schema:

Yasskin Expires January 9, 2020 [Page 6]

Internet-Draft Bundled HTTP Exchanges July 2019

webbundle = [
 ; 🌐📦 in UTF-8.
 magic: h'F0 9F 8C 90 F0 9F 93 A6',
 version: bytes .size 4,
 primary-url: whatwg-url,
 section-lengths: bytes .cbor [* (section-name: tstr, length: uint)],
 sections: [* any],
 length: bytes .size 8, ; Big-endian number of bytes in the bundle.
]

$section-name /= "index" / "manifest" / "signatures" / "critical" / "responses"

$section /= index / manifest / signatures / critical / responses

responses = [*response]

whatwg-url = tstr

3.2. Serving constraints

 When served over HTTP, a response containing an "application/
 webbundle" payload MUST include at least the following response
 header fields, to reduce content sniffing vulnerabilities
 (Section 5.2):

 o Content-Type: application/webbundle

 o X-Content-Type-Options: nosniff

3.3. Load a bundle's metadata

 A bundle holds a series of sections, which can be accessed randomly
 using the information in the "section-lengths" CBOR item, which holds
 a list of alternating section names and section lengths:

 section-lengths = [* (section-name: tstr, length: uint)],

 To implement Section 2.2, the parser MUST run the following steps,
 taking the "stream" as input.

 1. Seek to offset 0 in "stream". Assert: this operation doesn't
 fail.

 2. If reading 10 bytes from "stream" returns an error or doesn't
 return the bytes with hex encoding "84 48 F0 9F 8C 90 F0 9F 93
 A6" (the CBOR encoding of the 4-item array initial byte and

Yasskin Expires January 9, 2020 [Page 7]

Internet-Draft Bundled HTTP Exchanges July 2019

 8-byte bytestring initial byte, followed by 🌐📦
 in UTF-8), return a "format error".

 3. Let "version" be the result of reading 5 bytes from "stream".
 If this is an error, return a "format error".

 4. Let "urlType" and "urlLength" be the result of reading the type
 and argument of a CBOR item from "stream" (Section 3.5.3). If
 this is an error or "urlType" is not 3 (a CBOR text string),
 return a "format error".

 5. Let "fallbackUrlBytes" be the result of reading "urlLength"
 bytes from "stream". If this is an error, return a "format
 error".

 6. Let "fallbackUrl" be the result of parsing ([URL]) the UTF-8
 decoding of "fallbackUrlBytes" with no base URL. If either the
 UTF-8 decoding or parsing fails, return a "format error".

 Note: From this point forward, errors also include the fallback
 URL to help clients recover.

 7. If "version" does not have the hex encoding "44 31 00 00 00"
 (the CBOR encoding of a 4-byte byte string holding an ASCII "1"
 followed by three 0 bytes), return a "version error" with
 "fallbackUrl".

 Note: RFC EDITOR PLEASE DELETE THIS NOTE; Implementations of
 drafts of this specification MUST NOT use the version "1" in
 this byte string, and MUST instead define an implementation-
 specific string to identify which draft is implemented. This
 string SHOULD match the version used in the draft's MIME type
 (Section 6.1).

 8. Let "sectionLengthsLength" be the result of getting the length
 of the CBOR bytestring header from "stream" (Section 3.5.2). If
 this is an error, return a "format error" with "fallbackUrl".

 9. If "sectionLengthsLength" is 8192 (8*1024) or greater, return a
 "format error" with "fallbackUrl".

 10. Let "sectionLengthsBytes" be the result of reading
 "sectionLengthsLength" bytes from "stream". If
 "sectionLengthsBytes" is an error, return a "format error" with
 "fallbackUrl".

 11. Let "sectionLengths" be the result of parsing one CBOR item
 (Section 3.5) from "sectionLengthsBytes", matching the section-

Yasskin Expires January 9, 2020 [Page 8]

Internet-Draft Bundled HTTP Exchanges July 2019

 lengths rule in the CDDL ([CDDL]) above. If "sectionLengths" is
 an error, return a "format error" with "fallbackUrl".

 12. Let ("sectionsType", "numSections") be the result of parsing the
 type and argument of a CBOR item from "stream" (Section 3.5.3).

 13. If "sectionsType" is not "4" (a CBOR array) or "numSections" is
 not half of the length of "sectionLengths", return a "format
 error" with "fallbackUrl".

 14. Let "sectionsStart" be the current offset within "stream".

 For example, if "sectionLengthsLength" were 52 and
 "sectionLengths" contained 4 items (2 sections), "sectionsStart"
 would be 65 (10 initial bytes + a 2-byte bytestring header to
 describe a 52-byte bytestring + 52 bytes of section lengths + a
 1-byte array header for the 2 sections).

 15. Let "knownSections" be the subset of the Section 6.2 that this
 client has implemented.

 16. Let "ignoredSections" be an empty set.

 17. Let "sectionOffsets" be an empty map ([INFRA]) from section
 names to (offset, length) pairs. These offsets are relative to
 the start of "stream".

 18. Let "currentOffset" be "sectionsStart".

 19. For each (""name"", "length") pair of adjacent elements in
 "sectionLengths":

 1. If ""name""'s specification in "knownSections" says not to
 process other sections, add those sections' names to
 "ignoredSections".

 Note: The "ignoredSections" enables sections that supercede
 other sections to be introduced in the future.
 Implementations that don't implement any such sections are
 free to omit the relevant steps.

 2. If "sectionOffsets["name"]" exists, return a "format error"
 with "fallbackUrl". That is, duplicate sections are
 forbidden.

 3. Set "sectionOffsets["name"]" to ("currentOffset", "length").

 4. Set "currentOffset" to "currentOffset + length".

Yasskin Expires January 9, 2020 [Page 9]

Internet-Draft Bundled HTTP Exchanges July 2019

 20. If the "responses" section is not last in "sectionLengths",
 return a "format error" with "fallbackUrl". This allows a
 streaming parser to assume that it'll know the requests by the
 time their responses arrive.

 21. Let "metadata" be a map ([INFRA]) initially containing the
 single key/value pair ""primaryUrl""/"fallbackUrl".

 22. For each ""name"" --> ("offset", "length") triple in
 "sectionOffsets":

 1. If ""name"" isn't in "knownSections", continue to the next
 triple.

 2. If ""name""'s Metadata field (Section 6.2) is "No", continue
 to the next triple.

 3. If ""name"" is in "ignoredSections", continue to the next
 triple.

 4. Seek to offset "offset" in "stream". If this fails, return
 a "format error" with "fallbackUrl".

 5. Let "sectionContents" be the result of reading "length"
 bytes from "stream". If "sectionContents" is an error,
 return a "format error" with "fallbackUrl".

 6. Follow ""name""'s specification from "knownSections" to
 process the section, passing "sectionContents", "stream",
 "sectionOffsets", and "metadata". If this returns an error,
 return a "format error" with "fallbackUrl".

 23. Assert: "metadata" has an entry with the key "primaryUrl".

 24. If "metadata" doesn't have entries with keys "requests" and
 "manifest", return a "format error" with "fallbackUrl".

 25. Return "metadata".

3.3.1. Parsing the index section

 The "index" section defines the set of HTTP requests in the bundle
 and identifies their locations in the "responses" section. It
 consists of a map from URL strings to arrays consisting of a
 "Variants" header field value ([I-D.ietf-httpbis-variants]) followed
 by one "location-in-responses" pair for each of the possible
 combinations of available-values within the "Variants" value in
 lexicographic (row-major) order.

Yasskin Expires January 9, 2020 [Page 10]

Internet-Draft Bundled HTTP Exchanges July 2019

 For example, given a "variants-value" of "Accept-Encoding;gzip;br,
 Accept-Language;en;fr;ja", the list of "location-in-responses" pairs
 will correspond to the "VariantKey"s:

 o gzip;en

 o gzip;fr

 o gzip;ja

 o br;en

 o br;fr

 o br;ja

 The order of variant-axes is important. If the "variants-value" were
 "Accept-Language;en;fr;ja, Accept-Encoding;gzip;br" instead, the
 "location-in-responses" pairs would instead correspond to:

 o en;gzip

 o en;br

 o fr;gzip

 o fr;br

 o ja;gzip

 o ja;br

 As a special case, an empty "variants-value" indicates that there is
 only one resource at the specified URL and that no content
 negotiation is performed.

 index = {* whatwg-url => [variants-value, +location-in-responses] }
 variants-value = bstr
 location-in-responses = (offset: uint, length: uint)

 A "ResponseMetadata" struct identifies a byte range within the bundle
 stream, defined by an integer offset from the start of the stream and
 the integer number of bytes in the range.

 To parse the index section, given its "sectionContents", the
 "sectionOffsets" map, and the "metadata" map to fill in, the parser
 MUST do the following:

Yasskin Expires January 9, 2020 [Page 11]

Internet-Draft Bundled HTTP Exchanges July 2019

 1. Let "index" be the result of parsing "sectionContents" as a CBOR
 item matching the "index" rule in the above CDDL (Section 3.5).
 If "index" is an error, return an error.

 2. Let "requests" be an initially-empty map ([INFRA]) from URLs to
 response descriptions, each of which is either a single
 "location-in-stream" value or a pair of a "Variants" header field
 value ([I-D.ietf-httpbis-variants]) and a map from that value's
 possible "Variant-Key"s to "location-in-stream" values, as
 described in Section 2.2.

 3. Let "MakeRelativeToStream" be a function that takes a "location-
 in-responses" value ("offset", "length") and returns a
 "ResponseMetadata" struct or error by running the following sub-
 steps:

 1. If "offset" + "length" is larger than
 "sectionOffsets["responses"].length", return an error.

 2. Otherwise, return a "ResponseMetadata" struct whose offset is
 "sectionOffsets["responses"].offset" + "offset" and whose
 length is "length".

 4. For each ("url", "responses") entry in the "index" map:

 1. Let "parsedUrl" be the result of parsing ([URL]) "url" with
 no base URL.

 2. If "parsedUrl" is a failure, its fragment is not null, or it
 includes credentials, return an error.

 3. If the first element of "responses" is the empty string:

 1. If the length of "responses" is not 3 (i.e. there is more
 than one "location-in-responses" in responses), return an
 error.

 2. Otherwise, assert that "requests"["parsedUrl"] does not
 exist, and set "requests"["parsedUrl"] to
 "MakeRelativeToStream(location-in-responses)", where
 "location-in-responses" is the second and third elements
 of "responses". If that returns an error, return an
 error.

 4. Otherwise:

 1. Let "variants" be the result of parsing the first element
 of "responses" as the value of the "Variants" HTTP header

Yasskin Expires January 9, 2020 [Page 12]

Internet-Draft Bundled HTTP Exchanges July 2019

 field (Section 2 of [I-D.ietf-httpbis-variants]). If
 this fails, return an error.

 2. Let "variantKeys" be the Cartesian product of the lists
 of available-values for each variant-axis in
 lexicographic (row-major) order. See the examples above.

 3. If the length of "responses" is not "2 * len(variantKeys)
 + 1", return an error.

 4. Set "requests"["parsedUrl"] to a map from
 "variantKeys"["i"] to the result of calling
 "MakeRelativeToStream" on the "location-in-responses" at
 "responses"["2*i+1"] and "responses"["2*i+2"], for "i" in
 ["0", "len(variantKeys)"). If any "MakeRelativeToStream"
 call returns an error, return an error.

 5. Set "metadata["requests"]" to "requests".

3.3.2. Parsing the manifest section

 The "manifest" section records a single URL identifying the manifest
 of the bundle. The URL MUST refer to the one or more response(s)
 contained in the bundle itself.

 The bundle can contain multiple resources at this URL, and the client
 is expected to content-negotiate for the best one. For example, a
 client might select the one with an "accept" header of "application/
 manifest+json" ([appmanifest]) and an "accept-language" header of
 "es-419".

 manifest = whatwg-url

 To parse the manifest section, given its "sectionContents" and the
 "metadata" map to fill in, the parser MUST do the following:

 1. Let "urlString" be the result of parsing "sectionContents" as a
 CBOR item matching the above "manifest" rule (Section 3.5. If
 "urlString" is an error, return that error.

 2. Let "url" be the result of parsing ([URL]) "urlString" with no
 base URL.

 3. If "url" is a failure, its fragment is not null, or it includes
 credentials, return an error.

 4. Set "metadata["manifest"]" to "url".

Yasskin Expires January 9, 2020 [Page 13]

Internet-Draft Bundled HTTP Exchanges July 2019

3.3.3. Parsing the signatures section

 The "signatures" section vouches for the resources in the bundle.

 The section can contain as many signatures as needed, each by some
 authority, and each covering an arbitrary subset of the resources in
 the bundle. Intermediates, including attackers, can remove
 signatures from the bundle without breaking the other signatures.

 The bundle parser's client is responsible to determine the validity
 and meaning of each authority's signatures. In particular, the
 algorithm below does not check that signatures are valid. For
 example, a client might:

 o Use the ecdsa_secp256r1_sha256 algorithm defined in Section 4.2.3
 of [TLS1.3] to check the validity of any signature with an EC
 public key on the secp256r1 curve.

 o Reject all signatures by an RSA public key.

 o Treat an X.509 certificate with the CanSignHttpExchanges extension
 (Section 4.2 of [I-D.yasskin-http-origin-signed-responses]) and a
 valid chain to a trusted root as an authority that vouches for the
 authenticity of resources claimed to come from that certificate's
 domains.

 o Treat an X.509 certificate with another extension or EKU as
 vouching that a particular analysis has run over the signed
 resources without finding malicious behavior.

 A client might also choose different behavior for those kinds of
 authorities and keys.

Yasskin Expires January 9, 2020 [Page 14]

Internet-Draft Bundled HTTP Exchanges July 2019

signatures = [
 authorities: [*authority],
 vouched-subsets: [*{
 authority: index-in-authorities,
 sig: bstr,
 signed: bstr ; Expected to hold a signed-subset item.
 }],
]
authority = augmented-certificate
index-in-authorities = uint

signed-subset = {
 validity-url: whatwg-url,
 auth-sha256: bstr,
 date: uint,
 expires: uint,
 subset-hashes: {+
 whatwg-url => [variants-value, +resource-integrity]
 },
 * tstr => any,
}
resource-integrity = (header-sha256: bstr, payload-integrity-header: tstr)

 The "augmented-certificate" CDDL rule comes from Section 3.3 of
 [I-D.yasskin-http-origin-signed-responses].

 To parse the signatures section, given its "sectionContents", the
 "sectionOffsets" map, and the "metadata" map to fill in, the parser
 MUST do the following:

 1. Let "signatures" be the result of parsing "sectionContents" as a
 CBOR item matching the "signatures" rule in the above CDDL
 (Section 3.5).

 2. Set "metadata["authorities"]" to the list of authorities in the
 first element of the "signatures" array.

 3. Set "metadata["vouched-subsets"]" to the second element of the
 "signatures" array.

3.3.4. Parsing the critical section

 The "critical" section lists sections of the bundle that the client
 needs to understand in order to load the bundle correctly. Other
 sections are assumed to be optional.

 critical = [*tstr]

Yasskin Expires January 9, 2020 [Page 15]

Internet-Draft Bundled HTTP Exchanges July 2019

 To parse the critical section, given its "sectionContents" and the
 "metadata" map to fill in, the parser MUST do the following:

 1. Let "critical" be the result of parsing "sectionContents" as a
 CBOR item matching the above "critical" rule (Section 3.5). If
 "critical" is an error, return that error.

 2. For each value "sectionName" in the "critical" list, if the
 client has not implemented sections named "sectionName", return
 an error.

 This section does not modify the returned metadata.

3.3.5. The responses section

 The responses section does not add any items to the bundle metadata
 map. Instead, its offset and length are used in processing the index
 section (Section 3.3.1).

3.3.6. Starting from the end

 The length of a bundle is encoded as a big-endian integer inside a
 CBOR byte string at the end of the bundle.

 +------------+-----+----+----+----+----+----+----+----+----+----+
 | first byte | ... | 48 | 00 | 00 | 00 | 00 | 00 | BC | 61 | 4E |
 +------------+-----+----+----+----+----+----+----+----+----+----+
 / \
 0xBC614E-10=12345668 omitted bytes

 Figure 1: Example trailing bytes

 Parsing from the end allows the bundle to be appended to another
 format such as a self-extracting executable.

 To implement Section 2.2.1, taking a sequence of bytes "bytes", the
 client MUST:

 1. Let "byteStringHeader" be "bytes[bytes.length - 9]". If
 "byteStringHeader is not "0x48` (the CBOR ([CBORbis]) initial
 byte for an 8-byte byte string), return an error.

 2. Let "bundleLength" be "[bytes[bytes.length - 8],
 bytes[bytes.length])" (the last 8 bytes) interpreted as a big-
 endian integer.

 3. If "bundleLength > bytes.length", return an error.

Yasskin Expires January 9, 2020 [Page 16]

Internet-Draft Bundled HTTP Exchanges July 2019

 4. Let "stream" be a new stream whose:

 * Available bytes are "[bytes[bytes.length - bundleLength],
 bytes[bytes.length])".

 * EOF flag is set.

 * Current offset is initially 0.

 * The seek to offset N and read N bytes operations succeed
 immediately if "currentOffset + N <= bundleLength" and fail
 otherwise.

 5. Return the result of running Section 3.3 with "stream" as input.

3.4. Load a response from a bundle

 The result of Load a bundle's metadata maps each URL and Variant-Key
 ([I-D.ietf-httpbis-variants]) to a response, which consists of
 headers and a payload. The headers can be loaded from the bundle's
 stream before waiting for the payload, and similarly the payload can
 be streamed to downstream consumers.

 response = [headers: bstr .cbor headers, payload: bstr]

 To implement Section 2.3, the parser MUST run the following steps,
 taking the bundle's "stream", a "request" ([FETCH]), and a
 "responseMetadata" returned by Section 2.2 .

 1. Seek to offset "responseMetadata.offset" in "stream". If this
 fails, return an error.

 2. Read 1 byte from "stream". If this is an error or isn't "0x82",
 return an error.

 3. Let "headerLength" be the result of getting the length of a CBOR
 bytestring header from "stream" (Section 3.5.2). If
 "headerLength" is an error, return that error.

 4. If "headerLength" is 524288 (512*1024) or greater, return an
 error.

 5. Let "headerCbor" be the result of reading "headerLength" bytes
 from "stream" and parsing a CBOR item from them matching the
 "headers" CDDL rule. If either the read or parse returns an
 error, return that error.

Yasskin Expires January 9, 2020 [Page 17]

Internet-Draft Bundled HTTP Exchanges July 2019

 6. Let ("headers", "pseudos") be the result of converting
 "headerCbor" to a header list and pseudoheaders using the
 algorithm in Section 3.6. If this returns an error, return that
 error.

 7. If "pseudos" does not have a key named ':status' or its size
 isn't 1, return an error.

 8. If "pseudos[':status']" isn't exactly 3 ASCII decimal digits,
 return an error.

 9. If "headers" does not contain a "Content-Type" header, return an
 error.

 The client MUST interpret the following payload as this
 specified media type instead of trying to sniff a media type
 from the bytes of the payload, for example by appending an
 artificial "X-Content-Type-Options: nosniff" header field
 ([FETCH]) to "headers".

 10. Let "payloadLength" be the result of getting the length of a
 CBOR bytestring header from "stream" (Section 3.5.2). If
 "payloadLength" is an error, return that error.

 11. If "stream.currentOffset + payloadLength !=
 responseMetadata.offset + responseMetadata.length", return an
 error.

 12. Let "body" be a new body ([FETCH]) whose stream is a tee'd copy
 of "stream" starting at the current offset and ending after
 "payloadLength" bytes.

 TODO: Add the rest of the details of creating a "ReadableStream"
 object.

 13. Let "response" be a new response ([FETCH]) whose:

 * Url list is "request"'s url list,

 * status is "pseudos[':status']",

 * header list is "headers", and

 * body is "body".

 14. Return "response".

Yasskin Expires January 9, 2020 [Page 18]

Internet-Draft Bundled HTTP Exchanges July 2019

3.5. Parsing CBOR items

 Parsing a bundle involves parsing many CBOR items. All of these
 items need to be deterministically encoded.

3.5.1. Parse a known-length item

 To parse a CBOR item ([CBORbis]), optionally matching a CDDL rule
 ([CDDL]), from a sequence of bytes, "bytes", the parser MUST do the
 following:

 1. If "bytes" are not a well-formed CBOR item, return an error.

 2. If "bytes" does not satisfy the core deterministic encoding
 requirements from Section 4.2.1 of [CBORbis], return an error.
 This format does not use floating point values or tags, so this
 specification does not add any deterministic encoding rules for
 them.

 3. If "bytes" includes extra bytes after the encoding of a CBOR
 item, return an error.

 4. Let "item" be the result of decoding "bytes" as a CBOR item.

 5. If a CDDL rule was specified, but "item" does not match it,
 return an error.

 6. Return "item".

3.5.2. Parsing variable-length data from a bytestring

 Bundles encode variable-length data in CBOR bytestrings, which are
 prefixed with their length. This algorithm returns the number of
 bytes in the variable-length item and sets the stream's current
 offset to the first byte of the contents.

 To get the length of a CBOR bytestring header from a bundle's stream,
 the parser MUST do the following:

 1. Let ("type", "argument") be the result of parsing the type and
 argument of a CBOR item from the stream (Section 3.5.3). If this
 returns an error, return that error.

 2. If "type" is not "2", the item is not a bytestring. Return an
 error.

 3. Return "argument".

Yasskin Expires January 9, 2020 [Page 19]

Internet-Draft Bundled HTTP Exchanges July 2019

3.5.3. Parsing the type and argument of a CBOR item

 To parse the type and argument of a CBOR item from a bundle's stream,
 the parser MUST do the following. This algorithm returns a pair of
 the CBOR major type 0-7 inclusive, and a 64-bit integral argument for
 the CBOR item:

 1. Let "firstByte" be the result of reading 1 byte from the stream.
 If "firstByte" is an error, return that error.

 2. Let "type" be "(firstByte & 0xE0) / 0x20".

 3. If "firstByte & 0x1F" is:

 0..23, inclusive Return ("type", "firstByte & 0x1F").

 24 Let "content" be the result of reading 1 byte from the stream.
 If "content" is an error or is less than 24, return an error.

 25 Let "content" be the result of reading 2 bytes from the
 stream. If "content" is an error or its first byte is 0,
 return an error.

 26 Let "content" be the result of reading 4 bytes from the
 stream. If "content" is an error or its first two bytes are
 0, return an error.

 27 Let "content" be the result of reading 8 bytes from the
 stream. If "content" is an error or its first four bytes are
 0, return an error.

 28..31, inclusive Return an error. Note: This intentionally
 does not support indefinite-length items.

 4. Let "argument" be the big-endian integer encoded in "content".

 5. Return ("type", "argument").

3.6. Interpreting CBOR HTTP headers

 Bundles represent HTTP requests and responses as a list of headers,
 matching the following CDDL ([CDDL]):

 headers = {* bstr => bstr}

 Pseudo-headers starting with a ":" provide the non-header information
 needed to create a request or response as appropriate

Yasskin Expires January 9, 2020 [Page 20]

Internet-Draft Bundled HTTP Exchanges July 2019

 To convert a CBOR item "item" into a [FETCH] header list and
 pseudoheaders, parsers MUST do the following:

 1. If "item" doesn't match the "headers" rule in the above CDDL,
 return an error.

 2. Let "headers" be a new header list ([FETCH]).

 3. Let "pseudos" be an empty map ([INFRA]).

 4. For each pair ("name", "value") in "item":

 1. If "name" contains any upper-case or non-ASCII characters,
 return an error. This matches the requirement in

Section 8.1.2 of [RFC7540].

 2. If "name" starts with a ':':

 1. Assert: "pseudos[name]" does not exist, because CBOR maps
 cannot contain duplicate keys.

 2. Set "pseudos[name]" to "value".

 3. Continue.

 3. If "name" or "value" doesn't satisfy the requirements for a
 header in [FETCH], return an error.

 4. Assert: "headers" does not contain ([FETCH]) "name", because
 CBOR maps cannot contain duplicate keys and an earlier step
 rejected upper-case bytes.

 Note: This means that a response cannot set more than one
 cookie, because the "Set-Cookie" header ([RFC6265]) has to
 appear multiple times to set multiple cookies.

 5. Append ("name", "value") to "headers".

 5. Return ("headers", "pseudos").

4. Guidelines for bundle authors

 Bundles SHOULD consist of a single CBOR item satisfying the core
 deterministic encoding requirements (Section 3.5) and matching the
 "webbundle" CDDL rule in Section 3.1.

https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2
https://datatracker.ietf.org/doc/html/rfc6265

Yasskin Expires January 9, 2020 [Page 21]

Internet-Draft Bundled HTTP Exchanges July 2019

5. Security Considerations

5.1. Version skew

 Bundles currently have no mechanism for ensuring that the signed
 exchanges they contain constitute a consistent version of those
 resources. Even if a website never has a security vulnerability when
 resources are fetched at a single time, an attacker might be able to
 combine a set of resources pulled from different versions of the
 website to build a vulnerable site. While the vulnerable site could
 have occurred by chance on a client's machine due to normal HTTP
 caching, bundling allows an attacker to guarantee that it happens.
 Future work in this specification might allow a bundle to constrain
 its resources to come from a consistent version.

5.2. Content sniffing

 While modern browsers tend to trust the "Content-Type" header sent
 with a resource, especially when accompanied by "X-Content-Type-
 Options: nosniff", plugins will sometimes search for executable
 content buried inside a resource and execute it in the context of the
 origin that served the resource, leading to XSS vulnerabilities. For
 example, some PDF reader plugins look for "%PDF" anywhere in the
 first 1kB and execute the code that follows it.

 The "application/webbundle" format defined above includes URLs and
 request headers early in the format, which an attacker could use to
 cause these plugins to sniff a bad content type.

 To avoid vulnerabilities, in addition to the response header
 requirements in Section 3.2, servers are advised to only serve an
 "application/webbundle" resource from a domain if it would also be
 safe for that domain to serve the bundle's content directly, and to
 follow at least one of the following strategies:

 1. Only serve bundles from dedicated domains that don't have access
 to sensitive cookies or user storage.

 2. Generate bundles "offline", that is, in response to a trusted
 author submitting content or existing signatures reaching a
 certain age, rather than in response to untrusted-reader queries.

 3. Do all of:

 1. If the bundle's contained URLs (e.g. in the manifest and
 index) are derived from the request for the bundle, percent-
 encode [3] ([URL]) any bytes that are greater than 0x7E or
 are not URL code points [4] ([URL]) in these URLs. It is

Yasskin Expires January 9, 2020 [Page 22]

Internet-Draft Bundled HTTP Exchanges July 2019

 particularly important to make sure no unescaped nulls (0x00)
 or angle brackets (0x3C and 0x3E) appear.

 2. Similarly, if the request headers for any contained resource
 are based on the headers sent while requesting the bundle,
 only include request header field names *and values* that
 appear in a static allowlist. Keep the set of allowed
 request header fields smaller than 24 elements to prevent
 attackers from controlling a whole CBOR length byte.

 3. Restrict the number of items a request can direct the server
 to include in a bundle to less than 12, again to prevent
 attackers from controlling a whole CBOR length byte.

 4. Do not reflect request header fields into the set of response
 headers.

 If the server serves responses that are written by a potential
 attacker but then escaped, the "application/webbundle" format allows
 the attacker to use the length of the response to control a few bytes
 before the start of the response. Any existing mechanisms that
 prevent polyglot documents probably keep working in the face of this
 new attack, but we don't have a guarantee of that.

 To encourage servers to include the "X-Content-Type-Options: nosniff"
 header field, clients SHOULD reject bundles served without it.

6. IANA considerations

6.1. Internet Media Type Registration

 IANA maintains the registry of Internet Media Types [RFC6838] at
https://www.iana.org/assignments/media-types [5].

 o Type name: application

 o Subtype name: webbundle

 o Required parameters:

 * v: A string denoting the version of the file format.
 ([RFC5234] ABNF: "version = 1*(DIGIT/%x61-7A)") The version
 defined in this specification is "1".

 Note: RFC EDITOR PLEASE DELETE THIS NOTE; Implementations of
 drafts of this specification MUST NOT use simple integers to
 describe their versions, and MUST instead define

https://datatracker.ietf.org/doc/html/rfc6838
https://www.iana.org/assignments/media-types
https://datatracker.ietf.org/doc/html/rfc5234

Yasskin Expires January 9, 2020 [Page 23]

Internet-Draft Bundled HTTP Exchanges July 2019

 implementation-specific strings to identify which draft is
 implemented.

 o Optional parameters: N/A

 o Encoding considerations: binary

 o Security considerations: See Section 5 of this document.

 o Interoperability considerations: N/A

 o Published specification: This document

 o Applications that use this media type: None yet, but it is
 expected that web browsers will use this format.

 o Fragment identifier considerations: N/A

 o Additional information:

 * Deprecated alias names for this type: N/A

 * Magic number(s): 84 48 F0 9F 8C 90 F0 9F 93 A6

 * File extension(s): .wbn

 * Macintosh file type code(s): N/A

 o Person & email address to contact for further information: See the
 Author's Address section of this specification.

 o Intended usage: COMMON

 o Restrictions on usage: N/A

 o Author: See the Author's Address section of this specification.

 o Change controller: The IESG iesg@ietf.org [6]

 o Provisional registration? (standards tree only): Not yet.

6.2. Web Bundle Section Name Registry

 IANA is directed to create a new registry with the following
 attributes:

 Name: Web Bundle Section Names

Yasskin Expires January 9, 2020 [Page 24]

Internet-Draft Bundled HTTP Exchanges July 2019

 Review Process: Specification Required

 Initial Assignments:

 +--------------+---------------+----------+-------------------------+
 | Section Name | Specification | Metadata | Metadata Fields |
 +--------------+---------------+----------+-------------------------+
"index"	Section 3.3.1	Yes	"requests"
"manifest"	Section 3.3.2	Yes	"manifest"
"signatures"	Section 3.3.3	Yes	"authorities",
			"vouched-subsets"
"critical"	Section 3.3.4	Yes	
"responses"	Section 3.3.5	No	
 +--------------+---------------+----------+-------------------------+

 Requirements on new assignments:

 Section Names MUST be encoded in UTF-8.

 Assignments must specify whether the section is parsed during
 Load a bundle's metadata (Metadata=Yes) or not (Metadata=No).

 The section's specification can use the bytes making up the section,
 the bundle's stream (Section 2.1), and the "sectionOffsets" map
 (Section 3.3), as input, and MUST say if an error is returned, and
 otherwise what items, if any, are added to the map that Section 3.3
 returns. A section's specification MAY say that, if it is present,
 another section is not processed.

7. References

7.1. Normative References

 [appmanifest]
 Caceres, M., Christiansen, K., Lamouri, M., Kostiainen,
 A., Dolin, R., and M. Giuca, "Web App Manifest", World
 Wide Web Consortium WD WD-appmanifest-20180523, May 2018,
 <https://www.w3.org/TR/2018/WD-appmanifest-20180523>.

 [CBORbis] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", draft-ietf-cbor-7049bis-06 (work
 in progress), July 2019.

https://www.w3.org/TR/2018/WD-appmanifest-20180523
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-7049bis-06

Yasskin Expires January 9, 2020 [Page 25]

Internet-Draft Bundled HTTP Exchanges July 2019

 [CDDL] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [FETCH] WHATWG, "Fetch", July 2019,
 <https://fetch.spec.whatwg.org/>.

 [I-D.ietf-httpbis-variants]
 Nottingham, M., "HTTP Representation Variants", draft-

ietf-httpbis-variants-05 (work in progress), March 2019.

 [I-D.yasskin-http-origin-signed-responses]
 Yasskin, J., "Signed HTTP Exchanges", draft-yasskin-http-

origin-signed-responses-06 (work in progress), July 2019.

 [INFRA] WHATWG, "Infra", July 2019,
 <https://infra.spec.whatwg.org/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [SRI] Akhawe, D., Braun, F., Marier, F., and J. Weinberger,
 "Subresource Integrity", World Wide Web Consortium
 Recommendation REC-SRI-20160623, June 2016,
 <http://www.w3.org/TR/2016/REC-SRI-20160623>.

 [URL] WHATWG, "URL", July 2019, <https://url.spec.whatwg.org/>.

https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://fetch.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-variants-05
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-06
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-06
https://infra.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.w3.org/TR/2016/REC-SRI-20160623
https://url.spec.whatwg.org/

Yasskin Expires January 9, 2020 [Page 26]

Internet-Draft Bundled HTTP Exchanges July 2019

7.2. Informative References

 [I-D.yasskin-webpackage-use-cases]
 Yasskin, J., "Use Cases and Requirements for Web
 Packages", draft-yasskin-webpackage-use-cases-01 (work in
 progress), March 2018.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [TLS1.3] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

7.3. URIs

 [1] https://www.ietf.org/mailman/listinfo/wpack

 [2] https://github.com/WICG/webpackage

 [3] https://url.spec.whatwg.org/#percent-encode

 [4] https://url.spec.whatwg.org/#url-code-points

 [5] https://www.iana.org/assignments/media-types

 [6] mailto:iesg@ietf.org

Appendix A. Change Log

 RFC EDITOR PLEASE DELETE THIS SECTION.

draft-01

 o Include only section lengths in the section index, requiring
 sections to be listed in order.

 o Have the "index" section map URLs to sets of responses negotiated
 using the Variants system ([I-D.ietf-httpbis-variants]).

 o Require the "manifest" to be embedded into the bundle.

https://datatracker.ietf.org/doc/html/draft-yasskin-webpackage-use-cases-01
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.ietf.org/mailman/listinfo/wpack
https://github.com/WICG/webpackage
https://url.spec.whatwg.org/#percent-encode
https://url.spec.whatwg.org/#url-code-points
https://www.iana.org/assignments/media-types
https://datatracker.ietf.org/doc/html/draft-01

Yasskin Expires January 9, 2020 [Page 27]

Internet-Draft Bundled HTTP Exchanges July 2019

 o Add a content sniffing security consideration.

 o Add a version string to the format and its mime type.

 o Add a fallback URL in a fixed location in the format, and use that
 fallback URL as the primary URL of the bundle.

 o Add a "signatures" section to let authorities (like domain-trusted
 X.509 certificates) vouch for subsets of a bundle.

 o Use the CBORbis "deterministic encoding" requirements instead of
 "canonicalization" requirements.

Appendix B. Acknowledgements

 Thanks to the Chrome loading team, especially Kinuko Yasuda and
 Kouhei Ueno for making the format work well when streamed.

Author's Address

 Jeffrey Yasskin
 Google

 Email: jyasskin@chromium.org

Yasskin Expires January 9, 2020 [Page 28]

