
TBD Y. Yiakoumis
Internet-Draft Selfie Networks, Inc
Intended status: Standards Track N. McKeown
Expires: December 17, 2020 Stanford University
 F. Sorensen
 Norwegian Communications Authority
 June 15, 2020

Network Tokens
draft-yiakoumis-network-tokens-01

Abstract

 Network tokens is a method for endpoints to explicitly and securely
 coordinate with networks about how their traffic is treated. They
 are inserted by endpoints in existing protocols, interpreted by
 trusted networks, and may be signed or encrypted to meet security and
 privacy requirements. Network tokens provide a means for network
 operators to expose datapath services (such as a zero-rating service,
 a user-driven QoS service, or a firewall whitelist), and for end
 users and application providers to access such services. Network
 tokens are inspired and derived by existing security tokens (like JWT
 and CWT), and borrow several of their core ideas along with security
 and privacy properties.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 17, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Yiakoumis, et al. Expires December 17, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft networktokens June 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Network Token Overview 3

2. Motivation . 4
2.1. Use cases Overview 5
2.1.1. Zero Rating . 5
2.1.2. Firewall Whitelist 6
2.1.3. QoS . 7

2.2. Existing mechanisms 8
2.2.1. DiffServ . 8
2.2.2. Deep Packet Inspection 8

2.3. Requirements and Challenges 9
2.3.1. Integration overhead 9
2.3.2. Detection Accuracy 10
2.3.3. Fraud Prevention 11
2.3.4. Implementing user-centric control 11
2.3.5. Privacy . 12

3. Representation . 12
4. Contents . 13
4.1. Network Token Common fields 13
4.1.1. 'iss' (Issuer) field 13
4.1.2. "sub" (Subject) field 13
4.1.3. "exp" (Expiration Time) field 13
4.1.4. "iat" (Issued At) field 14
4.1.5. "nti" field (Network Token ID) field 14
4.1.6. "bip" field (Bound IP) field 14

5. Network Token Format . 14
6. Example Network Tokens 15
6.1. Application Token . 15
6.2. User-centric Token 16

7. Network Tokens and Encapsulating protocols 17
7.1. Network Tokens as a TLS Extension 18
7.2. Network Tokens as a STUN Attribute 20
7.3. Network Tokens as an IPv6 Hop-by-Hop Extension Header . . 21

8. Implementation Considerations 22
8.1. Contents . 23
8.2. Encapsulating protocol 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Yiakoumis, et al. Expires December 17, 2020 [Page 2]

Internet-Draft networktokens June 2020

8.3. Network Token granularity 24
8.3.1. Per-packet granularity 24
8.3.2. Per-flow granularity 24

8.4. Token to DiffServ mapping and reflection 25
9. Security Considerations 25
10. IANA Considerations { #iana } 26
10.1. Token Descriptor ID Registry 26
10.1.1. Initial Registry Contents 26

10.2. IPv6 Hop-By-Hop options registration 26
10.3. TLS ExtensionType Registry 27
10.4. STUN Attributes Registry 27

11. References . 27
11.1. Normative References 27
11.2. Informative References 28

 Authors' Addresses . 28

1. Introduction

 This specification motivates and describes network tokens, a method
 for endpoints to explicitly coordinate with networks about how their
 traffic is treated. They provide a means for networks to expose
 datapath services, and for end users to access such services by
 appropriately tagging their traffic. Network tokens are intended for
 scenarios where there is explicit coordination and trust between
 endpoints and the network, like a zero-rating service, a user-driven
 QoS service, or a firewall whitelist.

1.1. Network Token Overview

 A network token is a small piece of data that end users attach to
 their packets. As packets flow through the network, intermediate
 nodes MAY detect tokens, interpret them, and apply the desired
 service to the packets that carry them (and possibly to all other
 packets from the same flow).

 Tokens MAY be digitally signed, integrity protected and/or encrypted
 to account for privacy and security, and can be provisioned to
 prevent replay and spoofing attacks.

 Tokens carry simple claims that can drive network policy.

 For example, a token might just state the name of the application
 that a packet originates from, which can then be used by firewalls
 and/or zero-rating whitelists. Such a token (an "application
 token"), would be signed with the private key of the application
 provider, and could be interpreted and verified by any one with the
 application provider's public key. It may also be bound to the IP

Yiakoumis, et al. Expires December 17, 2020 [Page 3]

Internet-Draft networktokens June 2020

 address of the application provider's server that generates the
 traffic so it cannot be used in a different context.

 Similarly, a token might state the request of an end-user to access a
 network service, such as a low-latency and reliable QoS SLA, in a
 user-centric, application agnostic, and privacy preserving means.
 Such a token (a "user-centric token"), will hold a unique user
 identifier (like an MSISDN), the keyword "lowlatency", an expiration
 date, a nonce for revocability, and will be encrypted with a network
 operator's secret key. The contents of the token will be opaque and
 uninterpretable by everyone other than the operator (including the
 user).

 Tokens are policy-agnostic, i.e., they just provide a unified
 mechanism to communicate and interpret certain claims in the
 datapath. Network services built using tokens can dictate the
 desired policy through token (or token metadata) distribution, and
 the cryptographic functions applied to them.

 Network tokens do not dictate a dedicated header or protocol to be
 inserted. Instead, they are incorporated as options and extensions
 into a variety of existing protocols. For example, they can be
 carried as TLS Client and Server Hello extensions during a TLS
 handshake, as IPv6 Hop by Hop Options, or as attributes during a
 STUN-enabled flow setup. Network tokens are largely opaque to the
 protocols that carry them.

 Network tokens are inspired and derived by existing security tokens,
 like JSON Web Token (JWT) [RFC7519] and CBOR Web Token (CWT)
 [RFC8392], and borrow a lot of their properties in terms of security
 and privacy. In fact, network tokens MAY be represented as JWT and
 CWT objects, and respectively use JOSE and COSE technologies for
 signing and encryption.

2. Motivation

 Network traffic differentiation is widely deployed in enterprise,
 residential, and cellular networks. Typical use cases are firewall
 whitelists, zero-rating programs, and custom QoS SLAs where certain
 traffic is granted special treatment.

 A common concern for all such services is how to identify traffic of
 interest in order to map it to (and enforce) the desired network
 policy. The mechanism that does this essentially becomes the
 interface between network operators, application providers and end-
 users, and has direct implications to network management and
 security, user privacy, business practices, and compliance with net
 neutrality regulation.

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc8392

Yiakoumis, et al. Expires December 17, 2020 [Page 4]

Internet-Draft networktokens June 2020

 Identifying traffic of interest is not straight forward, as it often
 depends on context not present in the related packets themselves.
 For example, the decision to allow a packet through a firewall or
 zero-rating whitelist is based on the application that generated the
 packet, while routing a flow through a low-latency path depends on
 the desire of a user to prioritize this flow and potentially pay for
 it. Requirements around accountability and verification, fraud
 prevention, privacy preservation, and compliance with net neutrality
 regulation just make the task harder.

 This section discusses usecases, existing mechanisms that map traffic
 to network differentiation services, and then details some of the
 challenges through the perspective of different stakeholders, and how
 network tokens can help to address them.

2.1. Use cases Overview

2.1.1. Zero Rating

 Zero rating (and similarly sponsored data and other application-
 specific data plans) is the practice of differentiating charging of
 internet access based on the application that generated data. For
 example, a mobile operator might allow its users to stream music
 without paying for data as part of a promotional offer, or purchase a
 discounted data plan that can be used only for certain applications.
 It is deployed in several cellular networks along with data usage
 caps.

 Zero-rating services require close collaboration between application
 providers and mobile operators. The typical workflow involves the
 application provider sharing an application signature with the
 operator (i.e., a list of domains and IP addresses used to serve
 traffic), operators configuring their networks to detect traffic with
 these characteristics, and then map it to predefined charging groups.
 The process repeats whenever there are updates in application
 signatures.

 A critical metric for zero-rating integrations is accuracy, i.e.,
 what percentage of the traffic from a specific application is
 detected (and properly charged) by the network. Undetected traffic
 that should otherwise be zero-rated, leads to unexpected charges or
 packet drops for users. Zero-rating traffic that shouldn't be zero-
 rated, leads to loss of revenue for operators. As such, network
 operators evaluate detection accuracy for each application against a
 threshold, and appropriately decide whether to add an application or
 not. There are typically four sources of inaccuracy:

Yiakoumis, et al. Expires December 17, 2020 [Page 5]

Internet-Draft networktokens June 2020

 o Third-party traffic: Most modern applications include third-party
 traffic which cannot be counted as part of the application
 signature (e.g., analytics, ads, social network plugins, etc).

 o Out-of-sync application signature: Application signatures often
 change (when servers and/or domains are added or deleted). When
 these changes are not incorporated in the network configuration,
 inaccuracies occur.

 o Fraudulent behavior: Malicious users may attempt to masquerade
 their traffic to appear as eligible zero-rating traffic when it is
 not. For example, one can setup a rogue proxy server, spoof a
 zero-rated domain through the SNI field, and route all traffic
 through this proxy. This has lead some operators to only perform
 zero-rating based on IP addresses.

 o Unsupported detection methods: this is common when application
 providers use peer-to-peer connectivity, or when their traffic
 comes from CDN servers with shared IP addresses and the operator
 does not support domain-based signatures.

 Another important metric for zero-rating is to keep onboarding and
 operational overhead low, as operators typically zero-rate multiple
 applications. For example, a common practice, driven by regulatory
 and/or commercial requirements is to apply the same treatment to a
 group of applications from specific categories (e.g., music, video,
 social networks, gaming). From a regulatory perspective, the goal is
 to provide a level playing field for competing application providers
 according to net neutrality principles. From a commercial
 perspective, grouping multiple applications together can improve
 perceived value for users.

 Zero-rating is typically either application-specific, or specific to
 a category of applications, and implies a trust relationship between
 an application provider and the network.

2.1.2. Firewall Whitelist

 A firewall whitelist shares many characteristics with zero-rating as
 far as it concerns this document. It is typically application-
 specific, and implies a trust relationship between an application
 provider and the network operator.

 A critical metric for firewall whitelists is performance, as
 firewalls may become bottlenecks in otherwise well-provisioned
 networks. Another metric is accuracy, as letting insecure traffic
 through a firewall can become a security risk.

Yiakoumis, et al. Expires December 17, 2020 [Page 6]

Internet-Draft networktokens June 2020

 Firewall whitelists are typically used in enterprise networks to
 allow traffic from certain applications through the network, or
 bypass an expensive classification path.

2.1.3. QoS

 QoS services have been historically deployed in a variety of
 networks, and emerging use cases like SD-WAN and 5G slicing renewed
 interest to how they are implemented.

 This document is related only to QoS policies where a subset of the
 traffic to/from an endpoint receives special treatment. For example,
 a scenario where a user's traffic is throttled at 10Mbps during peak
 evening hours is out-of-scope for this document. A scenario where a
 user accesses a 10Mbps connection for a flat fee, an hourly 100Mbps
 connection for an hourly fee, and she can dynamically decide which
 packet to send to which QoS SLA is in scope for this document.

 QoS policies might be either application specific, or user-centric.
 Application-specific applications are similar to zero-rating and
 firewall whitelists services, and imply trust between an application
 provider and the network operator.

 In contrast, user-driven QoS policies imply trust between the user
 and the network operator, while the role of the application
 developer, if any, is to facilitate their interaction. In other
 words, the network operator is not concerned with whether the traffic
 from an application is eligible for certain treatment. It just needs
 to verify that the end-user requires a flow to receive a special
 treatment. A user might be an individual, an enterprise, or an
 organization that wants to use a third-party application over a QoS
 SLA provided by a network operator.

 For example, a user-driven approach for mobile networks is
 recommended by regulators in multiple countries as a way to offer QoS
 differentiation in a way compliant with net neutrality regulation.
 Additionally, services might have to be application-agnostic (i.e.,
 the user should be able to use it for any application they want) and
 privacy preserving (i.e., the network operator doesn't need to know
 the application associated with this traffic to offer the service).

 Similar requirements arise in enterprise networks, where companies
 purchase multiple SLAs from their connectivity provider and want to
 decide how they differentiate traffic from different applications
 through respective paths.

 QoS services are often charged based on usage, and therefore
 accountability and verification are important aspects of it.

Yiakoumis, et al. Expires December 17, 2020 [Page 7]

Internet-Draft networktokens June 2020

2.2. Existing mechanisms

 The two primary methods that map traffic to network differentiation
 services today are DiffServ and Deep Packet Inspection.

2.2.1. DiffServ

 DiffServ [RFC2475] uses DSCP bits in the IP header to map traffic
 into specific classes and drive per-hop-behavior in the network for
 traffic differentiation. DiffServ operates within a single
 administrative domain, and assumes that traffic is properly marked
 and classified in the network boundaries. In many practical
 deployments, the endpoints under consideration are not under the
 network's administrative domain and this causes issues.

 Intermediate nodes in the path may alter or reset the DSCP bits
 (e.g., to use them for their own purposes), therefore nullyfying any
 endpoint marking. Second, and maybe most important, DiffServ has no
 authentication and revocation primitives: any application can set the
 DSCP bits and request service without the user's consent. Any
 developer can ask for special network treatment even if it conflicts
 with a user's desire, or--even worse--if it results in network
 charges for users, and users or operators do not have the means to
 easily revoke such access.

 Network tokens can solve such problems as they operate across network
 boundaries, and support revocation and authentication. In that
 sense, tokens are complementary to DiffServ, not a replacement. They
 can be used to communicate a claim in a secure way, across network
 boundaries. Once a token is interpreted, DiffServ can be used within
 an administrative domain to drive enforcement on a per-hop basis.

2.2.2. Deep Packet Inspection

 Deep Packet Inspection uses predefined application signatures to
 detect traffic of interest, and then enforces the desired policy.
 Application signatures are a combination of IP addresses, domain
 names, SSL certificates, and other fields, that infer the application
 that generated traffic by implicitly observing traffic between
 endpoints. They are widely deployed by network operators today as an
 enabler for traffic differentiation services.

 The advantage of DPI is that it requires no changes from endpoints.
 But as new usecases come up, applications grow in complexity, and
 privacy or net neutrality requirements strengthen, its shortcomings
 become more dominant.

https://datatracker.ietf.org/doc/html/rfc2475

Yiakoumis, et al. Expires December 17, 2020 [Page 8]

Internet-Draft networktokens June 2020

 o Modern applications use a variety of protocols and architectures,
 integrate third-party services, establish connectivity through
 thousands of nodes, and constantly change. Maintaining
 application signatures is manual, expensive, and often inaccurate.
 They require frequent updates, involve manual interactions between
 parties, and cannot cover third-party traffic scenarios.

 o Application signatures are vulnerable to fraud, as bad actors can
 spoof certain fields (like Server Name Identification) and pretend
 they are eligible for preferential treatment.

 o Deep Packet Inspection policies are strictly linked with an
 application. This raises privacy concerns, as networks need to
 know the application that traffic originates from in order to
 enforce a policy.

 o New privacy-enabling protocols (like DNS over HTTPS and Encrypted
 SNI) encrypt the last bits of cleartext information sent over the
 internet, further limiting DPI-based application detection.

2.3. Requirements and Challenges

2.3.1. Integration overhead

 Network services often require coordination between a network
 operator and an application provider. For example, firewall
 whitelists and zero-rating programs require the coordination between
 networks and the applications to be whitelisted (or zero-rated). It
 is typical for such programs to include a large and growing number of
 applications, and the integration process and mapping interface
 matters a lot, as it dictates the required effort for both network
 operators and application providers.

 Network operators want to streamline the onboarding process for new
 applications in their programs, and also minimize the overhead to
 keep these integrations functional and accurate. They also want to
 make it easy for third parties to integrate and use their services.
 Network tokens enable operators to onboard new applications just by
 granting them a new token, without additional per-application
 overhead to create, evaluate, and maintain app signatures. A token-
 based approach also decouples integration from the architecture of an
 application provider, meaning that there is no need for updates and
 maintenance every time an application partner changes its
 infrastructure.

 Decoupling integration from an application's infrastructure is
 important for the application provider's side as well. They don't
 have to pace deployment of new servers to give partnering networks

Yiakoumis, et al. Expires December 17, 2020 [Page 9]

Internet-Draft networktokens June 2020

 advance warning to update their DPI, and they can still leverage a
 network's services even when they don't own a server or when the
 traffic is originating from a third-party service. Another benefit
 for application providers is control. Tokens give application
 providers the capability to decide when and how to use related
 services, so they can offer it only to a subset of their users, for a
 limited period, or run A/B experiments without any infrastructure
 overhead and without further coordination with the network.

 Regulators MAY require that zero-rating programs are available to a
 large number of application providers. For example many zero-rating
 programs are required to onboard all applications in a category.
 Network tokens offer a straight-forward and low overhead onboarding
 process, and make it easier to keep implementations compliant.
 Regulators may also have to monitor commercial practices for
 compliance, and therefore auditability becomes important. With
 network tokens, audits need to only check token distribution, which
 can be as simple as a database with when an application asked for a
 token, and when this was granted.

2.3.2. Detection Accuracy

 Detection accuracy captures what percentage of traffic that falls
 under a policy gets eventually detected and treated accordingly by
 the network. It is one of the main criteria used during a zero-
 rating integration, and where most problems appear. One reason is
 that many applications involve traffic from third party servers that
 cannot be properly accounted for (like ads, social media add-ons, or
 traffic from public CDNs). Another source of detection inaccuracy
 comes from application backend changes that are not properly
 communicated to or acted upon by the network operator.

 Many integrations do not happen just because of inaccuracy reasons,
 causing issues for both application providers and operators. In
 other cases, application providers might have to change the
 functionality for such integrations to happen (e.g., disable ads)
 which can have a significant impact on their business and/or user
 experience.

 Once an integration is established, failing to detect traffic may
 lead to unintended charges for users and dissatisfaction. Operators
 have to retroactively perform troubleshooting, deal with customer
 support, and issue refunds.

 Inaccuracies also pose a trade-off for regulators: if detection
 inaccuracies are accepted, plan transparency issues arise (e.g.,
 users might get charged for use of an application that is promoted as
 free). In contrast, when inaccuracies are not allowed, some eligible

Yiakoumis, et al. Expires December 17, 2020 [Page 10]

Internet-Draft networktokens June 2020

 applications cannot participate without modifications to their
 implementation, thus raising issues about the openness of such
 programs or entry barriers to market.

 Network tokens are decoupled from an application's backend and can
 also be applied to third-party traffic, giving application developers
 the capability to improve accuracy without affecting the
 functionality of their apps.

2.3.3. Fraud Prevention

 Malicious users may exploit limitations in traffic detection and get
 special treatment from the network. This often happens in zero-
 rating services, where malicious users setup a proxy server, connect
 to it using the properties (e.g., SNI) of an otherwise zero-rated
 application, and essentially zero-rate all their traffic.

 When fraud happens it leads to lost revenue for network operators.
 To prevent fraud, some operators require that application signatures
 use only IP addresses, which are harder for bad actors to spoof.
 This in turn makes integration harder. Many application providers
 use CDNs that share IP addresses across multiple applications, and
 they become ineligible to participate. Others that do have their own
 IP addresses can still integrate, but at the cost of more frequent
 updates whenever as new servers (and IP addresses) are added.

 Network tokens deal with fraud through signed and/or encrypted tokens
 that can be integrity protected and resistant to replay and spoofing
 attacks.

2.3.4. Implementing user-centric control

 One particular instance of traffic differentiation services (and
 particular QoS services) is user-centric control. User-driven
 control can better serve the needs of end-users, and might
 additionally be driven by business and regulatory reasons.

 Network tokens provide the means to put users in charge of QoS
 treatment. User-specific tokens can be applied to traffic directly,
 or given to applications after user consent, and be revoked at any
 time, similar with OATH2 authentication workflows. They can be used
 in an application agnostic manner, and don't require network
 operators to limit their offerings to specific applications.

 Moreover, tokens require explicit action, are verifiable, and prevent
 abuse from third parties, which are necessary properties to build
 network services that involve charging and accounting.

Yiakoumis, et al. Expires December 17, 2020 [Page 11]

Internet-Draft networktokens June 2020

2.3.5. Privacy

 Privacy is often at odds with traffic differentiation services,
 especially when networks have to inspect a user's traffic to enforce
 a service, and/or this happens without a user's consent. Regulation
 around privacy, increased user awareness, as well as emerging
 protocols like Encrypted SNI and DNS over HTTPS require new ways to
 combine privacy awareness with traffic differentiation services.
 Tokens can address such concerns in a number of ways.

 Coupled with user-centric control, network operators can expose
 datapath services in an application agnostic manner and respect user
 privacy. They do not have to detect use of specific applications at
 all, all necessary information is included within a token, and users
 explicitly share relevant information with the network upon consent.

 Network tokens can also promote privacy for application-based network
 services. Today, if one network can detect an application (e.g.,
 through the use of SNI), every other network can as well. Using
 network tokens, the application provider (or user) can share this
 context only with trusted networks, keeping traffic largely opaque
 for other networks.

 As protocols like ESNI and DoH emerge, network tokens enable
 application providers to adopt them, and at the same time integrate
 with trusted networks. Respectively, they can enable network
 operators to expose traffic differentiation services, even when
 traffic is largely opaque to them.

3. Representation

 Network tokens can be represented in different formats. For example,
 a network operator might structure a token as a pre-defined byte
 sequence or a list of TLV-encoded fields. Alternatively, tokens can
 use existing JOSE and COSE technologies for representation, as they
 already provide a framework to securely communicate information
 between different entities. The actual representation and contents
 of a token should take into consideration the capabilities of the
 network to process them (i.e, what cryptographic functionality can
 the network support), the token's length in terms of header space,
 and requirements for integrity protection, privacy preservation, and
 attack scenarios.

 Examples in this document will use JWT to represent tokens, as they
 are well understood by the community and easily read by humans.
 Translation to a different representation format should be straight
 forward.

Yiakoumis, et al. Expires December 17, 2020 [Page 12]

Internet-Draft networktokens June 2020

4. Contents

 The contents of a network token communicate the desired information
 between an endpoint and the network (e.g., the name of an
 application, or a user's request to access a low-latency services.
 Along with these claims, tokens carry necessary metadata to i)
 digitally sign and/or encrypt a token to meet privacy and security
 requirements, and ii) prevent unauthorized parties from replaying or
 using these tokens to inadvertently access network services (e.g.,
 through the use of timestamps, expiration time, nonces).

4.1. Network Token Common fields

 Network tokens can have arbitrary fields (or claims). The fields
 defined below, while not mandatory, provide a starting point for a
 set of useful, interoperable fields. Network services using network
 tokens should define which specific fields they use and whether they
 are required or optional. Several of the fields listed below are
 already registered as part of JWT and CWT specifications, while
 others are specific for network tokens.

4.1.1. 'iss' (Issuer) field

 The "iss" (issuer) field identifies the principal that issued the
 token. For example, the issuer might be the name of the network
 operator that offers the service of interest.

4.1.2. "sub" (Subject) field

 The "sub" (subject) field identifies the principal that is the
 subject of the token. This could be a subscriber id, or the name of
 an application.

4.1.3. "exp" (Expiration Time) field

 The "exp" (expiration time) field identifies the expiration time on
 or after which the token MUST NOT be accepted for processing. The
 processing of the "exp" field requires that the current date/time
 MUST be before the expiration date/time listed in the "exp" claim.
 Implementers MAY provide for some small leeway, usually no more than
 a few minutes, to account for clock skew. The "exp" field can be
 used to reduce the probability of replay attacks, restrict service
 access to a certain period, or to force users to refresh
 authentication credentials.

Yiakoumis, et al. Expires December 17, 2020 [Page 13]

Internet-Draft networktokens June 2020

4.1.4. "iat" (Issued At) field

 The "iat" (issued at) field identifies the time at which the token
 was issued or generated. This field can be used to determine the age
 of the token, and can be used along or instead of the "exp" field.

4.1.5. "nti" field (Network Token ID) field

 The "nti" field provides a nonce-like value for the token. The
 identifier value MUST be assigned in a manner that ensures that there
 is a negligible probability that the same value will be accidentally
 assigned to a different data object; if the application uses multiple
 issuers, collisions MUST be prevented among values produced by
 different issuers as well. The "nti" field can be used to revoke a
 token, or prevent it from being replayed.

4.1.6. "bip" field (Bound IP) field

 The "bip" (Bound IP) field bounds the use of the token to a specific
 IP address. This can prevent third parties from reusing the token in
 a different context.

5. Network Token Format

 A token consists of the following fields (Figure X):

 o Reflect Type (4-bits): Indicates reflection properties for the
 token.

 * 0x0: Token is inserted by the origin of this flow. No
 reflection needed.

 * 0x1: Token is inserted by the origin of this flow. Reflect at
 receiver.

 * 0x2: Reflected token.

 * 0x3-0xf: Reserved

 o Token Descriptor ID (28-bits): An ID that helps the network decide
 whether and how to interpret tokens. Descriptor IDs are
 registered in the "Token Descriptor ID" registry (MSB = 0) or
 private (MSB equals 1). For private descriptor IDs, the definer
 of the value needs to take reasonable precautions to make sure
 they are in control of the part of the namespace they use (e.g.,
 by using a OUI prefix). A token descriptor might just indicate
 that the token payload is a JWT, or point to a structure that
 holds keys and other information to interpret a token.

Yiakoumis, et al. Expires December 17, 2020 [Page 14]

Internet-Draft networktokens June 2020

 o Token Payload: Depending on the application, the token payload
 might be a self-contained JWT or CWT (as plaintext, signed, or
 encrypted), a set of TLV-encoded values, or has its own custom
 format.

 The length of the token is arbitrary, but must follow the limitations
 imposed by the protocol it is encapsulated. For example, if the
 token is carried as an IPv6 hop-by-hop option, the total length of
 the token cannot exceed 2048 bytes.

 0 1 2 3
 0123456789012345678901245678901
 +-------------------------------+
 | rfl | token descriptor id |
 +-------------------------------+
 | |
 | |
 | token payload |
 | |
 | |
 +-------------------------------+

6. Example Network Tokens

 This section discusses example network tokens and how they can serve
 specific use cases.

6.1. Application Token

 An application token can be used to whitelist traffic from trusted
 applications for a zero-rating or firewall whitelist scenario (as
 discussed in Section {#usecases}.

 The following example verifies that a network flow is coming from
 "The Godfather App".

 The token payload is encoded as a JWT, and encapsulated as a TLS
 Extension attached in a Server Hello Message.

 The Reflect Type is 0x00 (i.e., peers should not reflect it), with
 the expectation that network flows can setup appropriate state for
 the reverse flow as well. The Token Descriptor ID is 0x03, which
 might represent a registered value for application tokens.

 The JWT encodes the following object.

 The header of the JWT has the following fields:

Yiakoumis, et al. Expires December 17, 2020 [Page 15]

Internet-Draft networktokens June 2020

 {"alg":"ES256", "kid":"N6fr1MDrEuu1eXRkFbcpX4WY62SKN7TKrhYf9PfJEd8"}

 The token is signed using the Elliptic Curve Digital Signature
 Algorithm, and the public key can be looked-up in a pre-defined
 database using the "kid" thumbprint.

 The JWT payload has the following fields:

{"sub":"The Godfather App", "iat":1588116732, "exp":
1588117732,"bip":"140.54.35.194"}

 The token is created by the application provider. It states that
 this flow originates from "The Godfather App", along with the time
 that it was created and when it expires. The token is signed with
 the app provider's public key, and any network can verify this
 through the attached signature. The token is also bound to a
 specific IP address, and therefore cannot be reused in a different
 context. For example, the application provider could configure all
 exit gateways to attach a token for all outgoing flows.

6.2. User-centric Token

 A user-centric token may be used to access a custom QoS SLA (e.g.,
 low latency) from a mobile operator. This is an application-agnostic
 and privacy-preserving token, i.e., users can use it for any traffic
 they want and the network operator doesn't need to know what
 application is associated with ths token.

 The token payload is encoded as a JWT, and can be inserted to STUN
 (as STUN attributes) or IPv6 packets (as IPv6 Hop-by-Hop extension
 header).

 The Reflect Type is 0x1, i.e., peers should reflect the token to
 setup state for the reverse flow. The Token Descriptor ID is 0x01,
 stating that the token payload is encoded as a JWT object.

 The header of the JWT has the following fields:

 {'alg':'dir','enc':"A256CBC-HS512", 'app_id':14098715987234}

 The token is generated by the operator, and signed with the AES-256
 algorith, using an operator's symmetric key. The app_id points to an
 operator-specific identifier associated with its own services.

 The payload of the token has the following fields, requesting for
 low-latency treatment, and bounding the start and end time of the
 token. It also has a unique identifier to allow revocation.

Yiakoumis, et al. Expires December 17, 2020 [Page 16]

Internet-Draft networktokens June 2020

{'srv':'lowlatency', 'msisdn':'+4151111111111', 'nti': 5871234, iat':
1588116732, 'exp':1588203132}

 Each token is valid for 24 hours. As the encryption key is bound to
 a specific user, it cannot be used by another context. The token is
 opaque to everyone other than the operator (including the user). The
 Operating System (or an agent) in the user's device can request a
 token, and grant it to specific applications based on a user's
 request. Users can revoke access by telling an operator to blacklist
 the nti associated with this token.

 Besides accessing a low-latency service, this token serves two
 requirements: * it is application agnostic and can be used for any
 application a user wants * it preserves privacy. There is no
 indication about specific applications, and no identifier that can be
 linked to a user.

7. Network Tokens and Encapsulating protocols

 Network tokens are inserted in existing protocols by leveraging
 extension capabilities and do not require a dedicated header. The
 contents of the token are largely opaque to the protocol that carries
 them (i.e., they cannot read or verify a token).

 To support tokens, a protocol needs to allow its users to specify the
 token to be used (e.g., while opening a socket or configuring a
 connection), and appropriately reflect a token according to the value
 of a token's Reflect Type.

 While tokens are designed to be self-contained, the protocols that
 carry them inevitably affect its use. In particular:

 o the maximum size of tokens is dictated by the provision of the
 protocol extension that carries them.

 o Protocols that use a checksum over transmitted data (like TLS or
 optionally STUN) ensure that a token cannot be tampered or removed
 by intermediary nodes without the endpoints noticing it

 o Implementations should also consider whether the protocol
 guarantees that a token is contained in a single packet or might
 be carried over multiple packets.

 This section discusses the use of tokens in three widely used
 protocols, and section {#iana} describes recommended IANA changes for
 each protocol.

Yiakoumis, et al. Expires December 17, 2020 [Page 17]

Internet-Draft networktokens June 2020

 For the examples below we will use the following 227-byte long
 network token, which encodes (in hex notation) the low-latency token
 described in Section {#lowlatencytoken}.

10000001 # Network token is represented as JWT, reflect at node
65794a68624763694f694a6b615849694c434a6c626d4d694f694a424d6a553251304a444c556
8544e544579496e302e2e565f4278546d4e692d6b6337735a376b504e514851412e5a42764269
6d6d46705579555165e544579634b36244566a31378546d4e692d6b6337735a376b50476676c4
7597579666f734b43565234744576306a4d31735f4352484c50706a6335536d37703336487576
677541467c7979396f3a526e7976532484cd37703336487553559797170e514851412e5a42764
2696d6d4670557955516576676c47597579666f734b43565234744576306a4d31716535597971
702d5946796838566a396f72337a7351624e6d4e6475796974727658436854766c66633055704
4545597d429869d34e5486a63963305f6a5267424f39745a6e4535438566a396fe64757969747
27658766c6655704417e252636f267349565f36d585a6e4547568f7672637835f4352484c5417
72e32556e32636a6f6a5267424f396349565f7869536d586357745a6e4535495475684973456a
4f76726378472e3f9 # Network token payload (as JWE)

7.1. Network Tokens as a TLS Extension

 Network tokens can be encoded as TLS extensions during the handshake
 phase in ClientHello, ServerHello, and HelloRetryRequest messages, as
 these are defined in [RFC8446]. As the handshake happens before
 encryption is established between the two communicating endpoints,
 the token will be sent unchanged and can be interpreted by any
 trusted networks.

 Network tokens used as TLS extension are flow-specific, i.e., the
 network should apply the policy linked to this token to all packets
 that belong to this flow.

 The token comprises the extension data. Section {#iana} requests the
 value 57 as a Network Token extension type. For TLS backward
 compatibility, the first 16-bit after the extension type should
 encode the length of the extension data. The following bytestream
 defines the extension, including type and lengh data:

https://datatracker.ietf.org/doc/html/rfc8446

Yiakoumis, et al. Expires December 17, 2020 [Page 18]

Internet-Draft networktokens June 2020

3900e3 # Network Token Extension with 227 bytes length
1000001 # Network token is represented as JWT, reflect at node
65794a68624763694f694a6b615849694c434a6c626d4d694f694a424d6a553251304a444c556
8544e544579496e302e2e565f4278546d4e692d6b6337735a376b504e514851412e5a42764269
6d6d46705579555165e544579634b36244566a31378546d4e692d6b6337735a376b50476676c4
7597579666f734b43565234744576306a4d31735f4352484c50706a6335536d37703336487576
677541467c7979396f3a526e7976532484cd37703336487553559797170e514851412e5a42764
2696d6d4670557955516576676c47597579666f734b43565234744576306a4d31716535597971
702d5946796838566a396f72337a7351624e6d4e6475796974727658436854766c66633055704
4545597d429869d34e5486a63963305f6a5267424f39745a6e4535438566a396fe64757969747
27658766c6655704417e252636f267349565f36d585a6e4547568f7672637835f4352484c5417
72e32556e32636a6f6a5267424f396349565f7869536d586357745a6e4535495475684973456a
4f76726378472e3f9 # Network token payload (as JWE)

 If the reflect type is set to 0, the peer takes no additional step.
 If reflect type is 0x1, the peer should attach a Network Token
 request at the ServerHello message, set the type to 0x2, and copy the
 rest of the token in it. The extension data for the ServerHello
 message that reflects the token mentioned above is listed below.

3900e3 # Network Token Extension with 227 bytes length
2000001 # Network token is represented as JWT, reflected token
65794a68624763694f694a6b615849694c434a6c626d4d694f694a424d6a553251304a444c556
8544e544579496e302e2e565f4278546d4e692d6b6337735a376b504e514851412e5a42764269
6d6d46705579555165e544579634b36244566a31378546d4e692d6b6337735a376b50476676c4
7597579666f734b43565234744576306a4d31735f4352484c50706a6335536d37703336487576
677541467c7979396f3a526e7976532484cd37703336487553559797170e514851412e5a42764
2696d6d4670557955516576676c47597579666f734b43565234744576306a4d31716535597971
702d5946796838566a396f72337a7351624e6d4e6475796974727658436854766c66633055704
4545597d429869d34e5486a63963305f6a5267424f39745a6e4535438566a396fe64757969747
27658766c6655704417e252636f267349565f36d585a6e4547568f7672637835f4352484c5417
72e32556e32636a6f6a5267424f396349565f7869536d586357745a6e4535495475684973456a
4f76726378472e3f9 # Network token payload (as JWE)

 TLS does not allow for extensions to be originated by the server if
 they are not defined in the ClientHello message. To account for
 cases where tokens need to be inserted by the server, the client
 might send an empty Network Token extension which allows the server
 to respond to with the appropriate token. Alternatively, the server
 can use a HelloRequestRetry message to ask the peer to re-send a
 ClientHello message with the NetworkToken extension included. The
 HelloRequestRetry should include the token. Depending on the reflect
 type the client peer might include an empty or populated Network
 Token extension on the subsequent ClientHello message.

 The use of Network Token between ClientHello, ServerHello, and
 HelloRequestRetry messages resembles the mechanics of the cookie TLS
 extension.

Yiakoumis, et al. Expires December 17, 2020 [Page 19]

Internet-Draft networktokens June 2020

 The TLS handshake is protected for message integrity, and as such
 guarantees that network tokens cannot be dropped by intermediary
 nodes.

7.2. Network Tokens as a STUN Attribute

 Network tokens can be inserted as attributes in STUN Binding Request
 and Binding Response messages, during the handshake that preceeds
 WebRTC realtime communication flows [RFC5389].

 Network tokens used as STUN attributes are flow-specific, i.e., the
 network should apply the policy linked to this token to all packets
 that belong to this flow.

 The token comprises the attribute data. Section {#iana} requests the
 value 0x8030 as a Network Token STUN attribute. The following
 bytestream shows the attribute for the low-latency token described
 earlier, including attribute type and length.

 (TODO: We need to deal with padding here as STUN requires 32-bit
 boundaries.)

803000e3 # Network Token Attribute with 227 bytes length
1000001 # Network token is represented as JWT, reflect at node
65794a68624763694f694a6b615849694c434a6c626d4d694f694a424d6a553251304a444c556
8544e544579496e302e2e565f4278546d4e692d6b6337735a376b504e514851412e5a42764269
6d6d46705579555165e544579634b36244566a31378546d4e692d6b6337735a376b50476676c4
7597579666f734b43565234744576306a4d31735f4352484c50706a6335536d37703336487576
677541467c7979396f3a526e7976532484cd37703336487553559797170e514851412e5a42764
2696d6d4670557955516576676c47597579666f734b43565234744576306a4d31716535597971
702d5946796838566a396f72337a7351624e6d4e6475796974727658436854766c66633055704
4545597d429869d34e5486a63963305f6a5267424f39745a6e4535438566a396fe64757969747
27658766c6655704417e252636f267349565f36d585a6e4547568f7672637835f4352484c5417
72e32556e32636a6f6a5267424f396349565f7869536d586357745a6e4535495475684973456a
4f76726378472e3f9 # Network token payload (as JWE)

 If the reflect type is set to 0, the peer takes no additional step.
 If reflect type is 0x1, the peer should attach a Network Token
 request at the Binding Response message, set the type to 0x2, and
 copy the rest of the token in it. The attribute data for the Binding
 Response message that reflects the token mentioned above is listed
 below.

https://datatracker.ietf.org/doc/html/rfc5389

Yiakoumis, et al. Expires December 17, 2020 [Page 20]

Internet-Draft networktokens June 2020

803000e3 # Network Token Extension with 227 bytes length
2000001 # Network token is represented as JWT, reflected token
65794a68624763694f694a6b615849694c434a6c626d4d694f694a424d6a553251304a444c556
8544e544579496e302e2e565f4278546d4e692d6b6337735a376b504e514851412e5a42764269
6d6d46705579555165e544579634b36244566a31378546d4e692d6b6337735a376b50476676c4
7597579666f734b43565234744576306a4d31735f4352484c50706a6335536d37703336487576
677541467c7979396f3a526e7976532484cd37703336487553559797170e514851412e5a42764
2696d6d4670557955516576676c47597579666f734b43565234744576306a4d31716535597971
702d5946796838566a396f72337a7351624e6d4e6475796974727658436854766c66633055704
4545597d429869d34e5486a63963305f6a5267424f39745a6e4535438566a396fe64757969747
27658766c6655704417e252636f267349565f36d585a6e4547568f7672637835f4352484c5417
72e32556e32636a6f6a5267424f396349565f7869536d586357745a6e4535495475684973456a
4f76726378472e3f9 # Network token payload (as JWE)

 STUN messages can be protected for message integrity, and as such
 they can guarantee that network tokens cannot be dropped by
 intermediary nodes.

7.3. Network Tokens as an IPv6 Hop-by-Hop Extension Header

 Network tokens can be inserted as an IPv6 Hop-by-Hop Extension
 header, as defined in Section 4 of [RFC8200].

 Network tokens used as IPv6 extension headers can be either flow or
 packet specific. The expectation must be defined by the network
 service itself, and the endpoints can decide to which packets to
 insert a token. For example, they can insert a token at every packet
 of a specific flow, every few seconds, or only at the first packet of
 a flow. The network should accordingly implement the policy.

 When tokens are attached to all packets of a flow, it is important to
 keep the length of the token small, to avoid overhead. It is
 therefore recommended that in such cases implementations consider
 representation formats that can minimize the overall length of a
 token. Size-efficient representation formats are out-of-scope for
 this document.

 The token comprises the IPv6 extension header data. Section {#iana}
 requests the value 0x1F as a Network Token Extension Header. The
 following bytestream shows the header for the low-latency token
 described earlier, including option type and length (in 8-octet
 units).

https://datatracker.ietf.org/doc/html/rfc8200#section-4

Yiakoumis, et al. Expires December 17, 2020 [Page 21]

Internet-Draft networktokens June 2020

1f1d # Network Token Hop-by-Hop option with 29 8-octet length
1000001 # Network token is represented as JWT, reflect at node
65794a68624763694f694a6b615849694c434a6c626d4d694f694a424d6a553251304a444c556
8544e544579496e302e2e565f4278546d4e692d6b6337735a376b504e514851412e5a42764269
6d6d46705579555165e544579634b36244566a31378546d4e692d6b6337735a376b50476676c4
7597579666f734b43565234744576306a4d31735f4352484c50706a6335536d37703336487576
677541467c7979396f3a526e7976532484cd37703336487553559797170e514851412e5a42764
2696d6d4670557955516576676c47597579666f734b43565234744576306a4d31716535597971
702d5946796838566a396f72337a7351624e6d4e6475796974727658436854766c66633055704
4545597d429869d34e5486a63963305f6a5267424f39745a6e4535438566a396fe64757969747
27658766c6655704417e252636f267349565f36d585a6e4547568f7672637835f4352484c5417
72e32556e32636a6f6a5267424f396349565f7869536d586357745a6e4535495475684973456a
4f76726378472e3f9 # Network token payload (as JWE)

 If the reflect type is set to 0, the peer takes no additional step.
 If reflect type is 0x1, the peer should attach the Network Token Hop-
 by-hop option for messages in the reverse direction for this flow,
 set the type to 0x2, and copy the rest of the token in it. The data
 for the Hop-By-Hop option that reflects the token mentioned above is
 listed below.

1f1d # Network Token Hop-by-Hop option with 29-octet bytes length
2000001 # Network token is represented as JWT, reflected token
65794a68624763694f694a6b615849694c434a6c626d4d694f694a424d6a553251304a444c556
8544e544579496e302e2e565f4278546d4e692d6b6337735a376b504e514851412e5a42764269
6d6d46705579555165e544579634b36244566a31378546d4e692d6b6337735a376b50476676c4
7597579666f734b43565234744576306a4d31735f4352484c50706a6335536d37703336487576
677541467c7979396f3a526e7976532484cd37703336487553559797170e514851412e5a42764
2696d6d4670557955516576676c47597579666f734b43565234744576306a4d31716535597971
702d5946796838566a396f72337a7351624e6d4e6475796974727658436854766c66633055704
4545597d429869d34e5486a63963305f6a5267424f39745a6e4535438566a396fe64757969747
27658766c6655704417e252636f267349565f36d585a6e4547568f7672637835f4352484c5417
72e32556e32636a6f6a5267424f396349565f7869536d586357745a6e4535495475684973456a
4f76726378472e3f9 # Network token payload (as JWE)

 TODO (YY): There is no clear way currently for peers to understand
 how to reflect tokens (per-packet, per-flow, and when). If this is
 understood by the context of the token the peer will need to be aware
 of the token, which is undesired. The token should have all
 information regarding reflection. We have to see whether the current
 two-bits can clarify this, or whether we need to make reflection part
 of the protocol-specific part and not the token itself.

8. Implementation Considerations

 Network token applications (and their implementations) must decide
 the contents of the token, what protocol to insert them to, whether
 tokens are per-packet or per-flow, and whether they need to be

Yiakoumis, et al. Expires December 17, 2020 [Page 22]

Internet-Draft networktokens June 2020

 reflected by peers on the reverse flow. This section discusses
 common consideration.

8.1. Contents

 When deciding the contents of a token, applications should take
 effort to include only the necessary information and keep the size of
 the token small. They should also take into consideration the trust
 relationships between different stakeholders (i.e., the network
 operator, the application provider, the operating system, the end
 user) and pick the right encryption and signing properties. Another
 element to consider is potential abuse scenarios and how to prevent
 token replays and protect from malicious users, given assumptions
 around the network architecture. For example, to prevent use of a
 user-specific token by a another user, a token might be bound to a
 user identifier that the network can separately verify while
 processing packets and tokens (e.g., a well-defined IP address or an
 MSISDN in case of a cellular network).

8.2. Encapsulating protocol

 This specification describes three protocols where tokens might be
 inserted, and it is expected that this list will grow.

 IPv6 tokens sit at the narrow waist, can be applied to any traffic,
 and support both per-packet and per-flow granularity. IPv6 tokens
 require OS support for any practical usecase. The downside of IPv6
 tokens is that IPv6 adoption is still limited, and many networks drop
 packets with IPv6 extension headers with rates described in
 [RFC7872]. However, this is expected to improve over time.

 TLS tokens are limited to TLS/DTLS sessions, and can only be used at
 a flow granularity. Implementation does not depend on the OS, but
 rather at the cryptographic library used (e.g., BoringSSL or
 OpenSSL). As TLS handshake is integrity-protected, intermediate
 nodes cannot drop or alter a token.

 STUN tokens are targeted to real-time communications, and can only be
 used at a flow granularity. Implementation does not depend on the
 OS, but rather at the library that initiates the related flows (e.g.,
 WebRTC). As STUN messages are integrity-protected, intermediate
 nodes cannot drop or alter a token.

 The primary reason for making network tokens protocol agnostic is to
 ease adoption and enable interested parties (Operating System,
 application providers, users, network vendors and operators) to use
 them in a way that better fits the intended usecase. The protocol to
 use will largely depend on the parties involved in a usecase, the

https://datatracker.ietf.org/doc/html/rfc7872

Yiakoumis, et al. Expires December 17, 2020 [Page 23]

Internet-Draft networktokens June 2020

 availability of tokens in different protocols, and the capability of
 endpoints and the network to insert and interpret tokens.

 When possible, networks should make efforts to accept tokens in
 different protocols to allow further adoption from endpoints. As
 processing of tokens remains the same independent of the protocol
 that carries them, the main overhead from detecting tokens in
 multiple protocols will come from parsing and detecting tokens in
 different parts of the header.

8.3. Network Token granularity

 The granularity of a token is either per-packet or per-flow and is
 closely related with the protocol where tokens are inserted. The
 trade-offs for each option are discussed below.

8.3.1. Per-packet granularity

 Per-packet granularity allows stateless processing from network nodes
 and the capability to pinpoint the exact packets for traffic
 differentiation (e.g., for flows that combine multple types of
 traffic). Moreover, it preserves policy if the flow of interest gets
 rerouted.

 On the other hand, per-packet granularity limits potential
 encapsulating protocols. From the protocols described in this
 specification only IPv6 allows per-packet granularity.

 Per-packet granularity implies that all packet processing will
 involve cryptographic functions which might be expensive (or
 unavailable). Finally, the size of the token should be small as it
 will add overhead to all packets.

8.3.2. Per-flow granularity

 Tokens with per-flow granularity can be inserted in multiple
 protocols. As the token is sent only once per flow, its size is less
 important compared to per-packet tokens. Limiting crypto to one
 packet per flow reduces the packet processing overhead, and allows
 implementations that combine a fast path (with no crypto support)
 with a slow, crypto-enabled path.

 The main disadvantage of per-flow granularity is that it requires
 per-flow state. As policy enforcement depends on this state, per-
 flow granularity also requires that all packets of this flow will get
 routed through the node that interprets tokens.

Yiakoumis, et al. Expires December 17, 2020 [Page 24]

Internet-Draft networktokens June 2020

8.4. Token to DiffServ mapping and reflection

 Tokens might be interpreted one or more times within a network.

 In many cases, a single interpretation will be enough. One example
 is network policies that are enforced at a single point and involve
 per-flow state (like zero-rating). In such scenarios, token
 interpretation and policy enforcement can take place all in once.
 Alternatively, when policy enforcement involves multiple nodes (e.g.,
 a low-latency service that spans the wired and radio network),
 network owners can use existing mechanisms (like DiffServ, QCI tags,
 or reflective QoS) to enforce the policy across multiple nodes within
 the same network domain.

 In cases where a reverse flow might get routed through a different
 path, token reflection should be used.

9. Security Considerations

 As any cryptographic application, it is important for users of
 network token applications to protect asymmetric private and
 symmetric secret keys, and employ countermeasures to various attacks.

 The security of network tokens relies upon on the protections offered
 by the underlying signing and encryption technologies. It is
 therefore recommended that implementations of network tokens use
 existing and well-understood cryptographic frameworks (like JOSE and
 COSE) to protect tokens, or careful consider security implications if
 they provide their own format.

 While tokens are integrity protected, an intermediary node can in
 theory replace or remove a token. Protection against this can be
 provided by additional integrity protection from the encapsulating
 protocol itself, as is the case with TLS handshakes and STUN.

 Network tokens may require processing in software, as current
 hardware platforms do not support cryptographic capabilities. This
 might impose a security risk and exposure to an attack, as traffic
 could be diverted towards the slow path, and in return degrade the
 overall performance of a node. It is recommended that
 implementations adequately account for such scenarios, either by
 setting a rate-limit to packets that go through a slow path or
 ensuring that the overall functionality is not affected.

Yiakoumis, et al. Expires December 17, 2020 [Page 25]

Internet-Draft networktokens June 2020

10. IANA Considerations { #iana }

10.1. Token Descriptor ID Registry

 This section establishes the IANA "Network Token Descriptor ID"
 registry for token descriptors. The registry records the descriptor
 ID and a reference to the specification that defines it.

 Values are registered on a Specification Required [RFC5226] basis
 after a three-week review period, on the advice of one or more
 Designated Experts. However, to allow for the allocation of values
 prior to publication, the Designated Experts may approve registration
 once they are satisfied that such a specification will be published.

 Within the review period, the Designated Experts will either approve
 or deny the registration request, communicating this decision to the
 review list and IANA. Denials should include an explanation and, if
 applicable, suggestions as to how to make the request successful.

 Criteria that should be applied by the Designated Experts includes
 determining whether the proposed registration duplicates existing
 functionality, whether it is likely to be of general applicability or
 whether it is useful only for a single application, and whether the
 registration description is clear.

10.1.1. Initial Registry Contents

 o Token Descriptor ID: 0x1

 o Description: Token is represented as a JSON Web Token

 o Specificaton Document(s): This document.

 o Token Descriptor ID: 0x2

 o Description: Token is represented as a Concise Binary
 Representation Object

 o Specification Document(s): This document

10.2. IPv6 Hop-By-Hop options registration

 This section registers the value 0x0F as a IPv6 Hop-By-Hop and
 Destination Option for network tokens.

 o Hex Value: 0x1F

 o Binary Value: 0x00011111

https://datatracker.ietf.org/doc/html/rfc5226

Yiakoumis, et al. Expires December 17, 2020 [Page 26]

Internet-Draft networktokens June 2020

 o Description: Network Token

 o Reference: This document

10.3. TLS ExtensionType Registry

 This section registers the value 57 as a TLS Extension Type for
 network tokens.

 o Value: 57

 o Description: Network Token

 o Reference: This document

10.4. STUN Attributes Registry

 This section registers the value 0x8030 as a STUN attribute for
 network tokens.

 o Value: 0x8030

 o Description: Network Token

 o Reference: This document

11. References

11.1. Normative References

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <https://www.rfc-editor.org/info/rfc5389>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <https://www.rfc-editor.org/info/rfc7516>.

https://datatracker.ietf.org/doc/html/rfc5226
https://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://www.rfc-editor.org/info/rfc7516

Yiakoumis, et al. Expires December 17, 2020 [Page 27]

Internet-Draft networktokens June 2020

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7872] Gont, F., Linkova, J., Chown, T., and W. Liu,
 "Observations on the Dropping of Packets with IPv6
 Extension Headers in the Real World", RFC 7872,
 DOI 10.17487/RFC7872, June 2016,
 <https://www.rfc-editor.org/info/rfc7872>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/info/rfc8392>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

11.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

Authors' Addresses

 Yiannis Yiakoumis
 Selfie Networks, Inc

 Email: yiannis@selfienetworks.com

 Nick McKeown
 Stanford University

 Email: nickm@stanford.edu

https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7872
https://www.rfc-editor.org/info/rfc7872
https://datatracker.ietf.org/doc/html/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://datatracker.ietf.org/doc/html/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2475
https://www.rfc-editor.org/info/rfc2475

Yiakoumis, et al. Expires December 17, 2020 [Page 28]

Internet-Draft networktokens June 2020

 Frode Sorensen
 Norwegian Communications Authority

 Email: frode.sorensen@nkom.no

Yiakoumis, et al. Expires December 17, 2020 [Page 29]

