
Workgroup: CCAMP Working Group

Internet-Draft:

draft-yg3bp-ccamp-network-inventory-yang-02

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: C. Yu

Huawei Technologies

I. Busi

Huawei Technologies

A. Guo

Futurewei Technologies

S. Belotti

Nokia

J.-F. Bouquier

Vodafone

F. Peruzzini

TIM

O. Gonzalez de Dios

Telefonica

V. Lopez

Nokia

A YANG Data Model for Network Hardware Inventory

Abstract

This document defines a YANG data model for network hardware

inventory data information.

The YANG data model presented in this document is intended to be

used as the basis toward a generic YANG data model for network

hardware inventory data information which can be augmented, when

required, with technology-specific (e.g., optical) inventory data,

to be defined either in a future version of this document or in

another document.

The YANG data model defined in this document conforms to the Network

Management Datastore Architecture (NMDA).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology and Notations

1.2. Requirements Notation

1.3. Tree Diagram

1.4. Prefix in Data Node Names

2. YANG Data Model for Network Hardware Inventory

2.1. YANG Model Overview

2.1.1. Common Design for All Inventory Objects

2.1.2. Reference from RFC8348

2.1.3. Changes with respect to RFC8348

2.1.4. Equipment Room

2.1.5. Rack

2.1.6. Network Element

2.2. Efficiency Issue

2.3. Some Other Considerations

3. Network Hardware Inventory Tree Diagram

4. YANG Model for Network Hardware Inventory

5. Manageability Considerations

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Appendix

A.1. Comparison With Openconfig-platform Data Model

Acknowledgments

Authors' Addresses

1. Introduction

Network hardware inventory management is a key component in

operators' OSS architectures.

¶

¶

¶

https://trustee.ietf.org/license-info

Network inventory is a fundamental functionality in network

management and was specified many years ago. Given the emerging of

data models and their deployment in operator's management and

control systems, the traditional function of inventory management is

also requested to be defined as a data model.

Network inventory management and monitoring is a critical part for

ensuring the network stays healthy, well-planned, and functioning in

the operator's network. Network inventory management allows the

operator to keep track of what physical network devices are staying

in the network including relevant software and hardware versions.

The network inventory management also helps the operator to know

when to acquire new assets and what is needed, or to decommission

old or faulty ones, which can help to improve network performance

and capacity planning.

In [I-D.ietf-teas-actn-poi-applicability] a gap was identified

regarding the lack of a YANG data model that could be used at ACTN

MPI interface level to report whole/partial network hardware

inventory information available at domain controller level towards

north-bound systems (e.g., MDSC or OSS layer).

[RFC8345] initial goal was to make possible the augmentation of the

YANG data model with network inventory data model but this was never

developed and the scope was kept limited to network topology data

only.

It is key for operators to drive the industry towards the use of a

standard YANG data model for network inventory data instead of using

vendors proprietary APIs (e.g., REST API).

In the ACTN architecture, this would bring also clear benefits at

MDSC level for packet over optical integration scenarios since this

would enable the correlation of the inventory information with the

links information reported in the network topology model.

The intention is to define a generic YANG data model that would be

as much as possible technology agnostic (valid for IP, optical and

microwave networks) and that could be augmented, when required, to

include some technology-specific inventory details.

[RFC8348] defines a YANG data model for the management of the

hardware on a single server and therefore it is more applicable to

the domain controller South Bound Interface (SBI) towards the

network elements rather than at the domain controller's northbound.

However, the YANG data model defined in [RFC8348] has been used as a

reference for defining the YANG network hardware inventory data

model presented in this draft.

¶

¶

¶

¶

¶

¶

¶

¶

¶

For optical network hardware inventory, the network inventory YANG

data model should support the use cases (4a and 4b) and requirements

as defined in [ONF_TR-547], in order to guarantee a seamless

integration at MDSC/OSS/orchestration layers.

The proposed YANG data model has been analysed at the present stage

to cover the requirements and use cases for Optical Network Hardware

Inventory.

Being based on [RFC8348], this data model should be a good starting

point toward a generic data model and applicable to any technology.

However, further analysis of requirements and use cases is needed to

extend the applicability of this YANG data model to other types of

networks (IP and microwave) and to identify which aspects are

generic and which aspects are technology-specific for optical

networks.

This document defines one YANG module: ietf-network-inventory.yang

(Section 4).

Note: review in future versions of this document the related

modules, depending on the augmentation relationship.

The YANG data model defined in this document conforms to the Network

Management Datastore Architecture [RFC8342].

1.1. Terminology and Notations

The following terms are defined in [RFC7950] and are not redefined

here:

client

server

augment

data model

data node

The following terms are defined in [RFC6241] and are not redefined

here:

configuration data

state data

The terminology for describing YANG data models is found in

[RFC7950].

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

¶

TBD: Recap the concept of chassis/slot/component/board/... in

[TMF-MTOSI].

Following terms are used for the representation of the hierarchies

in the network hardware inventory.

Network Element:

a device installed on one or several chassis and can afford some

specific transmission function independently.

Rack:

a holder of the device and provides power supply for the device

in it.

Chassis:

a holder of the device installation.

Slot:

a holder of the board.

Component:

holders and equipment of the network element, including chassis,

slot, sub-slot, board and port.

Board/Card:

a pluggable equipment can be inserted into one or several slots/

sub-slots and can afford a specific transmission function

independently.

Port:

an interface on board

1.2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.3. Tree Diagram

A simplified graphical representation of the data model is used in

Section 3 of this document. The meaning of the symbols in this

diagram is defined in [RFC8340].

1.4. Prefix in Data Node Names

In this document, names of data nodes and other data model objects

are prefixed using the standard prefix associated with the

corresponding YANG imported modules, as shown in the following

table.

Prefix Yang Module Reference

ianahw iana-hardware [RFC8348]

ni ietf-network-inventory RFC XXXX

yang ietf-yang-types [RFC6991]

Table 1: Prefixes and corresponding YANG

modules

RFC Editor Note: Please replace XXXX with the RFC number assigned to

this document. Please remove this note.

2. YANG Data Model for Network Hardware Inventory

2.1. YANG Model Overview

Based on TMF classification in [TMF-MTOSI], inventory objects can be

divided into two groups, holder group and equipment group. The

holder group contains rack, chassis, slot, sub-slot while the

equipment group contains network-element, board and port. With the

requirement of GIS and on-demand domain controller selection raised,

the equipment room becomes a new inventory object to be managed

besides TMF classification.

Logically, the relationship between these inventory objects can be

described by Figure 1 below:

¶

¶

¶

¶

¶

Figure 1: Relationship between inventory objects

In [RFC8348], rack, chassis, slot, sub-slot, board and port are

defined as components of network elements with generic attributes.

Considering there are some special scenarios, there is no direct

relationship between the rack and network element. In some cases,

one network element contains multiple racks while in other cases one

rack contains several shelves belonging to one or more network

elements.

While [RFC8348] is used to manage the hardware of a single server

(e.g., a network element), the Network Inventory YANG data model is

used to retrieve the network hardware inventory information that a

 +-------------+

 | inventory |

 +-------------+

 // \\

 1:N // \\ 1:M

 // \\

 +----------------+ +-----------------+

 | equipment room | | network element |

 +----------------+ +-----------------+

 || ||

 || 1:N ||

 \/ ||

 +------------+ ||1:M

 | rack | ||

 +------------+ ||

 || ||

 || 1:N \/

 ||______________\+------------+

 |---------------/| chassis |

 +------------+

 ||

 ______1:N______||_____1:M_______

 ||------------------ ---------||

 \/ \/

 +--------------+ +-----------+

 | slot/subslot | | board |

 +--------------+ +-----------+

 ||

 ||1:N

 \/

 +-----------+

 | port |

 +-----------+

¶

¶

controller discovers from all the network elements under its

control.

However, the YANG data model defined in [RFC8348] has been used as a

reference for defining the YANG network inventory data model. This

approach can simplify the implementation of this network hardware

inventory model when the controller uses the YANG data model defined

in [RFC8348] to retrieve the hardware from the network elements

under its control.

Note: review in future versions of this document whether to re-use

definitions from [RFC8348] or use schema-mount.

2.1.1. Common Design for All Inventory Objects

For all the inventory objects, there are some common attributes

existing. Such as:

Identifier: here we suggest to use uuid format which is widely

implemented with systems. It is guaranteed to be globally unique.

Name: name is a human-readable label information which could be used

to present on GUI. This name is suggested to be provided by server.

Alias: alias is also a human-readable label information which could

be modified by user. It could also be present on GUI instead of

name.

¶

¶

¶

 +--ro network-inventory

 +--ro equipment-rooms

 | +--ro equipment-room* [uuid]

 | +--ro uuid yang:uuid

 |

 | +--ro racks

 | +--ro rack* [uuid]

 | +--ro uuid yang:uuid

 |

 | +--ro contained-chassis* [ne-ref component-ref]

 | +--ro ne-ref? leafref

 | +--ro component-ref? leafref

 +--ro network-elements

 +--ro network-element* [uuid]

 +--ro uuid yang:uuid

 +--ro components

 +--ro component* [uuid]

 +--ro uuid yang:uuid

¶

¶

¶

¶

¶

Description: description is a human-readable information which could

be also input by user. Description provides more detailed

information to prompt users when performing maintenance operations.

Location: location is a common management requirement of operators.

This location could be an absolute position (e.g. mailing address),

or a relative position (e.g. port index). Different types of

inventory objects may require different types of position.

¶

¶

module: ietf-network-inventory

 +--ro network-inventory

 +--ro equipment-rooms

 | +--ro equipment-room* [uuid]

 | +--ro uuid yang:uuid

 | +--ro name? string

 | +--ro description? string

 | +--ro alias? string

 | +--ro location? string

 |

 | +--ro racks

 | +--ro rack* [uuid]

 | +--ro uuid yang:uuid

 | +--ro name? string

 | +--ro description? string

 | +--ro alias? string

 | +--ro rack-location

 | | +--ro equipment-room-name? leafref

 | | +--ro row-number? uint32

 | | +--ro column-number? uint32

 |

 +--ro network-elements

 +--ro network-element* [uuid]

 +--ro uuid yang:uuid

 +--ro name? string

 +--ro description? string

 +--ro alias? string

 +--ro ne-location

 | +--ro equipment-room-name* leafref

 +--ro components

 +--ro component* [uuid]

 +--ro uuid yang:uuid

 +--ro name? string

 +--ro description? string

 +--ro alias? string

 +--ro location string

¶

2.1.2. Reference from RFC8348

The YANG data model for network hardware inventory mainly follows

the same approach of [RFC8348] and reports the network hardware

inventory as a list of components with different types (e.g.,

chassis, module, port).

For state data like admin-state, oper-state and so on, we consider

they are related to device hardware management and not hardware

inventory. Therefore, they are outside of scope of this document.

Same for the sensor-data, they should be defined in some other

performance monitoring data models instead of inventory data model.

We re-defined some attributes listed in [RFC8348], based on some

integration experience for network wide inventory data.

2.1.3. Changes with respect to RFC8348

2.1.3.1. New Parent Identifiers' Reference

[RFC8348] provided a "parent-ref" attribute, which was an identifier

reference to its parent component. When the MDSC or OSS systems want

to find this component's grandparent or higher level component in

the hierarchy, they need to retrieve this parent-ref step by step.

To reduce this iterative work, we decided to provide a list of

hierarchical parent components' identifier references.

¶

 +--ro components

 +--ro component* [uuid]

 +--ro uuid yang:uuid

 +--ro name? string

 +--ro description? string

 +--ro class? identityref

 +--ro contained-child* -> ../uuid

 +--ro hardware-rev? string

 +--ro firmware-rev? string

 +--ro software-rev? string

 +--ro serial-num? string

 +--ro mfg-name? string

 +--ro asset-id? string

 +--ro is-fru? boolean

 +--ro mfg-date? yang:date-and-time

 +--ro uri* inet:uri

¶

¶

¶

¶

The hierarchical components' identifier could be found by the

"component-reference" list. The "index" attribute is used to order

the list by the hierarchical relationship from topmost component

(with the "index" set to 0) to bottom component.

2.1.3.2. Component-Specific Info Design

According to the management requirements from operators, some

important attributes are not defined in [RFC8348]. These attributes

could be component-specific and are not suitable to define under the

component list node. So, we defined a choice-case structure for this

component-specific extension, as follows:

Note: The detail of each *-specific-info YANG container is still

under discussion, and the leaf attributes will be defined in future.

2.1.3.3. Part Number

According to the description in [RFC8348], the attribute named

"model-name" under the component, is preferred to have a customer-

 +--ro components

 +--ro component* [uuid]

 +--ro parent-references

 | +--ro equipment-room-uuid? leafref

 | +--ro ne-uuid? leafref

 | +--ro rack-uuid? leafref

 | +--ro component-references

 | +--ro component-reference* [index]

 | +--ro index uint8

 | +--ro class? leafref

 | +--ro uuid? leafref

¶

¶

¶

 +--ro components

 +--ro component* [uuid]

 +--ro (component-class)?

 +--:(chassis)

 | +--ro chassis-specific-info

 +--:(container)

 | +--ro slot-specific-info

 +--:(module)

 | +--ro board-specific-info

 +--:(port)

 +--ro port-specific-info

¶

¶

visible part number value. "Model-name" is not straightforward to

understand and we suggest to rename it as "part-number" directly.

2.1.4. Equipment Room

Note: add some more attributes about equipment room in the future.

2.1.5. Rack

Besides the common attributes mentioned in above section, rack could

have some specific attributes, such as appearance-related attributes

and electricity-related attributes. The height, depth and width are

described by the figure below (please consider that the door of the

rack is facing the user):

¶

 +--ro components

 +--ro component* [uuid]

 +--ro part-number? string

¶

¶

¶

Figure 2: height, width and depth of rack

The rack attributes include:

Max-voltage: the maximum voltage supported by the rack.

 ---------------- ---

 /| /| |

 / | / | |

 / | / | |

 ----|-----------| | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | height

 | | | | |

 | | | | |

 | | | | |

 | | Door Q | | |

 | | Q | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | | | | |

 | /-----------|---- ---

 | / | / /

 | / | / depth

 |/ | / /

 ----------------- ---

 |______width____|

 | |

¶

 +--ro racks

 +--ro rack* [uuid]

 +--ro height? uint16

 +--ro width? uint16

 +--ro depth? uint16

 +--ro max-voltage? uint16

¶

¶

2.1.6. Network Element

We consider that some of the attributes defined in [RFC8348] for

components are also applicable for network element. These attributes

include:

Note: Not all the attributes defined in [RFC8348] are applicable for

network element. And there could also be some missing attributes

which are not recognized by [RFC8348]. More extensions could be

introduced in later revisions after the missing attributes are fully

discussed.

2.2. Efficiency Issue

During the integration with OSS in some operators, some efficiency/

scalability concerns have been discovered when synchronizing network

inventory data for big networks. More discussions are needed to

address these concerns.

Considering that relational databases are widely used by traditional

OSS systems and also by some network controllers, the inventory

objects are most likely to be saved in different tables. With the

model defined in current draft, when doing a full synchronization,

network controller needs to convert all inventory objects of each NE

into component objects and combine them together into a single list,

and then construct a response and send to OSS or MDSC. The OSS or

MDSC needs to classify the component list and divide them into

different groups, in order to save them in different tables. The

combining-regrouping steps are impacting the network controller &

OSS/MDSC processing, which may result in efficiency/scalability

limitations in large scale networks.

An alternative YANG model structure, which defines the inventory

objects directly, instead of defining generic components, has also

been analyzed. However, also with this model, there still could be

some scalability limitations when synchronizing full inventory

¶

 +--ro network-elements

 +--ro network-element* [uuid]

 +--ro hardware-rev? string

 +--ro firmware-rev? string

 +--ro software-rev? string

 +--ro mfg-name? string

 +--ro mfg-date? yang:date-and-time

 +--ro part-number? string

 +--ro serial-number? string

 +--ro product-name? string

¶

¶

¶

¶

resources in large scale of networks. This scalability limitation is

caused by the limited transmission capabilities of HTTP protocol. We

think that this scalability limitation should be solved at protocol

level rather than data model level.

The model proposed by this draft is designed to be as generic as

possible so to cover future special types of inventory objects that

could be used in other technologies, that have not been identified

yet. If the inventory objects were to be defined directly with fixed

hierarchical relationships in YANG model, this new type of inventory

objects needs to be manually defined, which is not a backward

compatible change and therefore is not an acceptable approach for

implementation. With a generic model, it is only needed to augment a

new component class and extend some specific attributes for this new

inventory component class, which is more flexible. We consider that

this generic data model, enabling a flexible and backward compatible

approach for other technologies, represents the main scope of this

draft. Solution description to efficiency/scalability limitations

mentioned above is considered as out-of-scope.

2.3. Some Other Considerations

Note: review in future versions of this document whether the

component list should be under the network-inventory instead of the

network-element container.

Note that in [RFC8345], topology and inventory are two subsets of

network information. However, considering the complexity of the

existing topology models and having a better extension capability,

we define a separate root for the inventory model. We will consider

some other ways to do some associations between the topology model

and inventory model in the future.

Note: review in future versions of this document whether network

hardware inventory should be defined as an augmentation of the

network model defined in [RFC8345] instead of under a new network-

inventory root.

The proposed YANG data model has been analysed so far to cover the

requirements and use cases for Optical Network Inventory.

Further analysis of requirements and use cases is needed to extend

the applicability of this YANG data model to other types of networks

(IP and microwave) and to identify which aspects are generic and

which aspects are technology-specific for optical.

3. Network Hardware Inventory Tree Diagram

Figure 3 below shows the tree diagram of the YANG data model defined

in module ietf-network-inventory.yang (Section 4).

¶

¶

¶

¶

¶

¶

¶

¶

module: ietf-network-inventory

 +--ro network-inventory

 +--ro equipment-rooms

 | +--ro equipment-room* [uuid]

 | +--ro uuid yang:uuid

 | +--ro name? string

 | +--ro description? string

 | +--ro alias? string

 | +--ro location? string

 | +--ro racks

 | +--ro rack* [uuid]

 | +--ro uuid yang:uuid

 | +--ro name? string

 | +--ro description? string

 | +--ro alias? string

 | +--ro rack-location

 | | +--ro equipment-room-name? leafref

 | | +--ro row-number? uint32

 | | +--ro column-number? uint32

 | +--ro rack-number? uint32

 | +--ro height? uint16

 | +--ro width? uint16

 | +--ro depth? uint16

 | +--ro max-voltage? uint16

 | +--ro contained-chassis* [ne-ref component-ref]

 | +--ro ne-ref leafref

 | +--ro component-ref leafref

 +--ro network-elements

 +--ro network-element* [uuid]

 +--ro uuid yang:uuid

 +--ro name? string

 +--ro description? string

 +--ro alias? string

 +--ro ne-location

 | +--ro equipment-room-name* leafref

 +--ro hardware-rev? string

 +--ro firmware-rev? string

 +--ro software-rev? string

 +--ro mfg-name? string

 +--ro mfg-date? yang:date-and-time

 +--ro part-number? string

 +--ro serial-number? string

 +--ro product-name? string

 +--ro components

 +--ro component* [uuid]

 +--ro uuid yang:uuid

 +--ro name? string

 +--ro description? string

 +--ro alias? string

 +--ro location? string

 +--ro class? identityref

 +--ro contained-child* -> ../uuid

 +--ro parent-rel-pos? int32

 +--ro parent-references

 | +--ro equipment-room-uuid? leafref

 | +--ro ne-uuid? leafref

 | +--ro rack-uuid? leafref

 | +--ro component-references

 | +--ro component-reference* [index]

 | +--ro index uint8

 | +--ro class? -> ../../../../class

 | +--ro uuid? -> ../../../../uuid

 +--ro hardware-rev? string

 +--ro firmware-rev? string

 +--ro software-rev? string

 +--ro serial-num? string

 +--ro mfg-name? string

 +--ro part-number? string

 +--ro asset-id? string

 +--ro is-fru? boolean

 +--ro mfg-date?

 | yang:date-and-time

 +--ro uri* inet:uri

 +--ro (component-class)?

 +--:(chassis)

 | +--ro chassis-specific-info

 +--:(container)

 | +--ro slot-specific-info

 +--:(module)

 | +--ro board-specific-info

 +--:(port)

 +--ro port-specific-info

Figure 3: Network inventory tree diagram

4. YANG Model for Network Hardware Inventory

<CODE BEGINS> file "ietf-network-inventory@2022-07-11.yang"

module ietf-network-inventory {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-network-inventory";

 prefix ni;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC6991: Common YANG Data Types.";

 }

 import iana-hardware {

 prefix ianahw;

 reference

 "RFC 8348: A YANG Data Model for Hardware Management.";

 }

 import ietf-inet-types {

 prefix inet;

 }

 organization

 "IETF CCAMP Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/ccamp/>

 WG List: <mailto:ccamp@ietf.org>

 Editor: Chaode Yu

 <yuchaode@huawei.com>

 Editor: Italo Busi

 <italo.busi@huawei.com>

 Editor: Aihua Guo

 <aihuaguo.ietf@gmail.com>

 Editor: Sergio Belotti

 <sergio.belotti@nokia.com>

 Editor: Jean-Francois Bouquier

 <jeff.bouquier@vodafone.com>

 Editor: Fabio Peruzzini

 <fabio.peruzzini@telecomitalia.it>";

 description

 "This module defines a model for retrieving network inventory.

 The model fully conforms to the Network Management

 Datastore Architecture (NMDA).

 Copyright (c) 2022 IETF Trust and the persons

 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this

 // note.

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 revision 2022-07-11 {

 description

 "version 3.0.0";

 reference

 "draft-yg3bp-ccamp-inventory-yang-01: A YANG Data

 Model for Network Inventory.";

 }

 revision 2022-03-04 {

 description

 "version 3.0.0";

 reference

 "draft-yg3bp-ccamp-inventory-yang-00: A YANG Data

 Model for Network Inventory.";

 }

 revision 2021-11-09 {

 description

 "version 2.0.0";

 reference

 "draft-yg3bp-ccamp-optical-inventory-yang-00: A YANG Data

 Model for Optical Network Inventory.";

 }

 revision 2021-10-25 {

 description

 "Initial revision.";

 reference

 "draft-yg3bp-ccamp-optical-inventory-yang-00: A YANG Data

 Model for Optical Network Inventory.";

 }

 container network-inventory {

 config false;

 description

 "The top-level container for the network inventory

 information.";

 uses equipment-rooms-grouping;

 uses network-elements-grouping;

 }

 grouping common-entity-attributes {

 description

 "A set of attributes which are common to all the entities

 (e.g., component, equipment room) defined in this module.";

 leaf uuid {

 type yang:uuid;

 description

 "Uniquely identifies an entity (e.g., component).";

 }

 leaf name {

 type string;

 description

 "A name for an entity (e.g., component), as specified by

 a network manager, that provides a non-volatile 'handle'

 for the entity and that can be modified anytime during the

 entity lifetime.

 If no configured value exists, the server MAY set the value

 of this node to a locally unique value in the operational

 state.";

 }

 leaf description {

 type string;

 description "a textual description of inventory object";

 }

 leaf alias {

 type string;

 description

 "a alias name of inventory objects. This alias name can be

 specified by network manager.";

 }

 }

 grouping network-elements-grouping {

 description

 "The attributes of the network elements.";

 container network-elements {

 description

 "The container for the list of network elements.";

 list network-element {

 key uuid;

 description

 "The list of network elements within the network.";

 uses common-entity-attributes;

 container ne-location {

 description

 "To be added.";

 leaf-list equipment-room-name {

 type leafref {

 path "/ni:network-inventory/ni:equipment-rooms/" +

 "ni:equipment-room/ni:name";

 }

 description

 "Names of equipment rooms where the NE is located.

 Please note that a NE could be located in several

 equipment rooms.";

 }

 }

 uses ne-specific-info-grouping;

 uses components-grouping;

 }

 }

 }

 grouping ne-specific-info-grouping {

 description

 "To be added.";

 leaf hardware-rev {

 type string;

 description

 "The vendor-specific hardware revision string for the NE.";

 }

 leaf firmware-rev {

 type string;

 description

 "The vendor-specific firmware revision string for the NE.";

 }

 leaf software-rev {

 type string;

 description

 "The vendor-specific software revision string for the NE.";

 }

 leaf mfg-name {

 type string;

 description "The name of the manufacturer of this NE";

 }

 leaf mfg-date {

 type yang:date-and-time;

 description "The date of manufacturing of the NE.";

 }

 leaf part-number {

 type string;

 description

 "The vendor-specific model name identifier string associated

 with this NE. The preferred value is the customer-visible

 part number, which may be printed on the NE itself.";

 }

 leaf serial-number {

 type string;

 description

 "The vendor-specific serial number string for the NE";

 }

 leaf product-name {

 type string;

 description

 "indicates the vendor-spefic device type infomation.";

 }

 }

 grouping equipment-rooms-grouping {

 description

 "The attributes of the equipment rooms.";

 container equipment-rooms {

 description

 "The container for the list of equipment rooms.";

 list equipment-room {

 key uuid;

 description

 "The list of equipment rooms within the network.";

 uses common-entity-attributes;

 leaf location {

 type string;

 description

 "compared with the location information of the other

 inventory objects, a GIS address is preferred for

 equipment room";

 }

 container racks {

 description

 "To be added.";

 list rack {

 key uuid;

 description

 "The list of racks within an equipment room.";

 uses common-entity-attributes;

 uses rack-specific-info-grouping;

 list contained-chassis {

 key "ne-ref component-ref";

 description

 "The list of chassis within a rack.";

 leaf ne-ref {

 type leafref {

 path "/ni:network-inventory/ni:network-elements"

 + "/ni:network-element/ni:uuid";

 }

 description

 "The reference to the network element containing

 the chassis component.";

 }

 leaf component-ref {

 type leafref {

 path "/ni:network-inventory/ni:network-elements"

 + "/ni:network-element[ni:uuid"

 + "=current()/../ne-ref]/ni:components"

 + "/ni:component/ni:uuid";

 }

 description

 "The reference to the chassis component within

 the network element and contained by the rack.";

 }

 }

 }

 }

 }

 }

 }

 grouping rack-specific-info-grouping {

 description

 "To be added.";

 container rack-location {

 description

 "To be added.";

 leaf equipment-room-name {

 type leafref {

 path "/ni:network-inventory/ni:equipment-rooms"

 + "/ni:equipment-room/ni:name";

 }

 description

 "Name of equipment room where this rack is located.";

 }

 leaf row-number {

 type uint32;

 description

 "Identifies the row within the equipment room where

 the rack is located.";

 }

 leaf column-number {

 type uint32;

 description

 "Identifies the physical location of the rack within

 the column.";

 }

 }

 leaf rack-number {

 type uint32;

 description

 "An integer identifier of rack.";

 }

 leaf height {

 type uint16;

 units millimeter;

 description

 "To be added.";

 }

 leaf width {

 type uint16;

 units millimeter;

 description

 "To be added.";

 }

 leaf depth {

 type uint16;

 units millimeter;

 description

 "To be added.";

 }

 leaf max-voltage {

 type uint16;

 units volt;

 description

 "The maximum voltage could be supported by the rack.";

 }

 }

 grouping components-grouping {

 description

 "The attributes of the hardware components.";

 container components {

 description

 "The container for the list of components.";

 list component {

 key uuid;

 description

 "The list of components within a network element.";

 uses common-entity-attributes;

 leaf location {

 type string;

 description

 "To be added.

 In optical transport network, the location string is

 using the following pattern:

 '/ne=<nw-ne-name>[/r=<r_index>][/sh=<sh_index>

 [/s_sh=<s_sh_index> ...]][[/sl=<sl_index>

 [/s_sl=<s_sl_index> ...]][/p=<p_index> …]]'

 ";

 }

 leaf class {

 type identityref {

 base ianahw:hardware-class;

 }

 description

 "An indication of the general hardware type of the

 component.";

 reference

 "RFC 8348: A YANG Data Model for Hardware Management.";

 }

 leaf-list contained-child {

 type leafref {

 path "../ni:uuid";

 }

 description

 "The child components' identifier that are physically

 contained by this component.";

 }

 leaf parent-rel-pos {

 type int32 {

 range "0 .. 2147483647";

 }

 description

 "To be added.";

 reference

 "RFC 6933: Entity MIB (Version 4) -

 entPhysicalParentRelPos";

 }

 container parent-references {

 description

 "To be added.";

 leaf equipment-room-uuid {

 type leafref {

 path "/ni:network-inventory/ni:equipment-rooms/" +

 "ni:equipment-room/ni:uuid";

 }

 description

 "To be added.";

 }

 leaf ne-uuid {

 type leafref {

 path "/ni:network-inventory/ni:network-elements/" +

 "ni:network-element/ni:uuid";

 }

 description

 "To be added.";

 }

 leaf rack-uuid {

 type leafref {

 path "/ni:network-inventory/ni:equipment-rooms/" +

 "ni:equipment-room/ni:racks/ni:rack/ni:uuid";

 }

 description

 "To be added.";

 }

 container component-references {

 description

 "To be added.";

 list component-reference {

 key index;

 description

 "this list object is used to indicate its

 hierarchial parent components' identifier.

 This hierarchial relation can be found by index

 parameter. The topest parent component should be

 0-index.";

 leaf index {

 type uint8;

 description

 "To be added.";

 }

 leaf class {

 type leafref {

 path "../../../../ni:class";

 }

 description

 "To be added.";

 }

 leaf uuid {

 type leafref {

 path "../../../../ni:uuid";

 }

 description

 "To be added.";

 }

 }

 }

 }

 leaf hardware-rev {

 type string;

 description

 "The vendor-specific hardware revision string for the

 component. The preferred value is the hardware revision

 identifier actually printed on the component itself (if

 present).";

 reference

 "RFC 6933: Entity MIB (Version 4) -

 entPhysicalHardwareRev";

 }

 leaf firmware-rev {

 type string;

 description

 "The vendor-specific firmware revision string for the

 component.";

 reference

 "RFC 6933: Entity MIB (Version 4) -

 entPhysicalFirmwareRev";

 }

 leaf software-rev {

 type string;

 description

 "The vendor-specific software revision string for the

 component.";

 reference

 "RFC 6933: Entity MIB (Version 4) -

 entPhysicalSoftwareRev";

 }

 leaf serial-num {

 type string;

 description

 "The vendor-specific serial number string for the

 component. The preferred value is the serial number

 string actually printed on the component itself (if

 present).";

 reference

 "RFC 6933: Entity MIB (Version 4) -

 entPhysicalSerialNum";

 }

 leaf mfg-name {

 type string;

 description

 "The name of the manufacturer of this physical component.

 The preferred value is the manufacturer name string

 actually printed on the component itself (if present).

 Note that comparisons between instances of the

 'model-name', 'firmware-rev', 'software-rev', and

 'serial-num' nodes are only meaningful amongst

 components with the same value of 'mfg-name'.

 If the manufacturer name string associated with the

 physical component is unknown to the server, then this

 node is not instantiated.";

 reference

 "RFC 6933: Entity MIB (Version 4) - entPhysicalMfgName";

 }

 leaf part-number {

 type string;

 description

 "The vendor-specific model name identifier string

 associated with this physical component. The preferred

 value is the customer-visible part number, which may be

 printed on the component itself.

 If the model name string associated with the physical

 component is unknown to the server, then this node is

 not instantiated.";

 reference

 "RFC 6933: Entity MIB (Version 4) -

 entPhysicalModelName";

 }

 leaf asset-id {

 type string;

 description

 "This node is a user-assigned asset tracking identifier

 for the component.

 A server implementation MAY map this leaf to the

 entPhysicalAssetID MIB object. Such an implementation

 needs to use some mechanism to handle the differences in

 size and characters allowed between this leaf and

 entPhysicalAssetID. The definition of such a mechanism

 is outside the scope of this document.";

 reference

 "RFC 6933: Entity MIB (Version 4) - entPhysicalAssetID";

 }

 leaf is-fru {

 type boolean;

 description

 "This node indicates whether or not this component is

 considered a 'field-replaceable unit' by the vendor. If

 this node contains the value 'true', then this component

 identifies a field-replaceable unit. For all components

 that are permanently contained within a

 field-replaceable unit, the value 'false' should be

 returned for this node.";

 reference

 "RFC 6933: Entity MIB (Version 4) - entPhysicalIsFRU";

 }

 leaf mfg-date {

 type yang:date-and-time;

 description

 "The date of manufacturing of the managed component.";

 reference

 "RFC 6933: Entity MIB (Version 4) - entPhysicalMfgDate";

 }

 leaf-list uri {

 type inet:uri;

 description

 "This node contains identification information about the

 component.";

 reference

 "RFC 6933: Entity MIB (Version 4) - entPhysicalUris";

 }

 uses component-specific-info-grouping;

 }

 }

 }

 grouping component-specific-info-grouping {

 description

 "In case if there are some missing attributes of component not

 defined by RFC8348. These attributes could be

 component-specific.

 Here we provide a extension structure for all the components

 we recognized. We will enrich these component specifc

 containers in the future.";

 choice component-class {

 description

 "To be added.";

 case chassis {

 when "./class = 'ianahw:chassis'";

 container chassis-specific-info {

 description

 "This container contains some attributes belong to

 chassis only.";

 uses chassis-specific-info-grouping;

 }

 }

 case container {

 when "./class = 'ianahw:container'";

 container slot-specific-info {

 description

 "This container contains some attributes belong to

 slot or sub-slot only.";

 uses slot-specific-info-grouping;

 }

 }

 case module {

 when "./ni:class = 'ianahw:module'";

 container board-specific-info {

 description

 "This container contains some attributes belong to

 board only.";

 uses board-specific-info-grouping;

 }

 }

 case port {

 when "./ni:class = 'ianahw:port'";

 container port-specific-info {

 description

 "This container contains some attributes belong to

 port only.";

 uses port-specific-info-grouping;

 }

 }

 //TO BE ADDED: transceiver

 }

 }

 grouping chassis-specific-info-grouping {

 //To be enriched in the future.

 description

 "To be added.";

 }

 grouping slot-specific-info-grouping {

 //To be enriched in the future.

 description

 "To be added.";

 }

 grouping board-specific-info-grouping {

[RFC2119]

[RFC6241]

[RFC6991]

[RFC7950]

 //To be enriched in the future.

 description

 "To be added.";

 }

 grouping port-specific-info-grouping {

 //To be enriched in the future.

 description

 "To be added.";

 }

}

<CODE ENDS>

Figure 4: Network inventory YANG module

5. Manageability Considerations

<Add any manageability considerations>

6. Security Considerations

<Add any security considerations>

7. IANA Considerations

<Add any IANA considerations>

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7950

[RFC8174]

[RFC8340]

[RFC8342]

[RFC8348]

[TMF-MTOSI]

[I-D.ietf-teas-actn-poi-applicability]

[ONF_TR-547]

[RFC8345]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu,

"A YANG Data Model for Hardware Management", RFC 8348,

DOI 10.17487/RFC8348, March 2018, <https://www.rfc-

editor.org/info/rfc8348>.

TM Forum (TMF), "TMF MTOSI 4.0 Equipment Model", TMF

SD2-20_EquipmentModel , 2008, <https://www.tmforum.org/

resources/suite/mtosi-4-0/>.

8.2. Informative References

Peruzzini, F., Bouquier, J., Busi, I., King, D., and D.

Ceccarelli, "Applicability of Abstraction and Control of

Traffic Engineered Networks (ACTN) to Packet Optical

Integration (POI)", Work in Progress, Internet-Draft,

draft-ietf-teas-actn-poi-applicability-07, 10 July 2022,

<https://www.ietf.org/archive/id/draft-ietf-teas-actn-

poi-applicability-07.txt>.

Open Networking Foundation (ONF), "TAPI v2.1.3

Reference Implementation Agreement", ONF TR-547 TAPI RIA

v1.0 , July 2020, <https://opennetworking.org/wp-content/

uploads/2020/08/TR-547-TAPI-v2.1.3-Reference-

Implementation-Agreement-1.pdf>.

Clemm, A., Medved, J., Varga, R., Bahadur, N.,

Ananthakrishnan, H., and X. Liu, "A YANG Data Model for

Network Topologies", RFC 8345, DOI 10.17487/RFC8345,

March 2018, <https://www.rfc-editor.org/info/rfc8345>.

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8348
https://www.rfc-editor.org/info/rfc8348
https://www.tmforum.org/resources/suite/mtosi-4-0/
https://www.tmforum.org/resources/suite/mtosi-4-0/
https://www.ietf.org/archive/id/draft-ietf-teas-actn-poi-applicability-07.txt
https://www.ietf.org/archive/id/draft-ietf-teas-actn-poi-applicability-07.txt
https://opennetworking.org/wp-content/uploads/2020/08/TR-547-TAPI-v2.1.3-Reference-Implementation-Agreement-1.pdf
https://opennetworking.org/wp-content/uploads/2020/08/TR-547-TAPI-v2.1.3-Reference-Implementation-Agreement-1.pdf
https://opennetworking.org/wp-content/uploads/2020/08/TR-547-TAPI-v2.1.3-Reference-Implementation-Agreement-1.pdf
https://www.rfc-editor.org/info/rfc8345

Appendix A. Appendix

A.1. Comparison With Openconfig-platform Data Model

Since more and more devices can be managed by domain controller

through OpenConfig, to avoid that our inventory data model cannot

cover these devices' inventory data, we have compared our inventory

data model with the openconfig-platform.yang which is the data model

used to manage inventory information in OpenConfig.

Openconfig-platform data model is NE-level and uses a generic

component concept to describe its inner devices and containers,

which is similar to ietf-hardware model in [RFC8348]. Since we have

also reused the component concept of [RFC8348] in our inventory data

model, we can compare the component's attributes between openconfig-

platform and our model directly , which is stated below:

Attributes in

oc-platform

Attributes in

our model
remark

name name

type class

id uuid

location location

description description

mfg-name mfg-name

mfg-date mfg-date

hardware-version hardware-rev

firmware-version firmware-rev

software-version software-rev

serial-no serial-num

part-no part-number

clei-code TBD

removable is-fru

oper-status state data

empty
contained-

child?

If there is no contained child, it

is empty.

parent
parent-

references

redundant-role TBD

last-switchover-

reason
state data

last-switchover-

time
state data

last-reboot-

reason
state data

last-reboot-time state data

switchover-ready state data

¶

¶

Attributes in

oc-platform

Attributes in

our model
remark

temperature performance data

memory performance data

allocated-power TBD

used-power TBD

pcie alarm data

properties TBD

subcomponents
contained-

child

chassis
chassis-

specific-info

port
port-specific-

info

power-supply TBD

fan

Fan is considered as a specific

board. And no need to define as a

single component

fabric TBD

storage

For Optical and IP technology, no

need to manage storage on network

element

cpu

For Optical and IP technology, no

need to manage CPU on network

element

integrated-

circuit

board-

specific-info

backplane

Backplane is considered as a part

of board. And no need to define as

a single component

software-module TBD

controller-card

Controller card is considered as a

specific functional board. And no

need to define as a single

component

Table 2: Comparison between openconfig-platform and inventory data

model

As it mentioned in Section 2.1.2 that state data and performance

data are out of scope of our data model, it is same for alarm data

and it should be defined in some other alarm data models separately.

And for some component specific structures in openconfig-platform,

we consider some of them can be contained by our existing structure,

such as fan, backplane, and controller-card. And for some of them,

there is no need to manage for operators, such as storage and cpu.

Mostly, our inventory data model can cover the attributes from

OpenConfig.

¶

¶

Acknowledgments

The authors of this document would like to thank the authors of

[I-D.ietf-teas-actn-poi-applicability] for having identified the gap

and requirements to trigger this work.

This document was prepared using kramdown.

Authors' Addresses

Chaode Yu

Huawei Technologies

Email: yuchaode@huawei.com

Italo Busi

Huawei Technologies

Email: italo.busi@huawei.com

Aihua Guo

Futurewei Technologies

Email: aihuaguo.ietf@gmail.com

Sergio Belotti

Nokia

Email: sergio.belotti@nokia.com

Jean-Francois Bouquier

Vodafone

Email: jeff.bouquier@vodafone.com

Fabio Peruzzini

TIM

Email: fabio.peruzzini@telecomitalia.it

Oscar Gonzalez de Dios

Telefonica

Email: oscar.gonzalezdedios@telefonica.com

Victor Lopez

Nokia

Email: victor.lopez@nokia.com

¶

¶

mailto:yuchaode@huawei.com
mailto:italo.busi@huawei.com
mailto:aihuaguo.ietf@gmail.com
mailto:sergio.belotti@nokia.com
mailto:jeff.bouquier@vodafone.com
mailto:fabio.peruzzini@telecomitalia.it
mailto:oscar.gonzalezdedios@telefonica.com
mailto:victor.lopez@nokia.com

	A YANG Data Model for Network Hardware Inventory
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology and Notations
	1.2. Requirements Notation
	1.3. Tree Diagram
	1.4. Prefix in Data Node Names

	2. YANG Data Model for Network Hardware Inventory
	2.1. YANG Model Overview
	2.1.1. Common Design for All Inventory Objects
	2.1.2. Reference from RFC8348
	2.1.3. Changes with respect to RFC8348
	2.1.3.1. New Parent Identifiers' Reference
	2.1.3.2. Component-Specific Info Design
	2.1.3.3. Part Number

	2.1.4. Equipment Room
	2.1.5. Rack
	2.1.6. Network Element

	2.2. Efficiency Issue
	2.3. Some Other Considerations

	3. Network Hardware Inventory Tree Diagram
	4. YANG Model for Network Hardware Inventory
	5. Manageability Considerations
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Appendix
	A.1. Comparison With Openconfig-platform Data Model

	Acknowledgments
	Authors' Addresses

