
Network Working Group J. Ylitalo
Internet-Draft V. Torvinen
Expires: November 30, 2004 Ericsson Research Nomadiclab
 E. Nordmark
 Sun Microsystems, Inc.
 June 2004

Weak Identifier Multihoming Protocol Framework (WIMP-F)
draft-ylitalo-multi6-wimp-01

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 30, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 Weak Identifier Multihoming Protocol Framework (WIMP-F) is a wedge
 layer 3.5 framework to be applied with different kind of routable
 application layer identifiers (AIDs) and layer 3.5 context
 identifiers (CIDs) presented in Group-F. WIMP-F consists of context
 establishment and re-addressing exchanges that are protected with
 one-way hash chains and a technique called as secret splitting. The
 hash chain protects a host from re-direction attacks, but not

https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Ylitalo, et al. Expires November 30, 2004 [Page 1]

Internet-Draft WIMP-F June 2004

 directly from an CID or AID theft. The ownerships can be provided in
 variable ways presented in other Multi6 drafts.

Table of Contents

1. Introduction . 4
2. Notational Conventions . 4
3. Cryptographic techniques used in WIMP-F 5
3.1 One-Way hash chain . 5
3.2 One-Way hash chain and message authentication 6
3.3 Chained bootstrapping 6
3.4 Secret splitting . 7

4. Protocol overview . 7
4.1 Wedge layer . 9
4.2 Translation between AIDs and Locators 9
4.3 Host-Pair Context . 10
4.4 Generating one-way hash chains 11
4.5 Context establishment exchange 12
4.5.1 State Loss . 14

 4.5.2 Identity theft or the initiator has lost its state? . 14
4.5.3 Responder has lost its state 16

4.6 Re-addressing exchange 18
5. Packets . 19
5.1 INIT - the context initiator packet 20
5.2 CC - the context check packet 20
5.3 CCR - the context check reply packet 20
5.4 CONF - the context confirm packet 21
5.5 BOOTSTRAP - The bootstrapping packet 21
5.6 AC - The address check packet 21
5.7 ACR - The address check reply packet 22
5.8 SYNC - The re-synchronization packet 22

6. Message formats . 22
6.1 Header format . 22
6.1.1 WIMP-F Controls 24
6.1.2 Checksum . 24

6.2 TLV format . 24
6.2.1 HMAC-INIT . 26
6.2.2 HMAC-CC . 27
6.2.3 HMAC-BOOTSTRAP . 28
6.2.4 HASHVAL . 29
6.2.5 ANCHOR . 29
6.2.6 CIDT . 30
6.2.7 CHALLENGE . 30
6.2.8 LSET . 31
6.2.9 KEY . 31

7. Packet processing . 33
7.1 Processing outgoing application data 33
7.2 Processing incoming application data 34

Ylitalo, et al. Expires November 30, 2004 [Page 2]

Internet-Draft WIMP-F June 2004

8. State Machine . 34
9. Security Considerations 38
9.1 Context establishment exchange 38
9.1.1 Man-in-the-Middle attacks 38
9.1.2 Denial-of-Service attacks 39
9.1.3 Cryptanalysis based on the state loss procedure . . . 39

9.2 Re-addressing exchange 40
10. IANA Considerations . 41
11. Acknowledgments . 41
12. References . 41
12.1 Normative references . 41
12.2 Informative references 41

 Authors' Addresses . 42
 Intellectual Property and Copyright Statements 43

Ylitalo, et al. Expires November 30, 2004 [Page 3]

Internet-Draft WIMP-F June 2004

1. Introduction

 The reason to name this draft as WIMP-F is that it relies on the same
 one-way hash chain procedures as the initial version of WIMP.
 However, this draft does not define new application layer identifiers
 (AIDs). The WIMP-F exchanges are designed to support any kind of
 128-bits AIDs and layer 3.5 context identifiers (CIDs). By default,
 the ownership of AIDs can be proved by the reachability test
 implemented by the context establishment exchange. A separate
 ephemeral CID layer 3.5 namespace can be used to protect host from
 CID theft.

 WIMP-F offers a context establishment and locator update exchanges
 for other Group-F identifiers. It protects hosts from re-direction
 attacks by supporting one-way hash chains. Other Group-F protocols
 applying WIMP-F are responsible for defining the properties of AIDs
 and CIDs

 WIMP-F defines a new service at the IP layer rather than a new layer
 in the stack. It assumes that AIDs are routable from their nature,
 and there is one-to-many binding between the AIDs and the locators.
 In other words, a single AID is bound to a IP layer locator set, but
 it still has a locator role also itself. In addition, the AID may
 also have cryptographical properties. If the AIDs are not
 cryptographical from their nature, it may be possible to apply the
 same framework also with IPv4 hosts. Therefore, the message
 structures are designed to support both IPv6 and IPv4 hosts.

 WIMP-F can be used to gradually update a legacy TCP connection to
 Multi6 enabled connection depending on the Group-F design.
 Furthermore, if WIMP-F protocol finds out that the responding party
 has already a state for context identifier -pair, the initiating
 party may change its context identifier or prove the identifier
 ownership using some strong authentication mechanism, depending on
 the type of context identifier.

2. Notational Conventions

 - 'I' is an initiator. The party that initiates an exchange is
 called an initiator.

 - 'R' is a responder.

 - Upper Layer Protocol (ULP). A protocol layer immediately above
 IP. Examples are transport protocols such as TCP and UDP, control
 protocols such as ICMP, routing protocols such as OSPF, and
 internet or lower-layer protocols being "tunneled" over (i.e.,
 encapsulated in) IP such as IPX, AppleTalk, or IP itself.

Ylitalo, et al. Expires November 30, 2004 [Page 4]

Internet-Draft WIMP-F June 2004

 - Application Identifier (AID). AID is a 128-bit routable IP
 locator which has been selected for communication with a peer to
 be used by the upper layer protocol. This is used for
 pseudo-header checksum computation and connection identification
 in the ULP.

 - Context Identifier (CID). CID-pair is used by the wedge layer
 to establish and identify the context during context establishment
 and address update exchanges. A 128-bit CID may be the same as
 the corresponding AID, or they may be separated from each other.

 - Context Identifier Tag (CIDT). CIDT together with a
 locator-pair are included in every payload packet to identify a
 context. E.g. in NOID, the flowid, and in HIP, the SPI value.
 CIDT is conceptually distinguished from the any specific field, so
 that it can be used with any payload extension header.

 - 'Ls' is a locator set consisting of L1, ... Ln.

 - 'Hk' is k:th hash value in the hash chain. 'H0' is the first
 revealed value, i.e. the "anchor" of the hash chain. Note that
 the parameter k defines the revealing order, not the computation
 order.

3. Cryptographic techniques used in WIMP-F

3.1 One-Way hash chain

 One-Way hash chain [7] is cryptographically generated list of data
 entities with some interesting characteristics. It is practically
 impossible to calculate or otherwise figure out the next value in the
 chain even when you know the previous value. However, it is very
 easy to verify whether some given value is the next value or not.

 The chain is created by recursively computing a hash function over a
 result of the same function. The initial argument for the first hash
 value computation is typically a large random number. The last
 generated value of the chain is called as the "anchor" or "root"
 value. The hash values are revealed in the reverse order starting
 from the anchor value.

 Hn = Hash(random number)
 Hn-1 = Hash(Hn)
 ...
 H0 = anchor = Hash(H1)

 CHAIN: H0,..,Hn

Ylitalo, et al. Expires November 30, 2004 [Page 5]

Internet-Draft WIMP-F June 2004

 This technique is usually based on an assumption that only an
 authentic end-point knows the correct successor values of the chain.
 In the bootstrapping process, the end-point computes a new hash chain
 and reveals the anchor value of the chain to its peer. It is
 important to notice that each hash chain MUST be used only once.

3.2 One-Way hash chain and message authentication

 Hashed Message Authentication Codes [2] are typically used to
 authenticate messages with a symmetric key. This requires,
 naturally, that all communicating peers share a secret.

 One-Way hash chain values can be used as keys in the delayed message
 authentication (see TESLA [6]). This is different from the shared
 secret scheme, because anybody who is able to receive the subsequent
 messages is able to verify that the messages belong together. The
 one-way hash chain value (key) used in the message authentication is
 not revealed before the next message. In other words, the peer is
 able verify the message only after it has received the next message.
 It is good to notice that a host must receive a confirmation message
 before sending the next message to avoid delay attacks. This
 procedure can be used to verify that all subsequent messages come
 from the same entity than the first message.

 A Man-in-the-Middle (MitM) attacker is not able to (unnoticeably)
 modify the messages after the first message in the exchange.
 However, an attacker may spoof the first message and use its own hash
 chain. The protocol is based on opportunistic principle where the
 peers trust that the initial message comes from the authentic host.

 A -> B: Msg1(A), HMAC(H1(A), Msg1(A))
 A <- B: Msg1(B), HMAC(H1(B), Msg1(B))
 A -> B: Msg2(A), H1(A), HMAC(H2(A), Msg2(A))
 A <- B: Msg2(B), H1(B), HMAC(H2(B), Msg2(B))
 ...
 A -> B: Msgn(A), Hn-1(A), HMAC(Hn(A), Msgn(A))
 A <- B: Msgn(B), Hn-1(A), HMAC(Hn(B), Msgn(B))
 A -> B: Hn(A)
 A <- B: Hn(B)

3.3 Chained bootstrapping

 In the basic model, each one-way hash chain is an independent entity.
 This is not a problem if the anchor of the chain can be
 authenticated, and if the hash chain is known to be long enough to
 have values to every message in the communication session. However,
 it is possible to use short hash chains to avoid extra computation.

Ylitalo, et al. Expires November 30, 2004 [Page 6]

Internet-Draft WIMP-F June 2004

 Basically, the bootstrapping message can be authenticated using
 public keys. In the WIMP-F approach, the peers do not authenticate
 the bootstrapping message with a signature, but they rely on the
 delayed message authentication. Two independently created one-way
 hash chains can be linked together with HMAC computation. The last
 value of the first one-way hash chain is used to authenticate the
 first value of the second chain:

 ...
 A -> B: Msgn, H0new, Hn-1, HMAC(Hn, Msgn || H0new)
 A <- B: (conf)
 A -> B: Msgn+1, Hn, HMAC(H1new, Msgn+1)
 A <- B: (conf)
 A -> B: Msgn+2, H1new, HMAC(H2new, Msgn+2)
 ...

3.4 Secret splitting

 In secret splitting [4][5], a secret is divided into several pieces.
 Any piece alone does not give enough information for an attacker to
 create the original secret. The only way to create the secret is to
 posses all the pieces. The splitting is done by generating
 random-bit strings, the same length as the original secret. The key
 splitting and secret reconstruction is done in the following way:

 Constructing key pieces:

 K_1 = nonce1
 ...
 K_k-1 = noncek-1
 K_k = SECRET XOR K_1 ... XOR K_k-1

 Combining the secret:

 SECRET = K_1 XOR ... XOR K_k

 Secret splitting is useful technique for storing secrets in two
 physical places, or for sending a secret to the other end-point using
 two or more parallel communication paths.

4. Protocol overview

 The framework consists of AIDs, CIDs, CIDTs, and IP layer locators.
 Each of them having a special role from the conceptual point of view.
 In addition, the framework consists of mechanisms and policies. The
 policies, like address selection policy, are out of this draft scope.
 The mechanism are used to establish a context and prove the ownership

Ylitalo, et al. Expires November 30, 2004 [Page 7]

Internet-Draft WIMP-F June 2004

 of the AID and the context. If AIDs are also used for wedge layer
 CIDs, there is no reason to separate these two mechanisms from each
 other, and AID ownership can be also used to prove the context
 ownership.

 WIMP-F supports, by default, locators without any cryptographical
 properties. The weak ownership of routable AID is provided by the
 implicit reachability during the context establishment. Otherwise,
 this draft leaves open the security properties of the routable AIDs
 and other mechanisms used to prove the ownership of the AID. It is
 good to notice that proving the ownership of AID is an essential
 mechanism in the final stand-alone Multi6 solution. However,
 routable AIDs may have ephemeral suffixes making the guessing of AIDs
 difficult for an attacker. However, in some cases it is not possible
 to have such a randomness. The ownership of an AID could be e.g.
 based on reverse DNS or public key based cryptography.

 The IP layer locators are included in the address fields in the IP
 packet headers. Further, each wedge 3.5 layer implementation must
 establish a state, i.e. a context, for AID-locator bindings. The
 context must be identified with some context identifier (CID) during
 context establishment exchange. However, to avoid overhead in packet
 sizes, it is possible to compress the CID and include a smaller CID
 tag (CIDT) in every payload packet. CIDT is used together with a
 locator-pair, in the IP header, to identify a context at the other
 end-point.

 The WIMP-F context establishment exchange is based on an
 opportunistic principle. That is, a host does not care who its peer
 is, as long as the peer is the same during the communication context
 lifetime. The trust between the peers is established using one-way
 hash chains during the initial exchange. The context owner is the
 owner of the hash chain. Basically, the CID is just an index that
 refers to a correct context. However, if an attacker is able to
 guess or otherwise figure out the initiator's CID, the host becomes
 vulnerable for context identifier theft. That is, an attacker tries
 to establish a state using the identifier of the initiator. However,
 it is possible to use ephemeral or cryptographically generated AIDs
 as CIDs. In the latter case, a public key signature field must be
 added (TBD) to the WIMP-F packet structures. In this case, the
 responder should verify the ownership of the AID only after an AID
 collision happens. Ephemeral port numbers helps to mitigate AID
 ownership problem. However, when AIDs are used for CIDs, such an
 extra randomness will disappear.

 To protect from redirection attacks the presented protocol relies on
 the ability to verify that the entity requesting redirection indeed
 holds the successor values of a hash chain and is able to combine a

Ylitalo, et al. Expires November 30, 2004 [Page 8]

Internet-Draft WIMP-F June 2004

 divided secret that is sent via parallel paths. WIMP-F offers
 context establishment and re-addressing exchanges. The exchanges are
 based on UDP, by default. The former exchange establishes a state
 for both communication end-points. The re-addressing exchange is
 used to implement reachability test and to update the locators
 belonging to the communicating parties.

4.1 Wedge layer

 +-----------------------------------+
 | Transport Protocols |
 +-----------------------------------+
 | AH | ESP | Frag/reass | Dest opts |
 +-----------------------------------+
 | Wedge layer |
 +-----------------------------------+
 | IP |
 ------------------------------------+

 Figure 1: Protocol stack

 The proposal uses a wedge layer between IP and the ULPs as shown in
 Figure 1, in order to provide ULP independence. Conceptually the
 wedge layer behaves as if it is an extension header, which would be
 ordered immediately after any hop-by-hop options in the packet.
 Layering AH and ESP above the wedge layer means that IPsec can be
 made to be unaware of locator changes the same way that transport
 protocols can be unaware. Thus the IPsec security associations
 remain stable even though the locators are changing. Layering the
 fragmentation header above the wedge makes reassembly robust in the
 case that there is broken multi-path routing which results in using
 different paths, hence potentially different source locators, for
 different fragments.

4.2 Translation between AIDs and Locators

 Applications and upper layer protocols use AIDs which the wedge layer
 will map to/from different locators. The wedge layer maintains
 state, called host-pair context, in order to perform this mapping.
 The mapping is performed consistently at the sender and the receiver,
 thus from the perspective of the upper layer protocols packets appear
 to be sent using AIDs from end to end, even though the packets travel
 through the network containing locators in the IP address fields, and
 even though those locators may be even rewritten in flight.

Ylitalo, et al. Expires November 30, 2004 [Page 9]

Internet-Draft WIMP-F June 2004

 +--------------------+ +--------------------+
Initiator		Responder		
ULP		ULP		
	src AID(I)		^	
	dst AID(R)			src AID(I)
v			dst AID(R)	
WEDGE		WEDGE		
	src L1(I)		^	
	dst L1(R)			src L1(I)
v			dst L1(R)	
IP		IP		
 +--------------------+ +--------------------+
 | ^
 +- cloud with some routers ----+

 Figure 2: Mapping identifiers to locators.

 The result of this consistent mapping is that there is no impact on
 the ULPs. In particular, there is no impact on pseudo-header
 checksums and connection identification.

4.3 Host-Pair Context

 The context establishment exchange establishes a state for both
 communication end-points. The initiator creates a host-pair context
 based on IDs and the locator set. The responder establishes a state
 after receiving the second message from the initiator.

 The context contains the following information:

 - Context identifiers.

 - Locator and locator status (e.g. if locator has been verified,
 and which locators are preferred for communication)

 - Hash chain information (e.g. parameters needed in the
 construction of hash chains, last used local chains values, and
 last known peer chain values)

 Every IP packet must contain information about the related host-pair
 context to find the the right one for the received packets.
 Basically, it is possible to add an extra extension header to each
 packet, containing a context identifier. This results into extra
 overhead in the payload packets. On the other hand, a Multi6
 protocol may include the context identifier into the IPv6 header
 using, e.g., flowid field (NOID), or SPI value (HIP). Each Multi6
 protocol defines own mechanism to map packets to Multi6 context.

Ylitalo, et al. Expires November 30, 2004 [Page 10]

Internet-Draft WIMP-F June 2004

 Thus, WIMP-F context establishment exchange supports variable size
 CIDTs.

4.4 Generating one-way hash chains

 The hash chains are needed by the initiator and the responder during
 the context establishment and re-addressing exchange. In addition,
 the initiator bootstraps a new hash chain during every re-addressing
 exchange.

 WIMP-F sets the following requirements for the hash chains
 generation:

 - Each hash chain MUST be bound to end-point identifiers, i.e.,
 CID(I) and CID(R).

 - Each hash chain MUST be bound to a local secret. Using the
 local secret the responder does not need to establish a state
 during the first round-trip in the context establishment exchange.
 In addition, the local secret, stored in a persistent memory
 system, solves the state loss problem. The responder SHOULD reuse
 the same local secret with multiple initiators to avoid
 establishing a state during the first round-trip.

 - Each hash chain MUST be bound to a random string, i.e., a
 challenge. The challenge makes each of the hash chains
 statistically unique and protects the hosts from attackers that
 try to find out hash chain values using spoofed identifiers. The
 challenge is initially generated by the host that constructs the
 related hash chain.

 Initiator:

 secret(I/R) = secret random number generated by I/R
 challenge(I/R) = public random number generate by I/R
 Hk(I/R) = hash chain value
 ID(I/R) = end-point identifier

 Hn(I) = SHA1(secret(I) || CID(I) || CID(R) || challenge(I))
 ...
 H1(I) = SHA1(H2(I))
 H0(I) = SHA1(H1(I))

 Responder:

 Hn(R) = SHA1(secret(R) || CID(R) || CID(I) || challenge(R))
 ...
 H1(R) = SHA1(H2(R))

Ylitalo, et al. Expires November 30, 2004 [Page 11]

Internet-Draft WIMP-F June 2004

 H0(R) = SHA1(H1(R))

 The default length of both of the hash chains should be n=10.
 Theoretically speaking, the minimum length of the hash chain is four
 (4) hash values. This will last for one context establishment
 exchange, and one re-addressing exchange for both directions. The
 re-addressing exchange includes a bootstrapping procedure where a new
 hash chain is created for the initiator. However, each unsuccessful
 re-addressing exchange attempt will require one more hash chain
 value. Failures in re-addressing exchange may be due to connection
 loss in some of the locators, or an active attack. A host should
 bootstrap a new hash chain at latest when it has only two hash values
 left.

4.5 Context establishment exchange

 The context establishment exchange bootstraps hash chains and creates
 a state between two end-points. The protocol uses delayed
 authentication procedure (see Section 3.2). The responder remains
 stateless during the first round-trip. At the end of the exchange
 both parties have a uniquely identifiable host-pair context
 containing the peer's anchor value.

 Initiator Responder

 Construct hash chain.
 Define CIDs and CIDT(I).

 INIT: CIDs, challenge(I), [challenge_old(R), Hn_old(R)],
 HMAC_INIT{H0(I), (CIDs || challenge(I) || CIDT(I) || Ls(I))}
 -------------------------->
 No host-pair context found.
 Generate challenge(R).
 Construct temporary hash chain.

 CC: CIDs, HMAC_INIT, challenge(R), H0(R), Ls(R),
 HMAC_CC{H1(R), (CIDs || HMAC_INIT || challenge(R) || Ls(R))}
 <-------------------------
 verify HMAC_INIT remain stateless

 CCR: CIDs, HMAC_INIT, challenge(R), H0(R), challenge(I),
 HMAC_CC, Ls(I), CIDT(I), H0(I)
 -------------------------->
 Reconstruct the hash chain.
 Verify HMAC_INIT and HMAC_CC.
 Define CIDT(R).
 CONF: CIDs, H1(R), CIDT(R)
 <--------------------------

Ylitalo, et al. Expires November 30, 2004 [Page 12]

Internet-Draft WIMP-F June 2004

 verify HMAC_CC

 WIMP-F can be used with routable AIDs without cryptographical
 properties, supporting separate ephemeral context identifier
 namespace. In such a case, the context establishment is based on
 opportunistic principle, and each host selects its context identifier
 during the exchange. INIT contains Initiator's CID, but Responder's
 CID is zero. Responder includes its CID in CC message.

 The initiator triggers the exchange by sending a context
 initialization message, INIT, to the responder. The INIT message
 contains the CIDs, a challenge of the initiator and a HMAC.
 Optionally, it contains also an old challenge and the last revealed
 hash chain value of the responder (discussed later in Section 4.5.3).

 The HMAC_INIT, having an anchor value as a key, is computed over the
 CIDs, the context identifier, the challenge and the locator set of
 the initiator. The context identifier and the locator set are sent
 later in the context check reply message (CCR). The optional values
 related to responder's old hash chain are not included into the
 HMAC_INIT computation.

 Once the responder receives the INIT message, it must check whether
 it has already a host-pair context for the CID -pair. If a host-pair
 context is found, the responder should assume that the initiator has
 lost its state (discussed later in Section 4.5.2). If the context is
 not found, but the INIT message contains responder's old challenge
 and old hash chain value, the responder should assume it has lost its
 state (discussed later in Section 4.5.3). In a typical case, when
 the context is not found, and the INIT message does not contains any
 optional values, the responder must continue the normal context
 establishment exchange.

 The responder must not establish a state after receiving the INIT,
 because it cannot verify the origin of the message. In order to
 remain stateless, the responder generates a fresh challenge and
 computes a temporary hash chain, as presented in Section 4.4. The
 context check (CC) message contains the CIDs, the received HMAC_INIT,
 the responder's challenge, the anchor value, and the locator set.
 The message is protected with the second value, H1(R), of responder's
 hash chain. The initiator should make reachability test for every
 received locator, in the Ls(R), before using it. (discussed later in

Section 4.6).

 The initiator replies to the CC message with a context check reply
 (CCR) message. The initiator proves that it was reachable at the
 specific location by including the HMAC_CC into the message. Using
 the responder's challenge and anchor value in the CCR message, the

Ylitalo, et al. Expires November 30, 2004 [Page 13]

Internet-Draft WIMP-F June 2004

 responder can reconstruct the hash chain. The CCR message contains
 the required information to establish a state and verify the
 HMAC_INIT and HMAC_CC. The anchor value, H0(I), binds also the INIT
 and CCR messages together. The responder should make a reachability
 test for every received locator, in the Ls(I), before using it
 (discussed later in Section 4.6).

 The responder must drop a CCR packet with an ID pair that already has
 a host pair-context. If the context is not found, the responder
 reconstructs a hash chain and verifies the HMAC_CC and HMAC_INIT (in
 this order). If the HMACs were valid, the responder creates a host
 pair context using the CIDs. It also selects a context identifier,
 CIDT(R), to be used in the payload packets. Finally, the responder
 replies with a context confirmation message (CONF) revealing the
 second hash value, H1(R).

 The initiator verifies the HMAC_CC using the hash chain value
 received in the CONF message, and finalizes its state.

4.5.1 State Loss

 The context establishment exchange has been designed in the way that
 it can be reused for secure re-synchronization. If a host receives a
 valid SYNC message, it should start a new handshake with the INIT
 message. The following scenarios describe the main use cases that
 are covered by the design:

 - The initiator does not have a host-pair context, but the
 responder already has one for the CIDs. Either some host (e.g.
 an attacker) is already using the the initiator's identifier,
 ID(I), or the initiator has earlier lost its state.

 - The initiator has a host-pair context, but the responder has
 lost its state.

4.5.2 Identity theft or the initiator has lost its state?

 If an initiator reboots or times out, it has lost its host-pair
 context. The host does not have any prior state and sends INIT (see
 Figure 10). If the responder finds out an active host-pair context
 corresponding the CIDs, it compares the received challenge(I) with
 the old challenge'(I) in the existing context. If the received
 challenge(I) is different than the old one, it replies with the SYNC
 message containing the initiator's old challenge'(I) and the latest
 revealed hash chain value Hk'(I). If the received challenge(I) value
 is the same with the old value, the responder replies with CC
 message.

Ylitalo, et al. Expires November 30, 2004 [Page 14]

Internet-Draft WIMP-F June 2004

 Once the initiator receives SYNC, it reconstructs the old hash chain
 using the challenge'(I) and verifies that the Hk'(I) is a valid value
 of that hash chain. If the verification fails the initiator MUST
 drop the packet. Either 1) the packet was sent by an attacker or 2)
 some other host is using the same ID(I). To protect from the former
 attack, the initiator SHOULD wait for a while to receive a valid CC
 or SYNC packet. Finally, if it does not receive a valid reply, it is
 possible that an attacker has established a host-pair context with
 the responder using the initiator's identifier (an identity theft).

 The initiator has different alternatives to continue the exchange,
 depending on the Group-F design. If possible, the initiator SHOULD
 change its (ephemeral) CID and restart the exchange. If the
 initiator is using a cryptographical identifier (e.g. HIT), it may
 prove the ownership with signature included into the WIMP-F packet
 (TBD) or start a public key based exchange (e.g. HIP base exchange),
 using the same ID(I), to prove to the responder that it is the
 authentic owner of the identifier.

 However, if the Hk'(I), received in SYNC, was a valid hash chain
 value, the initiator has probably lost its state. It SHOULD restart
 the context establishment exchange by sending a new INIT message,
 protected with a successor hash chain value, Hk+1'(I).

 Once the responder receives the INIT message and challenge'(I)
 matches with the one in the existing host-pair context, it replies
 with CC. The message contains the old last revealed Hn(R), and the
 corresponding challenge(R). The HMAC_RR is protected with the
 successor value Hn+1(R).

 The responder must drop the CCR message if the Hk+1'(I) verification
 fails. If Hk+1(I) is valid hash chain value the responder replies
 with CONF message, and reveals its successor hash chain value
 Hn+1(R).

 Initiator: Responder:

 Latest revealed value=Hk'(I) Latest revealed value=Hn(R).
 before state loss.

 Send fresh INIT message

 INIT: CIDs, challenge(I),
 HMAC_INIT{H0(I), (CIDs || CIDT(I) || challenge(I) || Ls(I))}
 -------------------------->
 Host-pair context found.
 No match with challenge'(I).

Ylitalo, et al. Expires November 30, 2004 [Page 15]

Internet-Draft WIMP-F June 2004

 SYNC: CIDs, challenge'(I), Hk'(I)
 <-------------------------

 Reconstruct old hash chain
 using challenge'(I).
 Verify Hk'(I).
 Restart exchange.

 INIT: CIDs, challenge'(I),
 HMAC_INIT{Hk+1'(I), (CIDs || CIDT(I) || challenge'(I) || Ls(I))}
 -------------------------->
 Host-pair context found.
 Match with challenge'(I).

 CC: CIDs, HMAC_INIT, challenge(R), Hn(R), Ls(R),
 HMAC_CC{Hn+1(R), (CIDs || HMAC_INIT || challenge(R) || Ls(R))}
 <-------------------------

 CCR: CIDs, CIDT(I), Hk+1'(I), challenge'(I), Hn(R),
 challenge(R), HMAC_INIT, HMAC_CC, Ls(I)
 -------------------------->
 verify Hk+1'(I)
 verify HMAC_INIT and HMAC_CC
 update host-pair context
 CONF: CIDs, Hn+1(R), CIDT(R)
 <--------------------------

 verify HMAC_CC
 update host-pair context

 Figure 10: Initiator has lost its state

4.5.3 Responder has lost its state

 If a system receives an IP packet that does not match with any
 host-pair context, the host has probably lost its state. The host
 replies with SYNC message containing the context identifier that was
 received in the IP packet (see Figure 11). Every IP packet must not
 trigger a new SYNC message. The SYNC reply frequency must be rate
 limited.

 Once a host receives a SYNC message containing only a context
 identifier, it should try to find a corresponding host-pair context.
 If a host-pair context is found the host should send an INIT message
 to verify whether the peer has lost its state. The initiator
 includes the last revealed hash chain value, Hn(R), and corresponding

Ylitalo, et al. Expires November 30, 2004 [Page 16]

Internet-Draft WIMP-F June 2004

 challenge(R) of the responder to the message. The initiator should
 not generate new hash chain for itself, but use the successor value,
 Hk+1(I), of the existing hash chain to protect the INIT message.

 If the responder has a host-pair context for the CIDs, the SYNC
 message was sent by an attacker, and the responder must drop the INIT
 message containing the old hash chain and challenge values. If the
 responder does not have a host-pair context for the CIDs, it should
 reconstruct the old hash chain. The responder must verify that the
 received hash chain value, Hn(R), is a valid member of the chain. If
 the verification fails the responder must drop the INIT message. If
 the Hn(R) is valid value, the responder includes the successor value,
 Hn+1(R), into CC message, to prove that it has really lost its state.
 The rest of the exchange is identical with the normal exchange, but
 the responder must reveal the successor value, Hn+2(R), in the CONF
 message.

 Initiator: Responder:

 Latest revealed value=Hk(I). Latest revealed value=Hn(R)
 before state loss.

 IP packet including CIDT(I)
 -------------------------->
 No host-pair context found
 SYNC: CIDT(I)
 <-------------------------
 Find host-pair context.
 Start exchange.

 INIT: CIDs, challenge(R), Hn(R),
 HMAC_INIT{Hk+1(I), (CIDs || CIDT(I) || challenge(I) || Ls(I))}
 -------------------------->
 No host-pair context found.
 Construct old hash chain
 using challenge(R).
 Verify Hn(R).

 CC: CIDs, HMAC_INIT, challenge(R), Hn+1(R), Ls(R),
 HMAC_CC{Hn+2(R), (CIDs || HMAC_INIT || challenge(R) || Ls(R))}
 <-------------------------
 verify Hn+1(R) remain stateless

 CCR: CIDs, CIDT(I), Hk+1(I), challenge(I), Hn+1(R),
challenge(R),
 HMAC_INIT, HMAC_CC, Ls(I)
 -------------------------->
 reconstruct the hash chain

 verify HMAC_INIT and HMAC_CC

Ylitalo, et al. Expires November 30, 2004 [Page 17]

Internet-Draft WIMP-F June 2004

 select CIDT(R)
 CONF: CIDs, Hn+2(R), CIDT(R)
 <--------------------------

 verify HMAC_CC
 update host-pair context

 Figure 11: Responder has lost its state

4.6 Re-addressing exchange

 Once the state has been completed, both hosts have a host-pair
 context. As a result, each host knows a locator set of its peer. It
 is good to notice that the responder may be multi-homed, even the
 initiator does not initially know all of the responder's locators.
 The hosts use re-addressing exchange to dynamically update their
 locator sets and to bootstrap hash chains.

 The initiating party of the context establishment exchange was called
 the initiator. Once the host-pair contexts are established, this
 initial distinction is lost. Thus, the sender of the BOOTSTRAP
 message is called the initiator of the re-addressing exchange.

 Initiator Responder

 construct new hash chain

 BOOTSTRAP: CIDs, Ls(I), Hn(I), H0_new(I), challenge(I),
 HMAC{Hn+1(I),(CIDs || Ls(I) || H0_new(I) || challenge(I))}
 -------------------------->
 Verify H1(I).
 Generate a divided secret of Hk(R).
 Send AC per locator to be verified.

 AC1: CIDs, Key_count, Key_mask, key_piece, challenge(I)
 ... <-------------------------
 ACn <-------------------------

 combine the key pieces
 verify the combined key

 ACR: CIDs, Key_combined, Key_mask, Hn+1(I)
 -------------------------->
 verify the combined key Hk(R)
 verify HMAC

 The re-addressing exchange is a three-way handshake. The BOOTSTRAP

Ylitalo, et al. Expires November 30, 2004 [Page 18]

Internet-Draft WIMP-F June 2004

 message has two purposes. First, it informs the responder about the
 currently active locator set. Second, it bootstraps a new hash
 chain.

 Once the responder receives a BOOTSTRAP message, it verifies that the
 hash chain value, Hn(I), belongs to the initiator. In addition, the
 responder stores the initiator's new anchor value, H0_new(I), into
 the host-pair context. (Note: a host may verify locators after the
 context establishment exchange by directly sending AC messages to the
 peer).

 The responder divides its next unused hash chain value, Hk(R), into
 pieces using the secret splitting technique (See Section 3.4). The
 responder MAY verify the locators in the locator set on demand basis
 or all at once. In the latter case, the hash chain value is divided
 into as many parts as the were locators in the received locator set.
 The responder defines a key mask for each of the key pieces (see

Section 6.2.9). The key mask will later allow the responder to check
 if all pieces reached the initiator. It is possible that the
 initiator is not reachable via all of the locators in the locator
 set.

 The responder sends one address check message (AC) per locator that
 it wants to verify. Each AC message contains one piece of the
 divided Hk(R). The initiator should wait a while (TBD) for the
 upcoming AC messages. The key count in every AC packet defines the
 total amount of pieces, sent by the responder.

 If the initiator receives all the pieces of the hash chain value, it
 should verify that the combined pieces form a successor value of the
 responder's hash chain. Otherwise, the initiator MAY stop the
 re-addressing exchange. The initiator makes an OR-operation with all
 of the received key masks and includes the result of the operation
 with the combined key to the address check reply message (ACR). The
 ACR message includes also hash chain value, Hn+1(I) that was used to
 protect the HMAC.

 The responder identifies the locators which were reachable, using the
 combined key and the key mask. The responder authenticates also the
 BOOTSTRAP message with hash chain value, Hn+1. Finally, the
 responder marks the verified locators valid in the host-pair context.

5. Packets

 There are eight basic WIMP-F packets. Four are for the context
 establishment exchange, and three are for re-addressing, and one is
 for re-synchronization.

Ylitalo, et al. Expires November 30, 2004 [Page 19]

Internet-Draft WIMP-F June 2004

 Packets consist of the fixed header as described in Section 6.1,
 followed by parameters. The parameter part, in turn, consists of
 zero or more TLV coded parameters.

 Packet representation uses the following operations:

 () parameter
 [] optional parameter

 An upper layer payload MAY follow the WIMP-F header. The payload
 proto field in the header indicates if there is additional data
 following the WIMP-F header.

5.1 INIT - the context initiator packet

 The WIMP-F header values for the INIT packet:

 Header:
 Packet Type = 1
 SRC CID = Initiator's CID
 DST CID = Responder's CID

 IP(WIMP-F (CHALLENGE(I), HMAC-INIT, [CHALLENGE(R), HASVAL(R)]))

 Valid control bits: P

5.2 CC - the context check packet

 The WIMP-F header values for the CC packet:

 Header:
 Packet Type = 2
 SRC CID = Responder's CID
 DST CID = Initiator's CID

 IP (WIMP-F (CHALLENGE(R), HASVAL(R), LSET(R), HMAC-INIT, HMAC-CC))

 Valid control bits: P

 The CIDs MUST be the same as received in INIT.

 The responder copies the HMAC-INIT TLV from the INIT message to the
 CC message.

5.3 CCR - the context check reply packet

 The WIMP-F header values for the CCR packet:

Ylitalo, et al. Expires November 30, 2004 [Page 20]

Internet-Draft WIMP-F June 2004

 Header:
 Type = 3
 SRC CID = Initiator's CID
 DST CID = Responder's CID

 IP (WIMP-F (HASHVAL(I), HASHVAL(R), CIDT(I), CHALLENGE(I),
CHALLENGE(R),
 LSET(I), HMAC-INIT, HMAC-CC))

 Valid control bits: P

 The CIDs used MUST match the ones used in the INIT and CC messages.

 The Initiator copies the HMAC-INIT, and HMAC-CC TLVs from the CC
 message to the CCR message.

5.4 CONF - the context confirm packet

 The WIMP-F header values for the CONF packet:

 Header:
 Packet Type = 4
 SRC CID = Responder's CID
 DST CID = Initiator's CID

 IP (WIMP-F (HASHVAL(R), CIDT(R)))

 Valid control bits: P

 The CIDs used MUST match the ones used in the CCR message.

5.5 BOOTSTRAP - The bootstrapping packet

 The WIMP-F header values for the BOOTSTRAP packet:

 Header:
 Packet Type = 10
 SRC CID = Initiator's CID
 DST CID = Responder's CID

 IP (WIMP-F (LSET(I), HASHVAL(I), ANCHOR(I), CHALLENGE(I), HMAC-
BOOTSTRAP))

 Valid control bits: P

5.6 AC - The address check packet

 The WIMP-F header values for the AC packet:

Ylitalo, et al. Expires November 30, 2004 [Page 21]

Internet-Draft WIMP-F June 2004

 Header:
 Packet Type = 11
 SRC CID = Responder's CID
 DST CID = Initiator's CID

 IP (WIMP-F (KEY(R), CHALLENGE(I)))

 Valid control bits: P

 The responder copies the CHALLENGE(I) from the BOOTSTRAP message to
 the AC message(s)

5.7 ACR - The address check reply packet

 The WIMP-F header values for the AC packet:

 Header:
 Packet Type = 20
 SRC CID = Initiator's CID
 DST CID = Responder's CID

 IP (WIMP-F (KEY(I), HASHVAL(I)))

 Valid control bits: P

 The KEY TLV is constructed of the received key pieces and their key
 masks.

5.8 SYNC - The re-synchronization packet

 The WIMP-F header values for the SYNC packet:

 Header:
 Packet Type = 12
 SRC CID = Initiator's CID
 DST CID = Responder's CID

 IP (WIMP-F (CIDT(I), [CHALLENGE(I), HASHVAL(I)]))

 Valid control bits: -

6. Message formats

6.1 Header format

 All WIMP-F packets start with a fixed header.

Ylitalo, et al. Expires November 30, 2004 [Page 22]

Internet-Draft WIMP-F June 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Header | Payload Len | Type | VER. | RES. |
 +-+
 | Controls | Checksum |
 +-+
 | Sender's Identifier (CID) |
 | |
 | |
 | |
 +-+
 | Receiver's Identifier (CID) |
 | |
 | |
 | |
 +-+
 | |
 / WIMP-F Parameters /
 / /
 | |
 +-+

 The WIMP-F header is carried in UDP payload followed by a next header
 that is defined in Next Header field. If no next headers follow, the
 decimal 59, IPPROTO_NONE, the IPV6 no next header value, is used.

 The Header Length field contains the length of the WIMP-F header and
 the length of parameters in 8 bytes units, excluding the first 8
 bytes. Since all WIMP-F headers MUST contain the sender's and
 receiver's CID fields, the minimum value for this field is 4, and
 conversely, the maximum length of the WIMP-F Parameters field is
 (255*8)-32 = 2008 bytes.

 The Packet Type indicates the WIMP-F packet type. The individual
 packet types are defined in the relevant sections. If a WIMP-F host
 receives a packet that contains an unknown packet type, it MUST drop
 the packet.

 The Version is four bits. The current version is 1. The version
 number is expected to be incremented only if there are incompatible
 changes to the protocol. Most extensions can be handled by defining
 new packet types, new parameter types, or new controls.

 The following four bits are reserved for future use. They MUST be
 zero when sent, and they SHOULD be ignored when handling a received
 packet.

Ylitalo, et al. Expires November 30, 2004 [Page 23]

Internet-Draft WIMP-F June 2004

 The CID fields are always 128 bits (16 bytes) long.

6.1.1 WIMP-F Controls

 The WIMP-F control section transfers information about the structure
 of the packet and capabilities of the host.

 The following fields have been defined:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | | | | | | | | | | |P| | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 P - Piggy backing The sending host is capable of sending and
 receiving additional data in WIMP-F packets.

 The rest of the fields are reserved for future use and MUST be set to
 zero on sent packets and ignored on received packets.

6.1.2 Checksum

 If WIMP-F messages are sent in UDP datagrams the checksum field in
 the WIMP-F header is set to zero.

 If WIMP-F messages are implemented as IP extension headers, the
 checksum is calculated in the following way. The pseudo-header [1]
 contains the source and destination IPv6 addresses, WIMP-F packet
 length in the pseudo-header length field, a zero field, and the
 WIMP-F protocol number (TBD) in the Next Header field. The length
 field is in bytes and can be calculated from the WIMP-F header length
 field: (WIMP-F Header Length + 1) * 8.

6.2 TLV format

 The TLV encoded parameters are described in the following
 subsections. The type-field value also describes the order of these
 fields in the packet. The parameters MUST be included into the
 packet so that the types form an increasing order. If the order does
 not follow this rule, the packet is considered to be malformed and it
 MUST be discarded.

 All the TLV parameters have a length which is a multiple of 8 bytes.
 When needed, padding MUST be added to the end of the parameter so
 that the total length becomes a multiple of 8 bytes. This rule
 ensures proper alignment of data. If padding is added, the Length
 field MUST NOT include the padding. Any added padding bytes MUST be
 set zero by the sender, but their content SHOULD NOT be checked on
 the receiving end.

Ylitalo, et al. Expires November 30, 2004 [Page 24]

Internet-Draft WIMP-F June 2004

 Consequently, the Length field indicates the length of the Contents
 field (in bytes). The total length of the TLV parameter (including
 Type, Length, Contents, and Padding) is related to the Length field
 according to the following formula:

 Total Length = 11 + Length - (Length + 3) % 8;

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type |C| Length |
 +-+
 | |
 / Contents /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

 Type Type code for the parameter
 C Critical. One if this parameter is critical, and
 MUST be recognized by the recipient, zero otherwise.
 The C bit is considered to be a part of the Type field.
 Consequently, critical parameters are always odd
 and non-critical ones have an even value.
 Length Length of the parameter, in bytes.
 Contents Parameter specific, defined by Type
 Padding Padding, 0-7 bytes, added if needed

 Critical parameters MUST be recognized by the recipient. If a
 recipient encounters a critical parameter that it does not recognize,
 it MUST NOT process the packet any further.

 Non-critical parameters MAY be safely ignored. If a recipient
 encounters a non-critical parameter that it does not recognize, it
 SHOULD proceed as if the parameter was not present in the received
 packet.

Ylitalo, et al. Expires November 30, 2004 [Page 25]

Internet-Draft WIMP-F June 2004

6.2.1 HMAC-INIT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | |
 | HMAC |
 | |
 | |
 | |
 +-+

 Type 65500
 Length 20
 HMAC
 HMAC-SHA1 is computed over:
 - WIMP-F common header,
 - CIDT TLV, of the initiator,
 - LSET TLV, of the initiator
 - CHALLENGE TLV, of the initiator,

 excluding the HMAC-INIT TLV. The checksum field MUST
 be set to zero and the WIMP-F header length in the WIMP-F
 common header MUST be calculated to cover all the included
 parameters when the HMAC-SHA1 is calculated. The key is
 the first unrevealed hash value of the Initiator.

 HMAC-INIT calculation and verification process:

 INIT message sender:

 1. Create the INIT message, containing CIDT, LSET and CHALLENGE
 TLVs, without the HMAC-INIT TLV.

 2. Calculate the length field in the WIMP-F header.

 3. Compute the HMAC-SHA1.

 4. remove the CIDT and LSET TLVs.

 5. Add the HMAC-INIT TLV and optional TLVs to the packet.

 6. Recalculate the length field in the WIMP-F header.

 CCR message receiver:

Ylitalo, et al. Expires November 30, 2004 [Page 26]

Internet-Draft WIMP-F June 2004

 1. Create the INIT message, containing CIDT, LSET and CHALLENGE
 TLVs, without the HMAC-INIT TLV.

 2. Calculate the length in the WIMP-F header and clear the checksum
 field (set it to all zeros).

 3. Compute the HMAC-SHA1 and verify it against the received
 HMAC-INIT TLV.

6.2.2 HMAC-CC

 The TLV structure is the same as in Section 6.2.1. The fields are:

 Type 65502
 Length 20
 HMAC
 HMAC-SHA1 is computed over:
 - WIMP-F common header.
 - HMAC-INIT TLV, received in the INIT message,
 - CHALLENGE TLV, of the responder,
 - LSET TLV, of the responder,

 excluding the HMAC-CC parameter. The checksum field MUST
 be set to zero and the WIMP-F header length in the WIMP-F
 common header MUST be calculated to cover all the included
 parameters when the SHA1 is calculated. The key is the
 the first unrevealed hash value of the responder.

 HMAC-CC calculation and verification process:

 CC message sender:

 1. Create the CC message, containing HMAC-INIT, CHALLENGE and LSET
 TLVs, without HMAC-CC TLV.

 2. Calculate the length field in the WIMP-F header.

 3. Compute the HMAC-SHA1.

 4. Add the HMAC-CC TLV and HASVAL TLV to the packet.

 5. Recalculate the length field in the WIMP-F header.

 CCR and CONF message receiver:

Ylitalo, et al. Expires November 30, 2004 [Page 27]

Internet-Draft WIMP-F June 2004

 1. Create the CC message, containing HMAC-INIT, CHALLENGE and LSET
 TLVs, without HMAC-CC and HASHVAL TLVs.

 2. Calculate the length field in the WIMP-F header and clear the
 checksum field (set it to all zeros).

 3. Compute the HMAC-SHA1 and verify it against the received HMAC-CC.

6.2.3 HMAC-BOOTSTRAP

 The TLV structure is the same as in Section 6.2.1. The fields are:

 Type 65504
 Length 20
 HMAC
 HMAC-SHA1 is computed over:
 - WIMP-F common header,
 - LSET TLV, of the initiator,
 - ANCHOR TLV, of the initiator,
 - CHALLENGE TLV, of the initiator,

 excluding the HMAC-BOOTSTRAP parameter. The checksum
 field MUST be set to zero and the WIMP-F header length
 in the WIMP-F common header MUST be calculated to cover
 all the included parameters when the SHA1 is calculated.
 The key is the first unrevealed hash value of the
initiator's
 hash chain.

 HMAC-BOOTSTRAP calculation and verification process.

 BOOTSTRAP message sender:

 1. Create the BOOTSTRAP message, containing LSET, ANCHOR, and
 CHALLENGE TLVs, without HMAC-BOOTSTRAP and HASHVAL TLVs.

 2. Calculate the length field in the WIMP-F header.

 3. Compute the HMAC-SHA1.

 4. Add the HMAC-CC and HASHVAL TLVs to the packet.

 5. Recalculate the length field in the WIMP-F header.

 ACR message receiver:

Ylitalo, et al. Expires November 30, 2004 [Page 28]

Internet-Draft WIMP-F June 2004

 1. Create the BOOTSTRAP message, containing LSET, ANCHOR, and
 CHALLENGE TLVs, without HMAC-BOOTSTRAP and HASHVAL TLVs.

 2. Calculate the length field in the WIMP-F header and clear the
 checksum field (set it to all zeros).

 3. Compute the HMAC-SHA1 and verify it against the received
 HMAC-BOOTSTRAP.

6.2.4 HASHVAL

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Chain ID | Count |
 +-+
 | reserved |
 +-+
 | |
 | |
 | Hash |
 | |
 | |
 | |
 +-+

 Type 12
 Length 28
 Chain ID Identifier of the Hash Chain.
 Count The number of a hash chain value in the hash chain.
 zero means an anchor value.
 Reserved Zero when sent, ignored when received
 Hash 160 bit SHA1 hash value.

6.2.5 ANCHOR

 The TLV structure is the same as in Section 6.2.4. The fields are:

 Type 10
 Length 28
 Count 0 (an anchor value).
 Reserved Zero when sent, ignored when received
 Hash 160 bit SHA1 hash value.

Ylitalo, et al. Expires November 30, 2004 [Page 29]

Internet-Draft WIMP-F June 2004

6.2.6 CIDT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Context ID | padding |
 +-+

 Type 16
 Length (variable)
 Context ID context identifier (e.g. flowid or SPI)

6.2.7 CHALLENGE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | Challenge |
 | |
 | |
 | |
 +-+

 Type 20
 Length 20
 Reserved Zero when sent, ignored when received
 Challenge 128 bit (16 bytes) random number

Ylitalo, et al. Expires November 30, 2004 [Page 30]

Internet-Draft WIMP-F June 2004

6.2.8 LSET

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | Locator #1 |
 / /
 | |
 +-+
 / ... /
 +-+
 | Locator #n |
 / /
 | |
 +-+

 Type 22
 Length variable
 Reserved Zero when sent, ignored when received
 Locator IPv6 address (or IPv4 address in IPv6 format)

6.2.9 KEY

Ylitalo, et al. Expires November 30, 2004 [Page 31]

Internet-Draft WIMP-F June 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Chain ID | Hash count |
 +-+
 | AC ID | Key Count |
 +-+
 | Reserved |
 +-+
 | Key mask |
 +-+
 | Key piece 160 bit (AC message) / |
 / Combined key 160 bit (ACR message) /
 | |
 +-+

 Type 26
 Length 40
 Reserved Zero when sent, ignored when received
 Chain ID Identifier of the Hash Chain.
 Hash Count The number of a hash chain value in the responder's
 hash chain. The hash chain value that is divided into key
 pieces.
 AC ID An increasing counter that identifies the exchange with
CIDs.
 Key count The total number of key pieces sent/received
 Key Mask
 +-+
 |
 +-+
 The responder defines a bit in the mask for a key piece.

 Key piece A hash chain value is divided into (160 bit) key pieces
 by the responder.
 Combined key The initiator constructs a combined key using the key
 pieces.

 The AC ID is related to a divided secret, i.e., a hash chain value.
 Every key piece related to that value must have the same AC ID.

 Responder sending AC message:

 The key count field value in the AC packet is the total number of key
 pieces sent by the responder, i.e. the total number of AC packets.
 Each KEY-MASK TLV in one AC packet contains a key piece having a
 corresponding bit on in the key mask field

Ylitalo, et al. Expires November 30, 2004 [Page 32]

Internet-Draft WIMP-F June 2004

 (Note: The responder is able to make a reachability test maximum for
 32 locators per divided key. However, it typically verifies the
 locators on demand basis.)

 Initiator sending ACR message:

 The initiator makes an OR -operation for all received key masks in
 the AC packets. The result of the operation is included in the
 KEY-MASK TLV in the ACR message.The key count field in KEY-MASK TLV
 in the ACR message indicates the number of key pieces the initiator
 received from the responder. The combined key is included into the
 KEY-MASK TLV.

7. Packet processing

7.1 Processing outgoing application data

 In an WIMP-F host, an application can send application level data
 using AIDs as source and destination identifiers. However, whenever
 there is such outgoing data, the stack has to send the resulting
 datagram using appropriate source and destination IP addresses.

 The following steps define the conceptual processing rules for
 outgoing datagrams destinated to a AID(R).

 1. If the datagram has a specified source AID(I), it MUST be one of
 the locators.

 2. If the datagram has an unspecified AID(I), the implementation
 MUST choose a suitable source AID(I) for the datagram. In
 selecting a proper AID(I), the implementation MUST consult the
 table of currently active WIMP-F sessions, and preferably select
 an AID(I) that already has an active session with the target
 AID(R).

 3. If there is no active WIMP-F session with the AID(R), one may be
 created by running the context establishment exchange. The INIT
 packet is sent to the AID(R). The host selects a CID(I) and
 optionally CID(R) for the context establishment exchange. At
 latest, the context must be established when the AID(I) differs
 from the selected source locator.

 4. Once there is an active WIMP session for the given AID(R), the
 AID(R) must match one of the locators in the context. The CIDs
 are represented by CIDTs in the IP payload packets.

 5. The AIDs in the datagram are replaced with suitable locators.

Ylitalo, et al. Expires November 30, 2004 [Page 33]

Internet-Draft WIMP-F June 2004

7.2 Processing incoming application data

 Incoming WIMP-F datagrams arrive as normal IP packets containing
 CIDT. In the usual case the receiving host has a corresponding
 host-pair context, identified by the CIDT and a locator-pair in the
 packet. However, if the host has crashed or otherwise lost its
 state, it may not have such a host-pair context.

 The following steps define the conceptual processing rules for
 incoming datagrams targeted to a WIMP-F host-pair context.

 1. If the packet does not contains CIDT, it is sent to the upper
 layer without processing.

 2. If a proper host-pair context is detected, using the CIDT and
 locator-pair, the packet is processed by the wedge layer. If
 there are no host-pair context identified with the specific CIDT,
 the host MAY reply with a SYNC packet.

 3. If a proper host-pair context is found, the packet is processed
 by WIMP-F. The locators in the datagram are replaced with the
 AIDs associated with the host-pair context.

8. State Machine

 Each host is assumed to have a separate WIMP-F implementation that
 manages the host-pair contexts and handles requests for new ones.
 Each host-pair context is governed by a state machine. WIMP-F
 implementation can simultaneously maintain host-pair contexts with
 more than one host. Furthermore, WIMP-F implementation may have more
 than one active host-pair context with another host; in this case,
 host-pair contexts are distinguished by their respective CIDs. It is
 not possible to have more than one host-pair contexts between any
 given pair of CIDs. Consequently, the only way for two hosts to have
 more than one parallel associations is to use different CIDs, at
 least in one end.

 The processing of packets depends on the state of the host-pair
 context(s) with respect to the originator of the packet. A WIMP-F
 implementation determines whether it has an active association with
 the originator of the packet based on the CIDs or the context
 identifier, CIDT, in the IP packet.

 The state machine is presented in a single system view, representing
 either an Initiator or a Responder. There is not a complete overlap
 of processing logic here and in the packet definitions. Both are
 needed to completely implement WIMP-F.

Ylitalo, et al. Expires November 30, 2004 [Page 34]

Internet-Draft WIMP-F June 2004

 Implementors must understand that the state machine, as described
 here, is informational. Specific implementations are free to
 implement the actual functions differently.

 States:

 START , state machine start

 INIT-sent , INIT sent by initiator

 CCR-sent , CCR sent by initiator

 ESTABLISHED , host-pair context established

 ESTABLISHED-BOOTSTRAP-sent , BOOTSTRAP sent

 ESTABLISHED-AC-sent , AC sent without receiving BOOTSTRAP message.

 FAILED , host-pair context establishment failed

 State Processes:

 +---------+
 | START |
 +---------+

 Context establishment request, send INIT and go to INIT-send
 Receive INIT, send CC and stay at START
 Receive CCR, process
 if successfull, send CONF and go to ESTABLISHED
 if fail, stay at START
 Receive IP packet without context, send SYNC and stay at START
 Receive ANYOTHER, drop and stay at START

 +-----------+
 | INIT-sent |
 +-----------+

 Receive INIT, send CC and stay at INIT-sent
 Receive CCR, process
 if successful, send CONF and go to ESTABLISHED
 if fail, stay at INIT-sent
 Receive CC, process
 if successful, send CCR and go to CCR-sent
 if fail, stay at INIT-sent
 Receive SYNC, process
 if successful, send INIT, and stay at INIT-sent
 if fail, change CID(I), send INIT, and stay at INIT-sent, or

Ylitalo, et al. Expires November 30, 2004 [Page 35]

Internet-Draft WIMP-F June 2004

 if fail, start another exchange supporting strong authentication,
 and stay at INIT-sent, or
 if fail, go to FAILED
 Receive ANYOTHER, drop and stay at INIT-sent
 Timeout, increment timeout counter
 If counter is less than INIT_RETRIES_MAX, send INIT,
 and stay at INIT-sent
 If counter is greater than INIT_RETRIES_MAX, go to FAILED

 +----------+
 | CCR-sent |
 +----------+

 Receive INIT, send CC and stay at CCR-sent
 Receive CCR, process
 if successful, send CONF and go to ESTABLISHED
 if fail, stay at CCR-SENT
 Receive CONF, process
 if successful, go to ESTABLISHED
 if fail, stay at CCR-SENT
 Receive ANYOTHER, drop and stay at CCR-sent
 Timeout, increment timeout counter
 If counter is less than CCR_RETRIES_MAX, send CCR and stay at CCR-sent
 If counter is greater than CCR_RETRIES_MAX, go to FAILED

 +-------------+
 | ESTABLISHED |
 +-------------+

 BOOTSTRAP to send, go to ESTABLISHED-BOOTSTRAP-sent
 AC to send, go to ESTABLISHED-AC-sent
 Receive BOOTSTRAP, process
 if successful, send AC(s), and stay at ESTABLISHED
 if fail, drop, and stay at ESTABLISHED
 Receive AC, process
 if successful, send ACR, and stay at ESTABLISHED
 if fail, drop and stay at ESTABLISHED
 Receive ACR, process
 if successful, update context, and stay at ESTABLISHED
 if fail, drop, and stay at ESTABLISHED
 Receive IP packet for context, process and stay at ESTABLISHED
 Receive SYNC, process
 if successful, send INIT, and stay at ESTABLISHED
 if fail, drop, and stay at ESTABLISHED
 Receive CC, process
 if successful, update context, send CCR, and stay at ESTABLISHED
 if fail, drop, and stay at ESTABLISHED
 Receive CONF, process

Ylitalo, et al. Expires November 30, 2004 [Page 36]

Internet-Draft WIMP-F June 2004

 if successful, update context, and stay at ESTABLISHED
 if fail, drop, and stay at ESTABLISHED
 Receive ANYOTHER, drop and stay at ESTABLISHED

 +-----------------------------+
 | ESTABLISHED-BOOTSTRAP-sent | (for full re-addresing exchange)
 +-----------------------------+
 Receive AC, process
 if successful, send ACR, and go to ESTABLISHED
 if fail, drop and cycle at ESTABLISHED-BOOTSTRAP-sent
 Receive BOOTSTRAP, process
 if successful, send AC(s), and stay at ESTABLISHED-BOOTSTRAP-sent
 if fail, drop, and stay at ESTABLISHED-BOOTSTRAP-sent
 Receive ACR, process
 if successful, update context, and stay at
 ESTABLISHED-BOOTSTRAP-sent
 if fail, drop, and stay at ESTABLISHED-BOOTSTRAP-sent
 Receive SYNC, process
 if successful, send INIT, and stay at ESTABLISHED-BOOTSTRAP-sent
 if fail, drop, and stay at ESTABLISHED-BOOTSTRAP-sent
 Receive CC, process
 if successful, update context, send CCR, and go to ESTABLISHED
 if fail, drop, and stay at ESTABLISHED-BOOTSTRAP-sent
 Receive IP packet for context, process and stay at ESTABLISHED-BOOTSTRAP-
sent
 Receive ANYOTHER, drop and stay at ESTABLISHED-BOOTSTRAP-sent
 Timeout, increment timeout counter
 If counter is less than BOOTSTRAP_RETRIES_MAX,
 send BOOTSTRAP to another locator,
 and stay at ESTABLISHED-BOOTSTRAP-sent
 If counter is greater than BOOTSTRAP_RETRIES_MAX, go to FAILED

 +----------------------+
 | ESTABLISHED-AC-sent | (for dynamic AC-ACR reachability test)
 +----------------------+
 Receive AC, process
 if successful, send ACR, and stay at ESTABLISHED-AC-sent
 if fail, drop and cycle at ESTABLISHED-AC-sent
 Receive BOOTSTRAP, process
 if successful, send AC, and stay at ESTABLISHED-AC-sent
 if fail, drop, and stay at ESTABLISHED-AC-sent
 Receive ACR, process
 if successful, update context, and go to ESTABLISHED
 if fail, drop, and stay at ESTABLISHED-AC-sent
 Receive SYNC, process
 if successful, send INIT, and stay at ESTABLISHED-AC-sent
 if fail, drop, and stay at ESTABLISHED-AC-sent
 Receive CC, process

 if successful, update context, send CCR, and go to ESTABLISHED

Ylitalo, et al. Expires November 30, 2004 [Page 37]

Internet-Draft WIMP-F June 2004

 if fail, drop, and stay at ESTABLISHED-AC-sent
 Receive IP packet for context, process and stay at ESTABLISHED-AC-sent
 Receive ANYOTHER, drop and stay at ESTABLISHED-AC-sent
 Timeout, increment timeout counter
 If counter is less than AC_RETRIES_MAX, send AC to another locator,
 and stay at ESTABLISHED-AC-sent
 If counter is greater than AC_RETRIES_MAX, go to FAILED

9. Security Considerations

 The main objective in WIMP-F is to use one-way hash chains instead of
 public key cryptography. The reason for this is that there exists
 already a group of authenticated Diffie-Hellman key exchange
 protocols. Protocols using public key cryptography are often
 vulnerable for different kind of CPU related denial-of-service
 attacks. The trade-off between hash chain based message
 authentication and signatures is that the former is vulnerable for a
 class of man-in-the-middle attacks. However, if we accept that the
 first round-trip of the context establishment exchange is open for
 such attacks we obtain several advantages. The hash chain and HMAC
 computation are very lightweight operations compared to public key
 signing and signature verification.

9.1 Context establishment exchange

9.1.1 Man-in-the-Middle attacks

 The context establishment exchange is based on opportunistic
 authentication. In other words, both hosts, the initiator and the
 responder, blindly trust to each other during the first round-trip.
 The responder trusts that the INIT message comes from an authentic
 initiator. In a similar way, the initiator trusts that the CC
 message comes from an authentic responder. Thus, the first
 round-trip is vulnerable for the MitM attacks.

 Basically, the first round-trip of the exchange also bootstraps the
 hash chains. The initiator's anchor is sent in the third message,
 but the HMAC binds the first and the third messages together. A MitM
 attacker cannot later change any values in the CCR message, because
 the parameters are authenticated with the initiator's HMAC-INIT.
 Further, the HMAC-INIT is protected with the responder's HMAC-CC. In
 this way, the responder does not need to establish a state once it
 receives INIT message.

 An eavesdropper, listening INIT messages, cannot reserve a host-pair
 context by sending CCR message before the initiator, because the
 HMACs bind the messages together. Basically, the hash chains have

Ylitalo, et al. Expires November 30, 2004 [Page 38]

Internet-Draft WIMP-F June 2004

 two main purposes. They bind messages together, and they are used
 for authentication. The hash chain properties were discussed in more
 detail in Section 3.

9.1.2 Denial-of-Service attacks

 The initiator may use any kind of identifier, CID(I), it wants with
 the responder, an ephemeral or a fixed identifier. The ephemeral
 identifier protects the initiator from a specific form of DoS attack.
 That is, an attacker cannot guess the initiator's identifier and
 reserve a state at the responder. If the initiator decides to use
 fixed identifiers it MAY need prove to the responder, using public
 key cryptography, that it owns the identifier.

 The beginning of the WIMP-F context establishment exchange is
 stateless for the responder, in order to avoid attacks where the
 attacker is trying to create inconsistent states at the responder.
 The responder makes a kind of reachability test before establishing a
 state with the initiator. The initiator has to prove that it is
 reachable at the location where it sent the initial packet. The
 responder MAY optionally restrict establishing a host-pair context
 with CID(I) if the responder already has several host-pair contexts
 related to the corresponding locator. This restrictions reduces the
 need of using any challenge puzzle (See HIP) in the CC message.

 The context establishment protocol is vulnerable for a context
 identifier, CIDT(R), related attack. The only parameter that is not
 protected with HMAC is the responder's CIDT in the last message. The
 reason for this is that the responder cannot reserve any values
 before it creates a state. The state is created after receiving the
 CCR message. As a result, the responder cannot include the CIDT into
 its HMAC in the CC message. a MitM attacker may change the
 responder's CIDT on the fly in the last message and course a
 denial-of-service situation. In other words, the responder will send
 IP packets with unrecognized context identifier to the initiator.
 However, the main objective of the protocol is to protect the hosts
 from the re-direction attacks and the presented attack does not open
 new vulnerabilities for that part of the protocol.

9.1.3 Cryptanalysis based on the state loss procedure

 An attacker may apply the re-synchronization procedure to make
 cryptanalysis. The attacker may try to pump up a full hash chain of
 the responder. The attacker sends a storm of INIT packets, each of
 them containing different random challenge, CHALLENGE(R), and hash
 chain, HASHVAL(R), values. The destination identifier must match
 with the responder's identifier, but the initiator may freely select
 its own identifier. The responder drops the INIT packet, if the

Ylitalo, et al. Expires November 30, 2004 [Page 39]

Internet-Draft WIMP-F June 2004

 received hash value is not a member of the reconstructed hash chain.
 However, if the attacker manages to make a correct guess, the
 responder responds with CC packet containing the successor value of
 its hash chain. The attacker can send a new INIT message containing
 the received successor value and the challenge that was used to
 generate that hash chain. Finally, the attacker finds out the whole
 hash chain.

 The attacker must make the attack beforehand, because the responder
 does not reply with CC message, if it has already a context for the
 CIDs. In addition, the responder generates a fresh challenge for
 every new hash chain, and thus it is statistically hard to guess the
 correct combination that matches with the CIDs and the challenge. An
 ephemeral identifier of the initiator makes the attack more
 difficult.

 It may be possible that an attacker is able to make cryptanalysis
 about the responder's secret applying the previous attack. (The
 probability and difficultness of such an attack is TBD. Thus, the
 secret should be changed every TBD. If the attacker is able to find
 out the responder's secret, it may impersonate itself to a responder,
 and launch an attack by sending SYNC message to the initiator. The
 initiator sends the INIT packet to one of the responder's locators
 and verifies if the responder has rebooted. This attack requires
 that the attacker is able to listen the traffic between the inititor
 and the responder. Otherwise, the attacker cannot reply with the
 correct CC message, including the initiator's HMAC_INIT. A
 successful attack results in that the initiator updates its context
 with the attacker. (Note: It is still good to notice that WIMP-F is
 a semi-strong authentication protocol that does not require much
 computation power. If strong authentication is required some public
 key based protocol, should be used.)

9.2 Re-addressing exchange

 A host must inform its peers about the new locator(s) after site
 renumbering. The sender of the new locator set is called the
 initiator. Once the responder receives BOOTSTRAP message it cannot
 trust the initiator is reachable at the new location(s). To avoid
 different kind of DoS and re-direction attacks the responder must
 verify that the initiator is indeed reachable at the claimed
 location(s).

 WIMP-F takes advantage of parallel paths between the hosts. The
 responder splits its hash chain value into pieces and includes one
 piece to each challenge (AC) message. The challenge messages are
 sent to different locators. As a result, an attacker has to locate
 at different topological locations, at the same time, to be able to

Ylitalo, et al. Expires November 30, 2004 [Page 40]

Internet-Draft WIMP-F June 2004

 answer to the challenge. The initiator, in turn, is able to verify
 that all of the pieces came from the authentic responder. The secret
 splitting works only if there are more than one destination locators
 and the messages are routed via different paths to the initiator.

10. IANA Considerations

 TBD.

11. Acknowledgments

 The initial version of this draft was written after a discussion
 between the authors, Pekka Nikander and Jari Arkko at the 58th IETF.
 The focus in this draft has been on authenticating the hosts to their
 peers with one-way hash chains. Instead of inventing the wheel once
 again, we took several ideas from the existing multi-homing protocol
 proposals. Thus, there are certain similarities, e.g., with NOID and
 HIP design factors. We would like to thank all contributers in those
 drafts who have affected the work.

 The authors would especially like to thank the following people who
 have given valuable feedback about WIMP (the names are in
 alphabetical order): Jari Arkko, Marcelo Bagnulo, Iljitsch van
 Beijnum, Gonzalo Camarillo, Brian E. Carpenter, Dave Crocker, Joel
 M. Halpern, Pekka Nikander, Ayyasamy Senthilkumar, and Margaret
 Wasserman.

12. References

12.1 Normative references

 [1] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

12.2 Informative references

 [2] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

 [3] Nordmark, E. and T. Li, "Threats relating to IPv6 multihoming
 solutions", draft-nordmark-multi6-threats-00.txt (work in
 progress), October 2003.

 [4] Shamir, A., "How to Share a Secret", Comm. of the ACM
 22(11):612- 613, November 1979.

 [5] Blakely, G., "Safeguarding Cryptographic Keys", In Proc. AFIPS
 National Computer Conference pp. 313-317, 1979.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/draft-nordmark-multi6-threats-00.txt

Ylitalo, et al. Expires November 30, 2004 [Page 41]

Internet-Draft WIMP-F June 2004

 [6] Canetti, R., Song, D. and D. Tygar, "Efficient Authentication
 and Signing of Multicast Streams over Lossy Channels", , May
 2000.

 [7] Lamport, L., "Password authentication with insecure
 communication", Commun. Mag. of ACM 24 (11), pp. 770-772, 1981.

Authors' Addresses

 Jukka Ylitalo
 Ericsson Research Nomadiclab

 Jorvas FIN-02420
 FINLAND

 Phone: +358 9 299 1
 EMail: jukka.ylitalo@ericsson.com

 Vesa Torvinen
 Ericsson Research Nomadiclab

 Turku FIN-20520
 FINLAND

 Phone: +358 9 299 1
 EMail: vesa.torvinen@ericsson.com

 Erik Nordmark
 Sun Microsystems, Inc.
 17 Network Circle
 Mountain View, CA
 USA

 Phone: +1 650 786 2921
 EMail: erik.nordmark@sun.com

Ylitalo, et al. Expires November 30, 2004 [Page 42]

Internet-Draft WIMP-F June 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Ylitalo, et al. Expires November 30, 2004 [Page 43]

