
Network Working Group F. Yergeau
Internet Draft Alis Technologies
<draft-yergeau-utf8-rev-00.txt> 14 April 1997
Expires 14 October 1997

[Will obsolete RFC 2044]

 UTF-8, a transformation format of Unicode and ISO 10646

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working doc-
 uments of the Internet Engineering Task Force (IETF), its areas, and
 its working groups. Note that other groups may also distribute work-
 ing documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months. Internet-Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet-
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress".

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

 Distribution of this document is unlimited.

Abstract

 ISO/IEC 10646-1 and the Unicode Standard jointly define a multi-octet
 character set which encompasses most of the world's writing systems.
 Multi-octet characters, however, are not compatible with many current
 applications and protocols, and this has led to the development of a
 few so-called UCS transformation formats (UTF), each with different
 characteristics. UTF-8, the object of this memo, has the character-
 istic of preserving the full US-ASCII range, providing compatibility
 with file systems, parsers and other software that rely on US-ASCII
 values but are transparent to other values. This memo updates and
 replaces RFC 2044, in particular addressing the question of versions
 of the relevant standards.

 Expires 14 October 1997 [Page 1]

https://datatracker.ietf.org/doc/html/draft-yergeau-utf8-rev-00.txt
https://datatracker.ietf.org/doc/html/rfc2044
https://datatracker.ietf.org/doc/html/rfc2044

Internet Draft UTF-8 14 April 1997

1. Introduction

 ISO/IEC 10646-1 [ISO-10646] and the Unicode Standard [UNICODE]
 jointly define a 16-bit character set, UCS-2, which encompasses most
 of the world's writing systems. ISO 10646 further defines a 31-bit
 character set, UCS-4, with currently no assignments outside of the
 region corresponding to UCS-2 (the Basic Multilingual Plane, BMP).
 The UCS-2 and UCS-4 encodings, however, are hard to use in many cur-
 rent applications and protocols that assume 8 or even 7 bit charac-
 ters. Even newer systems able to deal with 16 bit characters cannot
 process UCS-4 data. This situation has led to the development of so-
 called UCS transformation formats (UTF), each with different charac-
 teristics.

 UTF-1 has only historical interest, having been removed from ISO
 10646. UTF-7 has the quality of encoding the full Unicode repertoire
 using only octets with the high-order bit clear (7 bit US-ASCII val-
 ues, [US-ASCII]), and is thus deemed a mail-safe encoding
 ([RFC1642]). UTF-8, the object of this memo, uses all bits of an
 octet, but has the quality of preserving the full US-ASCII range: US-
 ASCII characters are encoded in one octet having the normal US-ASCII
 value, and any octet with such a value can only stand for an US-ASCII
 character, and nothing else.

 UTF-16 is a scheme for transforming a subset of the UCS-4 repertoire
 into pairs of UCS-2 values from a reserved range. UTF-16 impacts
 UTF-8 in that UCS-2 values from the reserved range must be treated
 specially in the UTF-8 transformation.

 UTF-8 encodes UCS-2 or UCS-4 characters as a varying number of
 octets, where the number of octets, and the value of each, depend on
 the integer value assigned to the character in ISO 10646. This
 transformation format has the following characteristics (all values
 are in hexadecimal):

 - Character values from 0000 0000 to 0000 007F (US-ASCII repertoire)
 correspond to octets 00 to 7F (7 bit US-ASCII values). A direct
 consequence is that a plain ASCII string is also a valid UTF-8
 string.

 - US-ASCII values do not appear otherwise in a UTF-8 encoded charac-
 ter stream. This provides compatibility with file systems or
 other software (e.g. the printf() function in C libraries) that
 parse based on US-ASCII values but are transparent to other val-
 ues.

 - Round-trip conversion is easy between UTF-8 and either of UCS-4,
 UCS-2 or Unicode.

https://datatracker.ietf.org/doc/html/rfc1642

 Expires 14 October 1997 [Page 2]

Internet Draft UTF-8 14 April 1997

 - The first octet of a multi-octet sequence indicates the number of
 octets in the sequence.

 - The octet values FE and FF never appear.

 - Character boundaries are easily found from anywhere in an octet
 stream.

 - The lexicographic sorting order of UCS-4 strings is preserved. Of
 course this is of limited interest since the sort order is not
 culturally valid in either case.

 - The Boyer-Moore fast search algorithm can be used with UTF-8 data.

 - UTF-8 strings can be fairly reliably recognized as such by a sim-
 ple algorithm, i.e. the probability that a string of characters in
 any other encoding appears as valid UTF-8 is low, diminishing with
 increasing string length.

 UTF-8 was originally a project of the X/Open Joint Internationaliza-
 tion Group XOJIG with the objective to specify a File System Safe UCS
 Transformation Format [FSS-UTF] that is compatible with UNIX systems,
 supporting multilingual text in a single encoding. The original
 authors were Gary Miller, Greger Leijonhufvud and John Entenmann.
 Later, Ken Thompson and Rob Pike did significant work for the formal
 UTF-8.

 A description can also be found in Unicode Technical Report #4 and in
 the Unicode Standard, version 2.0 [UNICODE]. The definitive refer-
 ence, including provisions for UTF-16 data within UTF-8, is Annex R
 of ISO/IEC 10646-1 [ISO-10646].

2. UTF-8 definition

 In UTF-8, characters are encoded using sequences of 1 to 6 octets.
 The only octet of a "sequence" of one has the higher-order bit set to
 0, the remaining 7 bits being used to encode the character value. In
 a sequence of n octets, n>1, the initial octet has the n higher-order
 bits set to 1, followed by a bit set to 0. The remaining bit(s) of
 that octet contain bits from the value of the character to be
 encoded. The following octet(s) all have the higher-order bit set to
 1 and the following bit set to 0, leaving 6 bits in each to contain
 bits from the character to be encoded.

 The table below summarizes the format of these different octet types.
 The letter x indicates bits available for encoding bits of the UCS-4
 character value.

 Expires 14 October 1997 [Page 3]

Internet Draft UTF-8 14 April 1997

 UCS-4 range (hex.) UTF-8 octet sequence (binary)
 0000 0000-0000 007F 0xxxxxxx
 0000 0080-0000 07FF 110xxxxx 10xxxxxx
 0000 0800-0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx

 0001 0000-001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
 0020 0000-03FF FFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
 0400 0000-7FFF FFFF 1111110x 10xxxxxx ... 10xxxxxx

 Encoding from UCS-4 to UTF-8 proceeds as follows:

 1) Determine the number of octets required from the character value
 and the first column of the table above.

 2) Prepare the high-order bits of the octets as per the second column
 of the table.

 3) Fill in the bits marked x from the bits of the character value,
 starting from the lower-order bits of the character value and
 putting them first in the last octet of the sequence, then the
 next to last, etc. until all x bits are filled in.

 The algorithm for encoding UCS-2 (or Unicode) to UTF-8 can be
 obtained from the above, in principle, by simply extending each
 UCS-2 character with two zero-valued octets. However, UCS-2 val-
 ues between D800 and DFFF, being actually UCS-4 characters trans-
 formed through UTF-16, need special treatment: the UTF-16 trans-
 formation must be undone, yielding a UCS-4 character that is then
 transformed as above.

 Decoding from UTF-8 to UCS-4 proceeds as follows:

 1) Initialize the 4 octets of the UCS-4 character with all bits set
 to 0.

 2) Determine which bits encode the character value from the number of
 octets in the sequence and the second column of the table above
 (the bits marked x).

 3) Distribute the bits from the sequence to the UCS-4 character,
 first the lower-order bits from the last octet of the sequence and
 proceeding to the left until no x bits are left.

 If the UTF-8 sequence is no more than three octets long, decoding
 can proceed directly to UCS-2 (or equivalently Unicode).

 A more detailed algorithm and formulae can be found in [FSS_UTF],

 Expires 14 October 1997 [Page 4]

Internet Draft UTF-8 14 April 1997

 [UNICODE] or Annex R to [ISO-10646].

3. Versions of the standards

 Different versions of the Unicode standard exist: 1.0, 1.1 and 2.0 as
 of this writing. Each new version obsoletes and replaces the previ-
 ous one, but implementations, and more significantly data, are not
 updated instantly. Similarly, ISO 10646 is updated from time to time
 by published amendments, which up to now have tracked the changes in
 the Unicode standard, so that the two have remained in sync.

 In general, the changes amount to adding new characters, which does
 not pose particular problems with old data. Amendment 5 to ISO
 10646, however, has moved and expanded the Korean Hangul block,
 thereby making any previous data containing Hangul characters invalid
 under the new version. Unicode 2.0 has the same difference from Uni-
 code 1.1. The official justification for allowing such an incompati-
 ble change was that no implementations and no data containing Hangul
 existed, a statement that is likely to be true but remains unprov-
 able. The incident has been dubbed the "Korean mess", and the rele-
 vant committees have pledged to never, ever again make such an incom-
 patible change.

 New versions, and in particular any incompatible changes, have conse-
 quences regarding MIME character encoding labels, to be discussed in

section 5.

4. Examples

 The UCS-2 sequence "A<NOT IDENTICAL TO><ALPHA>." (0041, 2262, 0391,
 002E) may be encoded as follows:

 41 E2 89 A2 CE 91 2E

 The UCS-2 sequence representing the Hangul characters for the Korean
 word "hangugo" (D55C, AD6D, C5B4) may be encoded as follows:

 ED 95 9C EA B5 AD EC 96 B4

 The UCS-2 sequence representing the Han characters for the Japanese
 word "nihongo" (65E5, 672C, 8A9E) may be encoded as follows:

 E6 97 A5 E6 9C AC E8 AA 9E

 Expires 14 October 1997 [Page 5]

Internet Draft UTF-8 14 April 1997

5. MIME registration

 This memo is meant to serve as the basis for registration of a MIME
 character set parameter (charset) [MIME]. The proposed charset
 parameter value is "UTF-8". This string would label media types con-
 taining text consisting of characters from the repertoire of ISO/IEC
 10646 encoded to a sequence of octets using the encoding scheme out-
 lined above. UTF-8 is suitable for use in MIME content types under
 the "text" top-level type.

 It is noteworthy that the label "UTF-8" does not contain a version
 identification, referring generically to ISO/IEC 10646. This is
 intentional, the rationale being as follows:

 A MIME charset label is designed to give just the information needed
 to interpret a sequence of bytes received on the wire into a sequence
 of characters, nothing more (see RFC 2045, section 2.2, in [MIME]).
 As long as a character set standard does not change incompatibly,
 version numbers serve no purpose, because one gains nothing by learn-
 ing from the tag that newly assigned characters may be received that
 one doesn't know about. The tag doesn't teach anything about the new
 characters, and they are going to be received anyway.

 Hence, as long as the standards evolve compatibly, the apparent
 advantage of having labels that identify the versions is only that,
 apparent. But there is a disadvantage to such version-dependent
 labels: when an older application receives data accompanied by a
 newer, unknown label, it may fail to recognize the label and be com-
 pletely unable to deal with the data, whereas a generic, known label
 would have triggered mostly correct processing of the data, which may
 well not contain any new characters.

 Now the "Korean mess" (ISO 10646 amendment 5) is an incompatible
 change, in principle contradicting the appropriateness of a version-
 independent MIME charset label as described above. But the compati-
 bility problem can only appear with data containing Korean Hangul
 characters encoded according to Unicode 1.1 (or equivalently ISO
 10646 before amendment 5), and there is arguably no such data to
 worry about, this being the very reason the incompatible change was
 deemed acceptable.

 In practice, then, a version-independent label is warranted. Should
 the need ever arise to distinguish data containing Hangul encoded
 according to Unicode 1.1, then a version-dependent label, for that
 version only, should be registered (a suggestion would be "UNI-
 CODE-1-1-UTF-8"), in order to retain the advantages of a version-
 independent label for 2.0 and later versions. Such a version-depen-
 dent label could even be registered before actual need arises, pre-

https://datatracker.ietf.org/doc/html/rfc2045#section-2.2

 Expires 14 October 1997 [Page 6]

Internet Draft UTF-8 14 April 1997

 emptively, but it is important to strongly recommend against creating
 any new Hangul-containing data without taking Amendment 5 of ISO
 10646 into account.

6. Security Considerations

 Security issues are not discussed in this memo.

Acknowledgments

 The following have participated in the drafting and discussion of
 this memo:

 James E. Agenbroad Andries Brouwer
 Martin J. Dürst David Goldsmith
 Edwin F. Hart Kent Karlsson
 Markus Kuhn Michael Kung
 Alain LaBonté Murray Sargent
 Keld Simonsen Arnold Winkler

Bibliography

 [FSS_UTF] X/Open CAE Specification C501 ISBN 1-85912-082-2 28cm.
 22p. pbk. 172g. 4/95, X/Open Company Ltd., "File Sys-
 tem Safe UCS Transformation Format (FSS_UTF)", X/Open
 Preleminary Specification, Document Number P316. Also
 published in Unicode Technical Report #4.

 [ISO-10646] ISO/IEC 10646-1:1993. International Standard -- Infor-
 mation technology -- Universal Multiple-Octet Coded
 Character Set (UCS) -- Part 1: Architecture and Basic
 Multilingual Plane. UTF-8 is described in Annex R,
 published as Amendment 2. UTF-16 is described in
 Annex Q, published as Amendment 1.

 [MIME] N. Freed, N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Mes-
 sage Bodies", RFC 2045. N. Freed, N. Borenstein,
 "Multipurpose Internet Mail Extensions (MIME) Part
 Two: Media Types", RFC 2046. K. Moore, "MIME (Multi-
 purpose Internet Mail Extensions) Part Three: Message
 Header Extensions for Non-ASCII Text", RFC 2047. N.
 Freed, J. Klensin, J. Postel, "Multipurpose Internet
 Mail Extensions (MIME) Part Four: Registration Proce-
 dures", RFC 2048. N. Freed, N. Borenstein, "Multipur-
 pose Internet Mail Extensions (MIME) Part Five: Con-
 formance Criteria and Examples", RFC 2049. All

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc2049

 Expires 14 October 1997 [Page 7]

Internet Draft UTF-8 14 April 1997

 November 1996.

 [RFC1641] D. Goldsmith, M.Davis, "Using Unicode with MIME", RFC
1641, Taligent inc., July 1994.

 [RFC1642] D. Goldsmith, M. Davis, "UTF-7: A Mail-safe Transfor-
 mation Format of Unicode", RFC 1642, Taligent inc.,
 July 1994.

 [UNICODE] The Unicode Consortium, "The Unicode Standard -- Ver-
 sion 2.0", Addison-Wesley, 1996.

 [US-ASCII] Coded Character Set--7-bit American Standard Code for
 Information Interchange, ANSI X3.4-1986.

Author's Address

 François Yergeau
 Alis Technologies
 100, boul. Alexis-Nihon
 Suite 600
 Montréal QC H4M 2P2
 Canada

 Tel: +1 (514) 747-2547
 Fax: +1 (514) 747-2561
 EMail: fyergeau@alis.com

https://datatracker.ietf.org/doc/html/rfc1641
https://datatracker.ietf.org/doc/html/rfc1641
https://datatracker.ietf.org/doc/html/rfc1642

 Expires 14 October 1997 [Page 8]

