
draft-ylonen-sshkeybcp-01.txt
Network Working Group T. Ylonen
Internet-Draft SSH Communications Security
Expires: October 06, 2013 G. Kent
 SecureIT
 M. Souppaya
 NIST
 April 04, 2013

Managing SSH Keys for Automated Access - Current Recommended Practice

Abstract

 This document presents current recommended practice for managing SSH
 user keys for automated access. It provides guidelines for
 discovering, remediating, and continuously managing SSH user keys and
 other authentication credentials.

 Various threats from poorly managed SSH keys are identified,
 including virus spread, unaudited backdoors, illegitimate access
 using leaked keys, lack of proper termination of access, use of
 legitimate access for unintended purposes, and accidental human
 errors.

 Hundreds of thousands, even over a million SSH keys authorizing
 access have been found from the IT environments of many large
 organizations. This is many times more than they have interactive
 users. These access-granting credentials have largely been ignored
 in identity and access management, and present a real risk to
 information security.

 A process is presented for discovering who has access to what,
 bringing an existing IT environment under control with respect to
 automated access and SSH keys. The process includes moving
 authorized keys to protected locations, removing unused keys,
 associating authorized keys with a business process or application
 and removing keys for which no valid purpose can be found, rotating
 existing keys, restricting what can be done with each authorized key,
 and establishing an approval process for new authorized keys. A
 process is also presented for continuous monitoring and controlled
 authorized key setup.

 Finally, recommendations are made for security policy makers for
 ensuring that automated access and SSH keys are properly addressed in
 an organization's security policy.

 Specific requirements are presented that address the security issues
 while keeping costs reasonable.

Ylonen, et al. Expires October 06, 2013 [Page 1]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Guidance is also provided on how to reduce operational cost while
 addressing the threats and how to use tools to automate the
 management process.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 06, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Purpose and Scope . 4
1.2. Audience . 4
1.3. Structure of This Document 4
1.4. Words Signifying Level of Requirement 5
1.5. Impact Levels for Information Systems 5

2. The Basics of SSH Protocol and Implementations 8
2.1. The SSH Protocol . 8
2.2. User Authentication in SSH 8
2.2.1. Password Authentication 9

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Ylonen, et al. Expires October 06, 2013 [Page 2]

Internet-Draft Managing SSH Keys for Automated Access April 2013

2.2.2. Public Key Authentication 9
2.2.3. Kerberos Authentication 9
2.2.4. Host-Based Authentication 10
2.2.5. Comparison of the Authentication Methods 10
2.2.6. Dangers of Unverified and Shared Host Keys 10

2.3. Common Use Cases . 11
2.3.1. Interactive Use 11
2.3.2. Automated Access 11
2.3.3. File Transfers 12

 3. Threats Arising from Poorly Managed Automated Access and SSH
 Keys . 12

3.1. Virus Spread Threat 13
3.2. Unaudited Backdoor Threat 14
3.3. Leaked Keys May Provide Access for Extended Periods . . . 15
3.4. Lack of Proper Termination of Access 16
3.5. Use for Unintended Purpose 17
3.6. Accidental Data Transfers and Human Errors 18
3.7. Problem Under Radar 19

4. Assessing the SSH Key Management Situation and Risks 20
5. Key Remediation Solution Planning and Deployment 23
5.1. Discovering SSH Keys and Trust Relationships 24
5.2. Moving Authorized Keys to Protected Locations 28
5.3. Monitoring Use of Trust Relationships and Keys 29

 5.4. Removing Trust Relationships That Are No Longer Used or
 Otherwise Inappropriate 31
 5.5. Associating Trust Relationships with Application and/or
 Purpose . 32
 5.6. Implementing Approval Process for Setting Up New Trust
 Relationships . 33

5.7. Rotating Existing SSH User Keys 35
5.8. Configuring Command Restrictions on Authorized Keys . . . 36

 5.9. Configuring IP Address Restrictions on Authorized Keys . 37
 6. Continuous Monitoring and Management of SSH Keys and
 Automated Access . 38
 6.1. Continuous Monitoring of Changes to Trust Relationships . 38

6.2. Removal of Trust Relationships 41
6.3. Periodic Rotation of Trust Relationships 41

7. Policy Recommendations 41
8. Considerations for Software Tools 45
8.1. Reducing Cost and Improving Security by Automation . . . 46

9. Security Considerations 47
10. Acknowledgements . 49
11. Glossary . 49
12. References . 57

 Authors' Addresses . 58

1. Introduction

Ylonen, et al. Expires October 06, 2013 [Page 3]

Internet-Draft Managing SSH Keys for Automated Access April 2013

1.1. Purpose and Scope

 This document focuses on risks related to poorly managed automated
 access in information systems and particularly SSH user keys, and how
 to reduce the risks. It documents current best practice of managing
 SSH keys for cost-effectively minimizing the risks, and provides
 security policy recommendations and auditing guidelines relating to
 SSH keys and other automated access.

1.2. Audience

 This document is intended for information security policy makers,
 auditors, security managers, IT operations managers, system
 administrators, and others who are responsible for specifying,
 acquiring, testing, implementing, maintaining, and auditing identity
 and access management and SSH solutions. Portions of the document
 may be of interest to technically advanced end users and systems
 programmers involved with SSH and other automated access
 technologies.

1.3. Structure of This Document

Section 1.4 specifies what certain words indicating level of
 requirement for compliance with this standard mean.

Section 1.5 defines impact levels for information systems, including
 some important definitions relating to information systems having low
 impact themselves but having automated access to higher-impact
 information systems.

Section 2 summarizes the basics of the SSH protocol and
 implementations, with particular emphasis on authentication methods
 for automated access and typical use cases for automated access.

Section 3 describes threats arising from poorly managed SSH user
 keys. Most of the threats are also relevant for other kinds of
 automated access. However, because of the ubiquity of SSH keys and
 the acuteness of addressing them the discussion focuses on SSH keys.

Section 4 introduces simple metrics and questions that are useful in
 scoping the risks related to SSH user keys and gaining basic
 understanding of the size of the problem in an organization. The
 approach is suitable for both IT auditors responsible for assessing
 compliance with security policies as well as government and other
 policy makers wanting to measure the overall state of compliance and
 security across agencies.

Ylonen, et al. Expires October 06, 2013 [Page 4]

Internet-Draft Managing SSH Keys for Automated Access April 2013

Section 5 introduces the process for detailed analysis of existing
 automated trust relationships and risks (with an emphasis on SSH user
 keys), as well as recommended steps for remediating the risks. This
 section also discusses the specific threats addressed by each
 remediation step and risks involved in not implementing a particular
 step.

Section 6 provides recommendations for continuous monitoring and
 management of SSH user keys and other automated trust relationships,
 as well as for auditing steps to be taken for ensuring that an
 organization keeps automated access under control after an initial
 remediation phase.

Section 7 provides recommendations for an organization's security
 policy for properly addressing SSH user keys and automated access.

Section 8 summarizes issues to consider when planning use of
 automated software tools for managing automated access with SSH and
 particularly SSH user keys. It also illustrates how to achieve cost
 savings in existing operational processes.

Section 9 summarizes security considerations. Most of this document
 is about security and managing elements of security and access, and
 this section serves as a conclusion and summary of this document.

Section 11 provides a glossary of the technical terms used in this
 document.

1.4. Words Signifying Level of Requirement

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

1.5. Impact Levels for Information Systems

 The appropriate level of security and effort expended on security
 often depends on the level of impact from a failure or compromise of
 an information system. FIPS Publication 199 [FIPS199] provides
 designations for impact levels on organizational information systems
 and a process for categorizing information systems.

 This document makes reference to the impact levels described FIPS 199
 (please see original document for exact definitions, this is just a
 simplifying summary):

https://datatracker.ietf.org/doc/html/rfc2119

Ylonen, et al. Expires October 06, 2013 [Page 5]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Low impact: Unauthorized disclosure, modification, destruction, or
 disruption of access have limited adverse effect on organizational
 operations, organizational assets, or individuals.

 Moderate impact: Unauthorized disclosure, modification, destruction,
 or disruption of access could be expected to have a serious
 adverse effect on organizational operations, organizational
 assets, or individuals.

 High impact: Unauthorized disclosure, modification, destruction, or
 disruption of access could be expected to have a severe or
 catastrophic adverse effect on organizational operations,
 organizational assets, or individuals.

 FIPS Publication 199 analyzes impact levels separately for
 confidentiality, integrity, and availability. For considerations
 around automated access, the impact level of access to an account on
 an information system is taken to be the highest level of these three
 principles for the information system, since this specification
 primarily relates to operating system level access to information
 systems, and operating system level access can often be used to
 breach all three objectives simultaneously. Furthermore, experience
 has shown that once an attacker has operating-system level access to
 one user account on a computer, various attack vectors (including
 bugs in system software and misconfigurations) can often be utilized
 to escalate the access to high-level administrative access. That
 definitely compromises all three principles of information security.

 Configured trust relationships for automated access (e.g., using SSH
 user keys) may permit access from low-impact information systems to
 high-impact information systems without providing a password or other
 authentication credential from a user. This is particularly relevant
 if the authentication credential or authorized key permits access on
 the high-impact information system without restrictions on the
 commands that can be executed on the high-impact information system.
 In this case, access to the low-impact information system implies
 access to the high-impact information system. The information system
 owner inherently accepted this risk by allowing a low-impact system
 access to a high-impact system with providing compensation controls.
 There may also be situations where the high-impact system owner may
 not know the key has been copied to a low-impact system, or from one
 low-impact system to another.

 Therefore, whenever a low-impact information system has a configured
 trust relationship permitting it to access a high-impact information
 system without a restriction on the commands that can be executed on
 the high-impact information system, the low-impact information system
 MUST be treated as having the impact level of the highest-impact

Ylonen, et al. Expires October 06, 2013 [Page 6]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 information system that it can access using automated trust
 relationships.

 This implies that to avoid treating low-impact information systems as
 high-impact systems, there must be a well-defined boundary in the IT
 environment that trust relationships can only cross in the direction
 allowing access from higher-impact systems into lower-impact systems,
 but not vice versa. If such boundary is relied on, it MUST be
 audited and continuously monitored to enforce its existence. Such a
 boundary could exist, for example, between development and production
 systems.

 Sometimes otherwise low-impact systems are used for producing code,
 software distributions, or data sets that will be used on higher-
 impact systems. Such systems SHOULD be treated as higher-impact
 systems in view of Advanced Persistent Threat (APT) scenarios where
 an attacker could insert a backdoor in software that eventually gets
 copied to production systems.

 It should be noted that several current SSH implementations
 (including OpenSSH) only permit configuring command restrictions for
 access based on SSH user keys. It is currently not possible to
 configure command restrictions for Kerberos-based authentication,
 host-based authentication, hard-coded passwords, or passwords coming
 from password vaults, which has implications for the above
 requirement.

 Command restrictions are a compensation control that can be leveraged
 to minimize the exposure to the additional risks exposed to a high-
 impact system from allowing limited access to the hosted resources
 from a low-impact system. Command restrictions used for this purpose
 MUST be designed to be effective in limiting what actually can be
 done with the access, and MUST prevent interactive access and port
 forwarding. For example, a command restriction permitting arbitrary
 commands or interactive shell is not effective.

 Furthermore, if a trust relationship has a command restriction that
 limits its use to file transfers but the directories from which files
 can be read or modified using it have not been restricted, it exposes
 the server to a more limited risk. The trust relationship may be
 used to read any file or directory on the server accessible to the
 user account used for file transfers, even those outside the intended
 directories. It may also be used to write any file that is writable
 by the user account; it is fairly common to have configuration files
 on servers that are inappropriately world-writable, in which case
 these files could be modified.

Ylonen, et al. Expires October 06, 2013 [Page 7]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 If a trust relation is restricted to file transfers but does not
 limit the directories that can be accessed, the originating
 information system SHOULD be considered as having at least the impact
 level of the highest-impact information system to which it has such
 access.

2. The Basics of SSH Protocol and Implementations

 SSH (Secure Shell) is a protocol and software tool for logging into a
 remote machine, executing commands remotely, and transferring files
 with a remote machine over a computer network. SSH can also be used
 for implementing a protected tunnel for delivering other services.

 SSH is very widely used for administering Linux and Unix systems,
 virtual machines, routers, firewalls, and other network devices. It
 is also embedded in many leading file transfer solutions, systems
 management solutions, identity management solutions, and privileged
 access management solutions. It is widely used for integrating IT
 systems and automating their operation.

2.1. The SSH Protocol

 The SSH protocol is an IETF standards track protocol and is described
 in RFC 4251 [RFC4251], RFC 4252 [RFC4252], RFC 4253 [RFC4253], and

RFC 4254 [RFC4254].

 Many independent commercial and open source implementations are
 available, including Tectia SSH, OpenSSH, and many others. SSH is
 available for nearly all platforms, including Linux/Unix, Windows,
 mainframes, routers, telephone exchanges, mobile devices such as
 smartphones and tablets, various embedded devices, and many
 industrial automation systems.

 In the SSH protocol, an SSH client application initiates a TCP/IP
 connection over a network to a destination server, negotiates
 encryption, authenticates the remote server, and then sends a
 destination user name and authentication credentials to the server.
 Server authentication is done using host keys, and its primary
 purpose is to prevent man-in-the-middle attacks; however server
 authentication is beyond the scope of this document.

2.2. User Authentication in SSH

 The SSH protocol supports several mechanisms for authenticating
 users, including passwords, public key authentication, Kerberos, and
 host-based authentication.

https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4252
https://datatracker.ietf.org/doc/html/rfc4252
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4254
https://datatracker.ietf.org/doc/html/rfc4254

Ylonen, et al. Expires October 06, 2013 [Page 8]

Internet-Draft Managing SSH Keys for Automated Access April 2013

2.2.1. Password Authentication

 There are two kinds of password authentication mechanisms in SSH:
 basic password authentication and keyboard-interactive
 authentication. Keyboard-interactive authentication can support
 various types of challenge-response systems and various other
 authentication mechanisms.

 Password authentication is commonly used for interactive users, but
 less commonly for automated access (through it is sometimes seen with
 hard-coded passwords in scripts and management systems, especially
 for managing routers and file transfers).

2.2.2. Public Key Authentication

 Public key authentication in SSH uses user keys or certificates to
 authenticate/authorize a connection. An SSH client has an identity
 key, typically an RSA or DSA private key, and the server must have
 the corresponding public key configured as an authorized key for the
 destination user. The private key may be protected by a passphrase,
 in which case it is encrypted by a key derived from the passphrase
 (passphrases are common for interactive users but rarely used for
 automated access).

 Many widely used SSH implementations support configuring restrictions
 for SSH user keys. These may be used for limiting what can be done
 on the server using the key (command restrictions) and for limiting
 the IP addresses from which the key can be used (source
 restrictions).

 Public key authentication is by far the most frequently used method
 of configuring automated access using SSH at the time of this writing
 and represents best current practice.

2.2.3. Kerberos Authentication

 Many organizations use Kerberos or Active Directory authentication
 with SSH. Kerberos (usually together with LDAP) implements single
 sign-on and allows user accounts to be stored in a centralized
 directory.

 In practice, Kerberos is rarely used for non-interactive accounts.
 While it can be configured to use keytab files or cached tickets for
 functional accounts, these approaches rely on having long-term
 credentials stored on the host or at least accessible to the process
 on the host that is obtaining tickets. These credentials can be
 exploited by an attacker largely in the same way as SSH user keys,
 e.g., by using them to obtain a ticket granting ticket (TGT) for the

Ylonen, et al. Expires October 06, 2013 [Page 9]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 functional account and using the ticket to gain access to other hosts
 or accounts that the functional account can access (see virus spread
 threat below).

 One problem with Kerberos for automated access is that the single
 sign-on feature implies that once access has been gained to one
 account using Kerberos, it is usually possible to log in to any other
 server that has the same account and is in the same domain without
 further authentication. This can very easily create lots of unwanted
 implicit trust relationships. Existing implementations also do not
 support command restrictions for Kerberos.

2.2.4. Host-Based Authentication

 Host-based authentication uses the source host's host key to
 authenticate the source host and to vouch for the identity of the
 user on the client side. It is rarely used and does not permit
 configuring command restrictions. Therefore its use for automated
 access is NOT RECOMMENDED.

2.2.5. Comparison of the Authentication Methods

 All these authentication methods fundamentally rely on some secret
 information, and when used for automated access, this secret
 information must be stored on or accessible to the source host.

 A major advantage of public key authentication over the other methods
 is that it allows configuring a command restriction. The command
 restriction can be used for preventing virus spread and other
 attacks, as described in Section 3. It also does not create any
 implicit trust relationships and the permitted access can be reliably
 determined by inspecting the destination host (except for OpenSSH's
 proprietary certificate authentication, which SHOULD NOT be used
 because it cannot be reliably audited). For these reasons, public
 key authentication is the RECOMMENDED authentication mechanism for
 automated access with SSH.

 Password authentication SHOULD NOT be used for automated access,
 because hard-coded passwords may be obtained by attackers and
 password vaults are also not particularly secure against local
 attacks on the client software. If password authentication is used
 for automated access, the passwords MUST be rotated every three
 months.

2.2.6. Dangers of Unverified and Shared Host Keys

 Many file transfer applications, privileged access management
 systems, and systems management applications do not check host keys

Ylonen, et al. Expires October 06, 2013 [Page 10]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 for hosts that they connect to. This permits a man-in-the-middle
 attack to be performed in the network. Many tools are available for
 this and any device connected to a network through which the
 connection goes can be used for the attack - including, e.g.,
 reprogrammed smart switches.

 Man-in-the-middle attacks are a risk regardless of the authentication
 method if hosts keys are not properly verified. The attack permits
 injection of arbitrary commands into the session, and reading and
 modifying any transferred files (including injection of bogus file
 transfers). A successful man-in-the-middle attack from the network
 gives the same power as being able to use a trust relation leading to
 the destination host.

 Such man-in-the-middle attacks are practical, and are exploited in
 freely available attack tools and malware, as well as security
 software from multiple vendors for co-operative auditing purposes.

 Besides applications that do not check host keys, there are also some
 large enterprise that share the same host key on thousands of
 machines (for example, one Fortune 500 company is known to use the
 same host key on 14000 computers at the time of this writing). If
 any of the computers is compromised, they all become vulnerable to
 man-in-the-middle attacks.

 Therefore, while this document is not really about host keys, the
 destination host MUST be properly authenticated by the client for all
 automated access and a unique host key MUST be used for each host.
 An exception may be made for the very first connection to a server to
 simplify system administration.

2.3. Common Use Cases

2.3.1. Interactive Use

 SSH has become the standard used by system administrators for
 configuring and managing Unix and Linux computers, routers, and
 various other equipment remotely. It is also widely used by software
 developers, and in some organizations by ordinary end users for
 running applications remotely (particularly text-based legacy
 applications). Public key authentication is often used by advanced
 end users for single sign-in. Sometimes it is also used on jump
 servers.

2.3.2. Automated Access

 SSH is very frequently used for automated access between systems.
 Such automated access is necessary for cost-efficiently managing

Ylonen, et al. Expires October 06, 2013 [Page 11]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 large IT environments, for integrating applications, and for cost-
 effectively provisioning virtual machines in cloud services.

 Automated access refers to accessing a computer from another computer
 in an automated fashion. Automated access may be unrestricted,
 allowing any commands to be executed, or may be limited to specific
 commands or operations, such as file transfers (perhaps limited to a
 specific directory).

 Automated access is most commonly used with functional accounts,
 system accounts, service accounts, and other non-interactive user
 accounts (sometimes also called non-user accounts). Such accounts
 are used by operating systems, middleware, databases, and
 applications for running processes. System or service accounts are
 likely to have sensitive levels of access to system resources (in
 that case they are often called privileged accounts).

 Automated access using SSH is common also in Windows and mainframe
 environments, especially for file transfer applications. There are
 also various native mechanisms on Windows that can be used for
 automated access, but such mechanisms are beyond the scope of this
 document.

 Automated access has been largely ignored in Identity and Access
 Management. Hundreds of thousands to over a million authorized SSH
 keys have been found from the IT systems of several large
 enterprises. This means that they have many times more entry points
 for automated access configured on their servers than they have
 interactive users in the organization! It is clear that such entry
 points cannot be ignored.

2.3.3. File Transfers

 SSH is frequently used as a file transfer tool in itself, using the
 "scp" and "sftp" tools. The SFTP [SFTP] protocol is gaining
 popularity in commercial and open source file transfer products, and
 a substantial fraction of the world's file transfers now use the SFTP
 protocol. Automated file transfers using SSH typically use public
 key authentication or hard-coded passwords, and they are often also
 used between organizations.

3. Threats Arising from Poorly Managed Automated Access and SSH Keys

 This section outlines some of the threats that have been identified
 with poorly managed SSH keys. The guidelines and recommendations of
 this document are intended to address these while minimizing the
 administrative burden from managing the keys.

Ylonen, et al. Expires October 06, 2013 [Page 12]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Several of the problems described below are present with many
 technologies for automated access besides SSH keys. The issues must
 be addressed regardless of technology.

3.1. Virus Spread Threat

 Malware can be engineered to use SSH keys to spread to most servers
 within an organization once it has penetrated one server. Experience
 has shown that viruses frequently manage to penetrate individual
 servers in an organization. Malware often uses multiple attack
 vectors to penetrate an organization and could use SSH user keys (or
 other trust relationships such as Kerberos) to spread within the
 organization's server infrastructure in minutes after penetrating the
 first server, thereby defeating layered security defenses.

 The Morris worm in 1988 utilized automated access trust relationships
 to spread in a similar manner (at that time based on ".rhosts"
 authentication). This attack vector can be very powerful, and its
 importance is increasing as systems management becomes more
 automated. Many computer forensics experts are aware of cases were
 SSH keys have been used to spread an attack from one server to
 another, and several high profile incidents in the last year have
 used SSH keys as an attack vector.

 Experience has shown that most large organizations have 3 to 100+ SSH
 keys configured granting access to each Unix/Linux server. Some keys
 grant high-level administrative access or access to sensitive
 accounts, such as those storing database files or critical software.
 In practice it has been found that in many organizations
 approximately 10% of SSH keys grant access to root accounts or other
 privileged accounts.

 The mesh of automated access relationships is so dense in many cases
 that it is likely that an attack can spread to most servers in an
 organization after penetrating the first few servers, especially if
 other attack vectors are used to escalate privileges.

 Implementing SSH keys as an attack vector in malware is quite easy,
 requiring only a few hundred lines of code. Once the malware has
 penetrated a server, it may use the server to further the attack and/
 or, e.g., leave a backdoor, steal, alter, or corrupt data, subvert
 encryption systems or databases, or outright destroy the server.

 The virus spread threat can be reduced by combining several
 approaches:

 Mandating forced command restrictions for as many trust
 relationships as possible.

Ylonen, et al. Expires October 06, 2013 [Page 13]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Removing trust relationships that are no longer needed.

 Minimizing the number of trust relationships leading to root
 accounts (directly or indirectly).

 Minimizing implicit trust relationships arising from privilege
 escalation (e.g., "sudo"), single-sign-on (e.g., Kerberos), and
 host equivalence.

3.2. Unaudited Backdoor Threat

 Many large organizations mandate that all privileged access to their
 servers take place through a privileged access management system that
 records any actions performed. Key-based access (and other automated
 trust relationships) can be used for creating backdoors that bypasses
 such privileged access management systems.

 System administrators and production support personnel regularly gain
 access to various accounts in the course of legitimate work. An
 administrator or production support person may add a new authorized
 key to an account with a single command (e.g., "echo ...keydata...
 >>~/.ssh/authorized_keys"). As of this writing, most organizations
 never audit authorized keys for their user accounts, and thus the
 added key may remain unnoticed for years. Such a key can then be
 used to log into the account using any SSH client, bypassing the
 privileged access management system. It thus provides a relatively
 permanent unaudited backdoor.

 Key-based backdoors can also circumvent password vaults and systems
 that change root (or other privileged account) passwords regularly.

 Experience has shown that many organizations have no control or
 tracking of trust relationship creation. Any system administrator or
 production support personnel can create and install a user key pair
 as needed without any reporting, logging, or authorization. Such
 practice undermines traditional controls for privileges access.

 The unaudited backdoor threat can be reduced by the following:

 Prevent non-root/non-Administrator users from granting automated
 access to accounts without proper approval. For example, move all
 authorized keys files to root-owned directories that are not
 writable by normal users.

 Continuously monitor the environment to detect unauthorized trust
 relationships configured by someone having root access.

Ylonen, et al. Expires October 06, 2013 [Page 14]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Require proper explanation and valid purpose for the existence of
 every trust relationship and remove any unused trust
 relationships.

 Use privileged access management systems that capture SSH and
 other protocols using automated access on the network level or at
 the server (transparent access auditing). Enforce privileged
 access management for connections using automated trust
 relationships.

3.3. Leaked Keys May Provide Access for Extended Periods

 Most security policies and regulations mandate that all passwords
 must be changed regularly, e.g., every three months. Some security
 standards mandate that encryption keys must also be changed
 regularly. However, very few security policies at this time make it
 explicit that authentication/authorization keys should also be
 regularly changed. In a sense, authentication keys are even more
 critical than encryption keys, because once access to a user account
 has been gained, it is generally possible to access and modify any
 data for that user account - including reading and modifying memory
 of processes running under that user account and/or modifying any
 executable programs owned by that user account, thus subverting
 encryption systems and other critical applications.

 At the time of this writing, most organizations do not track which
 SSH keys their users, administrators, backup operators, and janitors
 may have had access to and copied over the years. In addition, they
 never change their SSH keys. Most environments do not use source
 restrictions on authorized keys. Therefore, a leaked key may be used
 from any computer or network within the organization (unless limited
 by internal firewalls).

 This means that anyone who may have obtained a copy of a key (e.g.,
 by copying it from a host, accessing a backup, or having acquired
 some decommissioned equipment that was not securely wiped) may gain
 access to production servers in the organization.

 No audit or discovery process can ever guarantee finding all copies
 of identity keys, as they are small files that could be hidden
 anywhere, and there could be copies on laptops, tablets, USB sticks,
 offline, and even on paper (they are small enough to be typed in).
 Identity keys can easily be taken out from an organization on a
 single piece of paper, or by taking a photograph of a screen using a
 cellphone.

 There have also been many instances where private keys have been
 uploaded to, e.g., "github" (a repository used by many open source

Ylonen, et al. Expires October 06, 2013 [Page 15]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 software development projects). In January 2013, hundreds of private
 keys and passwords were found from the repository, some of which were
 being used for attacks. Obviously, identity keys MUST NOT be
 uploaded into any public repository.

 The problems created by leaked or unchanged keys can be reduced by:

 Rotating all keys regularly to guarantee the eventual termination
 of access.

 Configuring source restrictions for authorized keys, making it
 more difficult to exploit copied identity keys.

 Using certificate-based authentication, which can provide
 revocation and expiration, but is cumbersome to manage (and still
 does not protect from some of the other threats).

 Using Kerberos authentication, which allows terminating access to
 the account; however, Kerberos authentication does not in itself
 prevent leaked keys that have not been changed from being used.

 Besides rotating keys at regular intervals to avoid their leakage and
 to limit the duration of the exploitation window should they leak,
 periodic rotation also applies to credentials used for obtaining
 actual authentication credentials; for example, it is not enough to
 periodically obtain a new Kerberos ticket - one must also regularly
 change the authentication credentials used for obtaining an initial
 ticket. It is also not enough to issue a new certificate for the
 same private key - the private key must also be replaced by a newly
 generated private key.

3.4. Lack of Proper Termination of Access

 Most security standards mandate proper termination of access when an
 employee leaves or changes roles. If the user remains in possession
 of identity keys that continue to have access to the organization's
 information system, access is not being properly terminated.

 Since administrators can quite easily copy identity keys (and may
 have legitimately configured key-based access from their personal
 account to various accounts they used in their previous role), the
 only practical way to guarantee proper termination of access is to
 remove or rotate any keys that the employee may have had access to.

 At the time of this writing, most organizations do not know what each
 key is used for. Without this knowledge, they seldom remove or
 rotate keys, because something could break if they accidentally
 remove a key that is needed for some important business process or

Ylonen, et al. Expires October 06, 2013 [Page 16]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 omit some authorized keys corresponding to a public key being
 rotated.

 Some organizations have used manual spreadsheets for tracking key
 usage. However, it has turned out they are usually out of date,
 inaccurate, and have not been maintained throughout the organization.
 Many organizations have no monitoring whatsoever of automated access
 or new user key setups.

 Proper termination of access can be ensured by:

 Moving all authorized keys files to root-owned directories that
 are not writeable by non-privileged users.

 Regularly rotating keys (ensures termination of access by copied
 keys latest at next key change).

 Triggering immediate key rotation for private keys on accounts
 accessible by the person whose access is being terminated.

3.5. Use for Unintended Purpose

 Firewalls commonly have rules that permit specific communications for
 file transfer purposes. When the file transfer is using SSH (or
 SFTP), it is important that a forced command be used on the server to
 ensure that the access permitted through the firewall cannot be used
 for other purposes, such as executing shell commands on the server.

 Another related use case is employees creating their own backdoors
 into the enterprise to circumvent corporate policies against
 uncontrolled remote access by opening an SSH connection from the
 office to their home machine with a port forwarding from the home
 machine back to the office machine. Such backdoors may provide
 hackers an entry point into the company intranet, especially if the
 home machine is compromised and the user's password is obtained
 using, e.g., key logger malware.

 Various commercial products are available for auditing SSH
 connections at a firewall to enforce that opened ports are not used
 for unintended purposes regardless of server configuration.

 Various SSH implementations permit port forwarding even when forced
 commands are used. Therefore, a trust relationship that is intended
 only for file transfer may actually be used to obtain a connection to
 any port at any host on the internal network (or external network,
 for hiding the source of an attack).

 The threat of unintended use can be minimized by:

Ylonen, et al. Expires October 06, 2013 [Page 17]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Allowing SSH/SFTP through a firewall only when required and
 restricting sources and destinations to fewest systems required.

 Configuring forced commands for authorized keys used by external
 parties.

 Implementing tools to audit SSH connections at the firewall and
 monitoring use to ensure that access was not misused.

 Avoiding trust relationships that cross security boundaries or
 allow connections from low-impact systems to higher-impact
 systems.

3.6. Accidental Data Transfers and Human Errors

 Not all risks associated with unmanaged automated access arise from
 malicious behavior. If there is automated access from non-production
 systems to production systems, data may accidentally be copied from
 non-production systems into production systems, where the incorrect
 data may cause substantial loss of money. Alternatively, data may be
 inadvertently copied from production systems to non-production
 systems, where the data may be exposed due to looser security
 controls.

 People are also known to make human errors when manually setting up
 new trust relationships. For example, it is fairly easy for a
 security administrator to accidentally copy an authorized key to the
 root account on a host instead of some other account that was
 intended. Such errors can go undetected for years.

 Some key setups involve thousands of hosts. It is easy to miss one
 or more hosts when copying an authorized key to so many hosts
 manually. Debugging such errors can be very time consuming. Also,
 when manually fixing such problems, security administrators are
 likely to just copy the missing keys to the proper accounts, without,
 for example, checking whether they have accidentally been copied to
 the root account.

 The threat of accidents and human errors can be minimized by:

 Automating key provisioning to implement the authorized keys
 exactly as they were requested and approved.

 Configuring source and command restrictions for authorized keys.

 Enforcing policies for preventing trust relationships between
 systems that cross security zone boundaries.

Ylonen, et al. Expires October 06, 2013 [Page 18]

Internet-Draft Managing SSH Keys for Automated Access April 2013

3.7. Problem Under Radar

 The SSH key management problem has been recognized in various circles
 for some time. The scope of the problem, and its relation to
 automated access overall, however, has not been widely understood.

 The problems have remained under the radar because they are deeply
 technical and obscure, within the domain of system administrators.
 Each system administrator typically only sees a small corner of the
 IT environment and does not have a full picture. Although
 administrators and their managers may recognize that there is a
 problem, they simply have not had time to analyze the scope or
 possible implications of the problem. There have also been no
 guidelines or training materials on how to address it.

 Most IT auditors do not have SSH key management or automated access
 more generally on their checklists or audit programs, yet it is
 central to identity and access governance given the prevalence of
 automated access entry points to systems.

 SSH keys, or control of credentials for automated access more
 generally, has not been sufficiently highlighted in security control
 frameworks and auditing guidelines for FFIEC, SOX, PCI, FISMA, HIPAA,
 NERC, or COBIT. Even many CISOs are only vaguely aware of the
 problem, and many CIOs and IT risk management professionals have
 never heard of it.

 Training, books, and systems in the identity and access management
 space have largely only dealt with actual human users and control of
 interactive access by people. Automated access by machines has been
 largely ignored, despite many organizations now having many times
 more credentials for automated access to their systems than they have
 interactive accounts.

 Despite the risk, the problem will likely not be addressed until IT
 security auditors, IT operations managers, security architects,
 CISOs, and IT risk management professionals understand the issue. It
 must be addressed in security regulations, guidelines, standards, and
 internal security policies. Education and training will also be
 needed to ensure that the SSH key management problem and remediation
 actions are understood. It must be evaluated during audits to ensure
 that action is taken.

Ylonen, et al. Expires October 06, 2013 [Page 19]

Internet-Draft Managing SSH Keys for Automated Access April 2013

4. Assessing the SSH Key Management Situation and Risks

 Addressing threats related to automated access and SSH keys begins
 with understanding the extent to which automated access and SSH keys
 are used in an organization, understanding how they are managed, and
 identifying areas likely to require further attention.

 Risks associated with SSH key management are generally relevant for
 organizations where at least one of the following is true (the list
 is not exhaustive, and other automated access technologies affect
 other organizations):

 significant number of Unix or Linux systems;

 significant use of SSH or SFTP on Windows or Mainframe;

 virtualization or cloud services that are internally managed using
 SSH (possibly inside automated scripts/tools/frameworks);

 web server farms that are managed over SSH;

 network devices (e.g., routers, switches, xDSL models, firewalls)
 configured and managed using SSH and/or automated management
 systems;

 significant number of automated file transfers using SFTP;

 password management or privileged access management tools using
 SSH to connect to end servers; or

 systems management tools using SSH to communicate with managed
 systems.

 Results of the scoping phase help estimate risk exposure and the
 probability of non-compliance with mandatory regulations. This
 information also helps auditors and decision-makers determine whether
 a more detailed discovery and remediation project is warranted.

 Certain types of relatively easily obtainable information are useful
 in understanding the scope of the problem in an organization. This
 information may easily be obtained as part of an audit or regular
 review.

 Some preliminary indicators about the level of risk can be obtained
 by reviewing the sshd_config file for a sample of SSH servers. The
 AuthorizedKeyFile parameter indicates the location of files that
 store user's authorized key files. If the AuthorizedKeyFile is
 located within the user's home directory (which is the default), then

Ylonen, et al. Expires October 06, 2013 [Page 20]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 it is likely that a significant problem exists because users are able
 to provision new trust relationships. On the other hand, if the
 AuthorizedKeyFile is defined within the /etc directory, for example,
 then the risk of inappropriate trust relationships is significantly
 lessened. Another significant configuration parameter is
 PermitRootLogin. A value of "yes" or "without-password" indicates
 that SSH keys can be used for root access, which significantly
 increases the potential impact of poorly managed keys. However, if
 this parameter is set to "no" or "forced-commands-only", then the
 potential impact is substantially lessened since interactive root
 access is disallowed.

 Examining authorized keys provides a meaningful indication of the
 level of risk. The following metrics generally give insight into
 whether an organization is affected by the issue:

 total number of authorized keys in the environment;

 total number of authorized keys in the environment that grant
 access to a root account (any account with user id 0);

 total number of authorized keys in the environment that grant
 access to a system account or service account;

 total number of authorized keys without a command restriction; and

 total number of non-root service accounts or system accounts that
 have access to add new authorized keys at will.

 There are also a number of scoping questions that can give insight
 into the severity of the problem. These questions are well-suited
 for a questionnaire or interview of knowledgeable personnel. An
 affirmative answer indicates that SSH keys are being managed; a
 ``no'' indicates that risk exists. The questions are provided below:

 Does installing a new authorized key require approval from a
 system resource owner or authorized manager 1) for keys granting
 root access, 2) for keys granting access to non-root service
 accounts or system accounts, or 3) for keys granting access to
 interactive user accounts?

 Are such approvals enforced through the provisioning process?

 Are non-root users technically prevented from installing new
 authorized keys, e.g., by moving the authorized keys files to
 root-owned locations?

Ylonen, et al. Expires October 06, 2013 [Page 21]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Has this configuration been verified to be the case 1) across all
 high-risk systems and 2) all moderate-impact systems?

 Is a continuous monitoring process in place for detecting
 authorized keys that are added outside of the provisioning process
 and without proper approvals 1) for root accounts, 2) for service
 and system accounts, and 3) for interactive user accounts?

 Is a policy in place for rotating SSH user keys? Are monitoring
 procedures in place to verify that all user keys have actually
 been rotated in accordance with the policy (and the private keys
 actually changed)?

 For all authorized keys for the root account (and critical system
 and service accounts), can the organization easily identify who is
 using the keys to connect?

 Has the reason of existence for every authorized key, including
 the application or business process it relates to, been documented
 1) for high-impact systems, 2) moderate-impact systems, and 3)
 low-impact systems?

 Are SSH keys systematically removed when they are no longer
 needed?

 Do all authorized keys used for external SFTP/SCP file transfers
 with other organizations have a command restriction?

 Are command restrictions enforced for trust relationships leading
 to moderate-impact and high-impact systems?

 Preliminary scoping information can be obtained relatively easily and
 scoping questions can be answered without having to install new
 software on servers. However, the answers are only approximate.
 Experience has shown that many organizations do not know clear or
 definitive answers to the questions, and sometimes management
 perceptions do not match reality. Therefore the answers are best
 obtained and analyzed as part of a regular audit that actually
 verifies the answers, at least by representative sampling.

 Another interesting diagnostic exercise to gauge the level of risk is
 to obtain listings from a few servers of the public keys (or
 signatures) from the authorized keys file of root and other sensitive
 accounts (such a system or service accounts). If the organization
 can readily identify who is using those keys (or could use the keys)
 to connect and why, then it is likely that the organization is
 effectively managing SSH users key for access control. If the
 organization is unable to identify who can use keys to obtain

Ylonen, et al. Expires October 06, 2013 [Page 22]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 sensitive access to systems, then the access control problem and risk
 is self-evident.

 Freely available scripts and tools for doing a proper scoping
 analysis are available at http://www.ssh.com/auditing [1]. The
 scripts and tools will be useful for internal security professionals,
 system administrators, and auditors working with customers.

5. Key Remediation Solution Planning and Deployment

 Once it has been determined that further analysis of automated access
 and/or SSH keys in an organization is warranted, the organization
 typically engages in a multi-step process consisting of additional
 discovery and remediation of existing trust relationships,
 establishment of appropriate policies, and continuous monitoring to
 ensure that automated access is only enabled in accordance with
 policy.

 A typical key remediation process consists of:

 discovering all existing trust relationships based on SSH keys
 (and other trust relationships, if applicable);

 moving authorized keys files to protected locations to prevent
 non-root users from adding new authorized keys;

 monitoring use of trust relationships and authorized keys in the
 existing environment;

 removing trust relationships that are no longer in use;

 associating each trust relationship with an application or some
 other valid purpose;

 implementing an approval process for setting up new trust
 relationships;

 rotating existing SSH user keys;

 configuring forced command restrictions on authorized keys; and

 configuring IP address restrictions on authorized keys.

 While it is possible to perform all the remediation steps manually,
 in a larger environment the use of software tools to assist in the
 process can save a huge amount of work. Parts of the process can be
 fairly labor-intensive, for example, associating each trust
 relationship with an application or valid purpose may require a

http://www.ssh.com/auditing

Ylonen, et al. Expires October 06, 2013 [Page 23]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 substantial amount of manual work, and removing of unused trust
 relationships needs to be done with care to avoid any problems with
 critical business applications. (See Section 8 for more
 information.)

 Automating management of SSH keys and other trust relationships can
 also bring substantial cost savings. Many organizations spend a
 substantial amount of administrator time setting up and maintaining
 trust relationships, and the cost of such manual key management can
 often be eliminated by automating the process. Ideally, new trust
 relationships are approved in the organization's normal security
 entitlement approval system and automatically implemented throughout
 the IT environment by software for managing SSH authorized keys and/
 or other trust relationships. Automation can also reduce human
 errors and radically reduce the number of administrators requiring
 root access on servers. (See Section 8.1.)

 In some environments it may be desirable to prohibit public key
 authentication for interactive logins to ordinary user accounts.
 This can help enforce ordinary interactive logins to go through a
 privileged access management system (unless some administrators have
 copied private keys, which is generally possible).

5.1. Discovering SSH Keys and Trust Relationships

 The purpose of the discovery phase is to obtain reliable and
 reasonably complete information about configured SSH keys and trust
 relationships throughout an IT environment. Discovery should ideally
 include all Unix/Linux systems, Windows systems (at least those
 running SSH servers, SSH clients, or file transfer solutions running
 SFTP), Mac servers, workstations, laptops, mainframes, and other
 systems using the SSH protocol, including file transfer solutions
 using SFTP, virtualization platforms, and privileged access
 management gateways.

 Since it is not possible to know what trust relationships exist in an
 IT environment without scanning all systems for SSH authorized keys
 and identity keys, all organizations SHOULD perform initial discovery
 of SSH user keys on all systems that use the SSH protocol.

 Although some organizations may want to focus only on high-impact
 systems, a limited scope discovery process provides only limited
 visibility into the security risk of the current environment. It is
 important to identify which low-impact systems can access high-impact
 systems, and this can only be known by scanning low-impact systems
 too. An identity key intended to allow access between two high-
 impact systems could be copied onto a low-impact system. Unless
 source restrictions are defined for the authorized key, the identity

Ylonen, et al. Expires October 06, 2013 [Page 24]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 key can be used from the low-impact system to access the high-impact
 system. Therefore, the scope of the discovery process SHOULD include
 all systems in the network, including even low-impact systems.

 Ideally, routers, BIOS management ports, and other specialized
 computing devices should also be included, but at the time of this
 writing, software is not yet available for full SSH key discovery for
 these devices. This is expected to change in the future. It is also
 be possible to audit them manually.

 The following MUST be determined during discovery:

 Configured authorized keys for all user accounts on all servers of
 interest (accounts may be local, in LDAP, in Active Directory, in
 NIS, or any combination)

 Configured identity keys on all user accounts on all servers and
 clients (workstations, laptops, etc) of interest. It should be
 understood, however, that one can never be certain that all
 identity keys have been found, because some could be copied into
 non-standard directories, stored offline, or even printed on
 paper. Thus not finding an identity key on a particular system
 does not guarantee that the key will not eventually be used from
 that system later. On a broader scale, even if the discovery
 process fails to find a particular identity key anywhere on the
 network, this does not necessarily mean that the key cannot be
 used later.

 Configured restrictions for each authorized key, such as command
 restrictions and source restrictions

 Established trust relationships (source host, source account,
 destination host, destination account, and restrictions)

 The following SHOULD be determined during discovery (these may become
 MUST in the future):

 Kerberos-based trust relationships for automated access,
 particularly access using keytab files, cached tickets, or service
 processes holding tickets.

 Implicit trust relationships arising from Kerberos single sign-on.

 Implicit trust relationships arising from sharing the same home
 directory across multiple accounts. Many organizations share the
 same home directory for multiple accounts. Adding an authorized
 key for any of the accounts implies adding it to all of the
 accounts. Thus, any accounts that can write to the shared home

Ylonen, et al. Expires October 06, 2013 [Page 25]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 directory effectively have access to all accounts sharing the home
 directory.

 Trust relationships configured using host-based authentication
 (".shosts", ".rhosts", "hosts.equiv", or "shosts.equiv").

 The following MAY be determined during discovery (some of these may
 become SHOULD or MUST in the future):

 Trust relationships configured using password authentication
 (whether hard-coded in scripts or in password vaults). (In
 practice it may be difficult to do this reliably. However, it may
 be possible to, e.g., recognize certain syntactic patterns and
 commands from scripts as using hard-coded password
 authentication.)

 Implicit trust relationships configured using "sudo" or some other
 privilege escalation tool.

 Implicit trust relationships arising from user accounts that have
 NFS-mounted home directories. NFS is usually not configured to
 provide security against network-level attacks, and an attacker
 who gains access to a network segment may be able to read and
 modify the NFS traffic of any host on the network and impersonate
 any other host or user on the network (including reading and
 modifying any file on NFS file systems). When home directories
 are stored in NFS, a sophisticated attacker with root-level access
 to any device on the network (e.g., any unconfigured smart switch
 where the attacker can replace the firmware) may add new
 authorized keys to any home directory in an NFS file system.

 Implicit trust relationships arising from user accounts that have
 home directories on a Windows share. Windows file sharing (CIFS,
 Common Internet File System) may suffer from same issues as NFS,
 and thus the same considerations may also apply to it.

 It is important to understand that even though the discovery process
 finds keys, and in the short term most trust relationships are
 configured using SSH keys, the primary concern is not with the keys
 themselves or the underlying cryptography. Rather, the primary
 purpose of discovery is to determine who (or what) can access what
 and how such access is restricted. In terms of cryptography, all SSH
 keys created with default settings since version 1.0 use the
 equivalent of at least 1024 bit RSA key, which is still relatively
 safe, especially since servers never disclose authorized keys
 (cryptographic attacks on the key would first require access to an
 authorized keys file, which usually already means access to the
 host). Thus verifying key sizes or algorithms is not critical

Ylonen, et al. Expires October 06, 2013 [Page 26]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 (though may be required by policy); however, knowing who (or what)
 can access what is critical and addresses a real security concern.
 SSH user keys grant access and are fundamentally authentication
 credentials, rather than encryption keys. The whole issue is
 fundamentally not an encryption key problem, but an identity and
 access management problem!

 Doing discovery properly is complicated. At least the following
 aspects need to be properly considered when planning discovery:

 SSH user keys cannot be discovered by a network scan because the
 SSH protocol was designed not to reveal authorized keys. It is
 possible to query whether an already known key is acceptable for a
 particular user, but an SSH server will not reveal an authorized
 key that is otherwise unknown. This means that the discovery
 process will need to connect to each host and access the
 authorized keys through the file system. (Host key discovery, on
 the other hand, is possible over a network, but host keys are
 beyond the scope of this document.)

 Different SSH versions are commonly deployed. Many large
 organizations have some combination of OpenSSH, Tectia SSH,
 SunSSH, Reflection for Secure IT, and various other products. Not
 all SSH implementations use the same key formats, store SSH keys
 in the same locations, or use the same key fingerprint format.
 Furthermore, OpenSSH comes in many flavors and patch set
 combinations, and some vendors pack a version of OpenSSH with
 another product - sometimes without providing a proper way of
 identifying the particular version. The discovery process (and
 tools) should be able to properly analyze keys and trust
 relationships for any SSH version that is deployed in the
 environment.

 Many organizations use the "root_squash" option for NFS exports,
 which converts file system accesses by root to accesses by an
 unprivileged account "nobody". A side effect of this is that a
 key discovery process running as root may not be able to read SSH
 keys in NFS home directories.

 Systems using SELinux may not allow reading SSH authorized key
 files or identity key files by ordinary processes. Reading such
 files may require special authorization or the use of special
 programs, such as "ssh-keycat".

 In a large environment, some servers are down for maintenance at
 any time, and in a geographically dispersed organization some
 networks may not be reachable at the time the discovery is
 initially run. Thus, discovery cannot be assumed to succeed on

Ylonen, et al. Expires October 06, 2013 [Page 27]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 all servers the first time. This problem is compounded for
 discovery of SSH clients since laptops may be disconnected from
 the network and therefore be unreachable for scanning.

5.2. Moving Authorized Keys to Protected Locations

 Moving authorized keys to protected locations, or locking down
 authorized keys, MUST be performed on all moderate-impact and high-
 impact information systems (including systems having automated access
 to such systems). It MAY be performed on low-impact information
 systems.

 Moving authorized keys to a protected location may be performed,
 e.g., by copying authorized keys for each user to a root-owned
 directory, and modifying the system-wide SSH server configuration
 file to specify the authorized keys file path (typically using a
 pattern that refers to a user name).

 Failure to move authorized keys to protected locations allows system
 administrators and other users with legitimate access to create new
 trust relationships as unaudited backdoors and makes ensuring
 termination of access very difficult. Locking down authorized keys
 files helps to enforce the requirement that new trust relationships
 be properly approved. (See Section 5.3 for discussion of using an
 approval process for setting up new trust relationships.)

 It is important to lock down authorized keys files early in the
 remediation process to create a stable environment for discovery.
 Otherwise, inappropriate authorized keys that continue to be added
 may not identified during the discovery process.

 Similarly, authorized keys MUST be moved away from home directories
 susceptible to active network-level attacks (e.g., unencrypted NFS
 and CIFS home directories - in practice this includes most NFS home
 directories today) on all moderate-impact and high-impact systems
 (including systems having unrestricted automated access to such
 systems). It is RECOMMENDED that the same be performed on low-impact
 information systems.

 Failure to move authorized keys away from NFS and CIFS home
 directories may allow a network-level attacker (whether human or
 automated) to add new authorized keys to any account that accepts
 authorized keys from such a directory, permitting unrestricted access
 to such accounts. Such attacks are known to have been performed by
 some penetration testers and are certainly within the capabilities of
 Advanced Persistent Threat (APT) groups.

Ylonen, et al. Expires October 06, 2013 [Page 28]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Furthermore, identity key files SHOULD be moved away from home
 directories susceptible to network-level attacks (e.g., unencrypted
 NFS and CIFS home directories) on all moderate-impact and high-impact
 systems. Otherwise, an attacker who gains privileged access one one
 host on the network may be able to read identity keys from user's
 home directories and use them for attack (this technique is known to
 have been used by attackers). It is RECOMMENDED that the same be
 performed on low-impact systems.

 Failure to move identity keys away from NFS and CIFS home directories
 may allow a network-level attacker (whether human or automated) to
 obtain copies of identity keys for later use or for immediately
 furthering the attack to other systems. It substantially increases
 the risks associated with leaked keys and substantially expands the
 group of people who may be able to obtain copies of identity keys.
 Some penetation testers are known to use this technique for attacks.

5.3. Monitoring Use of Trust Relationships and Keys

 After the initial discovery phase, the environment SHOULD be
 monitored for some time (preferably several months) to collect data
 on how authorized keys are actually used. While the process can be
 performed manually in a small environment, use of scripts or
 commercial tools is highly recommended in larger environments.
 Software tools can gather and correlate log data from many hosts to
 determine the following types of information: which keys are
 currently being used, which source hosts they are used from, which
 keys are external keys, and what commands they are used with. This
 information about the use of trust relationships will help the
 organization in later phases of remediation, such as deciding which
 authorized keys will be removed for non-use (see Section 5.4) and
 which keys can be easily configured with command and source
 restrictions (see Section 5.8 and Section 5.9). In addition,
 information gathered during monitoring will help the organization
 understand automated access patterns in the existing environment and
 further evaluate the concrete risks.

 Monitoring use of trust relationships may involve configuring SSH
 servers and clients to use a higher level of logging and collecting
 and analyzing log data. To determine which authorized keys are still
 being used, for example, an organization can configure SSH servers
 with a log level that causes the fingerprints of keys used for public
 key authentication to be logged, collect such log data for an
 extended period (several weeks to an year), and analyze the data to
 determine which authorized keys were actually used during the log
 collection period.

Ylonen, et al. Expires October 06, 2013 [Page 29]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 On SSH clients, identity keys that have not been accessed for a long
 time (according to file system's file access timestamps) are also
 good candidates for removal. However, many programs and commands may
 access identity key files, and a recent access time does not
 necessarily mean that the key was actually recently used for
 authentication. Furthermore, the identity key file timestamp
 provides no information regarding the destination host for the last
 connection. An identity key may still be in use for some destination
 host where it is authorized but not for another.

 It should be noted that orphaned keys (authorized keys without a
 corresponding identity key) may be either unused or external keys.
 Thus they SHOULD NOT be removed without monitoring, as if they are
 external keys, trust relationships with hosts outside the managed
 environment could be inadvertently broken.

 From a project management perspective, the monitoring period can well
 be used for assigning impact levels to systems, defining internal
 boundaries, and defining host groupings. In practice in large
 environments, different parts of the IT environment may be at
 different stages of remediation during the project. However, some of
 the remediation steps require a reasonably complete picture from
 longer-term monitoring before they can be safely performed.

 Identifying trust relationships crossing certain boundaries, such as
 access from test and development systems into high-impact production
 systems, is of high interest to auditors and security managers.
 Detecting and controlling such unwanted access is an important audit
 objective. This information generally becomes available with
 reasonable certainty during the monitoring phase, after internal
 boundaries have been configured and impact levels for information
 systems determined.

 Information collected during the monitoring stage will be helpful in
 later stages of a remediation project. The information gathering
 takes some time to get a reliable picture. It is RECOMMENDEED that a
 sufficient period of time be given for monitoring use of keys: at
 least 3-6 months or even a year. The remediation project should not
 be rushed, as it increases risk of having incomplete information
 about existing trust relationships or external keys, which in turn
 increases the risk that remediation activities may disrupt
 operations.

 Failure to perform the monitoring step properly increases risk of
 disruption when unused keys are removed (see Section 5.4), and may
 even make removing unused keys impossible (one cannot remove unused
 keys without knowing with a high degree of certainty which keys are
 unused). Relying solely on the knowledge of application teams and

Ylonen, et al. Expires October 06, 2013 [Page 30]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 managers to identify unused keys is generally insufficient due to the
 large number of legacy trust relationships, personnel changes, and
 poor documentation of trust relationships.

 Failure to perform the monitoring step properly also risks missing
 some external trust relationships and external keys. This may cause
 key rotation (see Section 5.7) to break external connections with
 systems outside the managed environment, such as data transfers with
 suppliers, contractors, distributors, or regional offices.

5.4. Removing Trust Relationships That Are No Longer Used or Otherwise
 Inappropriate

 Various security standards and prudent information security require
 that access to information systems must be properly terminated when
 it is no longer needed. If trust relationships for automated access
 are left enabled on systems when no longer needed, they accumulate.
 Real-world experience has shown they sometimes accumulate at the rate
 of dozens of incoming trust relationships per year per system, even
 in security-sensitive environments.

 Therefore, all organizations MUST remove trust relationships leading
 to moderate-impact or high-impact information systems (including low-
 impact systems having automated access to such systems) that are no
 longer needed as part of the initial remediation process. Unused
 trust relations leading to low-impact information systems SHOULD be
 removed.

 Unused keys SHOULD NOT be removed until it is known with reasonable
 certainty which keys are really unused. This is usually accomplished
 by monitoring key usage over a period of time (see Section 5.3). It
 is further RECOMMENDED that unused trust relationships be reviewed by
 respective application owners to reduce the possibility of disruption
 from removal of a trust relationship that is actually needed. It is
 important to test infrequently used functionality, such as disaster
 recovery systems, reasonably soon after removing unused trust
 relationships.

 It is also likely that the remediation process will identify many
 trust relationships that are still being used but that have no
 legitimate business purpose (see Section 5.5), that cross configured
 boundaries in inappropriate ways, or that lead to accounts (e.g.,
 root) that should not be accessible. Such inappropriate trust
 relationships should also be removed (and alternate steps taken to
 implement any functionality they support in a more appropriate way,
 if required). Some of such trust relationships may have been created
 by attackers and may warrant further forensics investigation, such as
 identifying when they were created and by whom.

Ylonen, et al. Expires October 06, 2013 [Page 31]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Failure to remove authorized keys for unused trust relationships
 increases the risk that key-based attacks for unauthorized access may
 succeed and spread throughout the network, allows previously created
 unaudited backdoors (using keys that are not regularly used) to
 remain in existence, and allows leaked keys (that are not regularly
 used) to remain usable indefinitely (if not rotated).

5.5. Associating Trust Relationships with Application and/or Purpose

 Because authorized keys provide access to systems, their existence
 should be understood, justified, and controlled just like any other
 form of access control. After trust relationships that are not used
 have been removed, it is important to analyze the remaining active
 trust relationships to distinguish those authorized keys that support
 a valid application or business purpose and those keys that do not.
 Just because a trust relationship is being used does not actually
 guarantee that it is needed or legitimate. It may be used, e.g., by
 an attacker, by a user who created an inappropriate authorized key as
 a backdoor for access, or by a stale cron job relating to a
 decommissioned application. Determining the purpose of trust
 relationships is important for detecting such illegitimate trust
 relationships so that they can removed (see Section 5.4).

 After having removed unused authorized keys, the existence of every
 remaining incoming trust relationship MUST be justified for moderate-
 impact and high-impact information systems (including low-impact
 systems having access to such systems).

 This is an area where the justification can be more lax on low-impact
 systems. However, many low-impact systems, such as those used for
 internal software development or packaging, may generate binaries or
 distributions that later get installed on production systems. An
 attacker could use such systems to gain access to production servers,
 especially in an Advanced Persistent Threat (APT) scenario. It is
 thus RECOMMENDED that even access to low-impact systems be prudently
 justified, or alternatively systems with data/code paths to
 production be treated as moderate-impact or high-impact systems.

 One practical approach for low-impact systems may be to review
 discovered incoming trust relationships in bulk (perhaps for a group
 of hosts belonging to the same business process), and label them as
 legacy trust relationships relating to the associated business
 process. While not ideal, such an approach may make a reasonable
 compromise between cost and security in many environments.

 It is RECOMMENDED that each trust relationship be associated with the
 business process and/or application that it supports, and that the
 application/business purpose be documented for future reference.

Ylonen, et al. Expires October 06, 2013 [Page 32]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 This will help with removing trust relationships when applications
 are replaced and business processes re-engineered, and serves to
 assign responsibility for each trust relationship to somebody (the
 business process or application owner). Assigning trust
 relationships to applications or business processes effectively
 assigns ownership for the trust relationships (and related authorized
 keys) to the application or business process owner (or group). This
 owner MAY be permitted to approve new trust relationships leading to
 the same account on the same host, MAY schedule rotation of keys, and
 MAY be asked to periodically validate the existence of each trust
 relationship relating to the application or business process.

 Failure to associate trust relationships with a purpose, business
 process, or application means that there remains access to
 information systems without reason or justification. Illegitimate
 backdoors may remain unnoticed and unnecessary trust relationships
 may remain in place that can be used by attackers, especially if keys
 are leaked (and not rotated).

5.6. Implementing Approval Process for Setting Up New Trust
 Relationships

 Real-world experience has shown that many enterprises do not have a
 well-defined process for approving new trust relationships for
 automated access, and almost no enterprise today systematically
 enforces or audits approvals for automated access.

 Organizations MUST implement an approval process for ensuring the
 validity of new trust relationships granting access to moderate-
 impact and high-impact information systems. It is further
 RECOMMENDED that organizations implement an approval process for
 trust relationships granting access into low-impact systems. This
 reduces risk of low-impact systems being used for staging attacks
 into high-impact systems. See also Section 8.1 for ideas on how
 automated setup of approved trust relationships can reduce costs.

 New trust relationships SHOULD NOT be approved without a proper
 justification and association with a business process, application,
 or other valid purpose. In addition, the approval for new trust
 relationships MUST specify any command or source restrictions that
 should be implemented to limit security exposure. (See Section 5.8
 and Section 5.9)

 The approval process SHOULD carefully review whether trust
 relationships violate internal boundaries, such as allowing access
 from test or development systems into production or allowing access
 from low-impact systems into high-impact systems. Documented
 justification for crossing boundaries and secondary approval by

Ylonen, et al. Expires October 06, 2013 [Page 33]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 higher-level management SHOULD be required for such trust
 relationships. Organizations MAY also use the approval process to
 enforce other internal boundaries, such as those between business
 units or functions, or "Chinese walls" between, e.g., retail banking
 and investment banking.

 Special approvals SHOULD also be required for trust relationships
 leading to root accounts or other highly privileged accounts on
 moderate-impact and high-impact systems.

 The approval for each such trust relationship MUST be documented and
 MUST be retained for later audit. Approvals MUST be organized so
 that it is possible find the approval for each new authorized key.

 Required approvals for new authorized keys MUST be enforced so that
 users cannot bypass the approval process. Enforcement typically
 involves both continuous monitoring and securing authorized keys
 files:

 Continuous monitoring (as discussed in Section 6) is needed to
 detect trust relationships that were implemented without approval.
 Existing trust relationships must be regularly audited against
 approved trust relationships. This requires periodically re-
 performing discovery to find all existing trust relationships so
 that they can be compared against a database of approved trust
 relationships. If software tools are used to perform this
 auditing, enforcement may be performed in real time or very
 frequently, e.g., once an hour or once per day.

 Another way to help enforcement is to move all authorized keys to
 protected locations (as discussed in Section 5.2) and tightly
 control access to root accounts using a privileged access
 management system (preferably one that also logs key-based access
 to root accounts for accountability). However, regular audits
 should still be performed, e.g., annually, to catch any trust
 relationships that may have been missed in the normal process.

 Although the focus of this section has been on approving new trust
 relationships, existing legacy trust relationships should also be
 approved, or at least associated with a business process,
 application, or proper purpose. This was discussed in Section 5.5.

 Failure to implement or enforce approvals means it is impossible to
 ensure that new trust relationships are valid and appropriately
 restricted. Not knowing what each trust relationship is used for
 makes it very difficult to know which trust relationships can be
 removed without substantial risk of disruption to business processes.
 Lack of up-to-date documentation of trust relationships, including

Ylonen, et al. Expires October 06, 2013 [Page 34]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 lack of knowledge of which application or business process they
 relate to, is one of the main causes of the current poor situation
 with SSH user keys in many organization. Failure to implement and
 enforce approvals for trust relationships also implies that system
 administrators can continue to create unaudited backdoors to
 production systems, bypassing most existing privileged access
 management systems.

5.7. Rotating Existing SSH User Keys

 SSH user keys are authentication credentials, like passwords. They
 should be rotated (i.e., changed) regularly.

 Rotating an SSH user key for a trust relationship means generating a
 new identity key (key pair), storing (and configuring, if applicable)
 the identity key for the source account of the trust relationship,
 configuring the corresponding public key as an authorized key for the
 destination account (with the same restrictions as the old key for
 the trust relationship), and finally removing the old authorized key
 from the destination account and the old identity key from the source
 account. If the same identity key can access more than one
 destination account (i.e., is used for more than one trust
 relationship), then it the authorized key must be copied to (and the
 old key removed from) all such destination accounts.

 Rotating external keys (i.e., keys used with hosts outside the
 managed environment) require special care and coordination between
 the organizations responsible for the respective hosts. The basic
 principle is that the new key should be added as an authorized key on
 all destination hosts where the old identity key is used before the
 old identity key is removed.

 Authentication credentials for all trust relationships leading to
 moderate-impact and high-impact systems MUST be rotated every 12
 months, and it is RECOMMENDED that trust relationships leading to
 low-impact systems be rotated every 12 months. It is recommended
 that all keys be rotated as part of a remediation process to ensure
 that any previously leaked keys cease to be usable.

 If two or more users have had access to a shared account that has
 access to an identity key, the identity key and any trust
 relationships using it and leading to moderate-impact or high-impact
 systems MUST be rotated during the remediation process and thereafter
 every three months.

 If an employee leaves or changes roles, immediate rotation for all
 identity keys the employee is known to have accesss to and leading to
 moderate-impact or high-impact systems SHOULD be triggered.

Ylonen, et al. Expires October 06, 2013 [Page 35]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 If a security breach is suspected, all identity keys stored on
 affected servers SHOULD be immediately rotated.

 If certificates are used for access, such certificates MUST be
 renewed (with new private keys) annually if they can be used for
 accessing moderate-impact or high-impact systems. If Kerberos is
 used for configuring trust relationships, then the Kerberos
 credentials used for authentication MUST be rotated annually if they
 can be used for accessing moderate-impact or high-impact systems.

 Failure to rotate keys allows leaked keys to continue working
 forever.

 Failure to rotate keys in response to an employee leaving or changing
 roles means that there is no proper termination of access. Many
 industries must comply with mandatory regulations that require proper
 termination of access.

 Failure to rotate keys in response to a suspected breach means that
 keys copied by the attacker may be used to attack the systems again,
 and there can be no guarantee that the system has been properly
 cleaned up after the attack.

5.8. Configuring Command Restrictions on Authorized Keys

 Command restrictions limit what can be done with a trust relationship
 on the destination host. Typically, a command restriction (also
 called "forced command") specifies the only command that can be
 executed on the server using that key. If any other command is
 attempted, the configured command will be executed instead or the
 attempt is rejected.

 A command restriction may further limit directories that can be used
 for file transfers (if supported by the SSH implementation) and
 whether writing files is allowed.

 On some implementations, it may be necessary to prevent pseudo-tty
 allocation for command restrictions to be effective.

 It is usually desirable to prevent TCP/IP forwarding for all
 authorized keys. Otherwise such keys could be used to mask the
 source of attacks by redirecting them using port forwarding.

 All non-interactive trust relationships leading to moderate-impact or
 high-impact information systems MUST be configured with a command
 restriction, unless an exemption has been approved as specified in
 the organization's security process and based on a valid reason for
 not having a forced command restriction (the relatively small effort

Ylonen, et al. Expires October 06, 2013 [Page 36]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 of configuring the command restriction not being a valid reason).
 The specific command MUST be part of the approval, and a new approval
 MUST be required if the command is later changed.

 Trust relationships that are used for interactive access SHOULD NOT
 have a command restriction (command restrictions that permit running
 a shell and then arbitrary commands SHOULD NOT be used, because they
 may be mistaken as real command restriction; if they are detected in
 an audit, they SHOULD be flagged).

 Regardless of impact level of the destination system, all trust
 relationships intended for use with the SFTP protocol by external
 parties or by lower-impact information systems MUST have a command
 restriction that limits the use of the trust relationship to SFTP and
 prevents interactive use.

 Failure to configure command restrictions for keys increases virus
 spread risk and can be used for other attacks. It also increases
 risk from leaked keys.

 Failure to configure command restrictions for trust relationships
 used with external parties may allow a virus or attack to enter the
 organization.

5.9. Configuring IP Address Restrictions on Authorized Keys

 Source restrictions (also called "from" option in authorized keys
 files) specify from which IP addresses an authorized key can be used.

 Trust relationships permitting interactive access to moderate-impact
 and high-impact systems SHOULD specify a source restriction to
 hardened jump servers (privileged access management systems) or a
 transparent access auditing solution SHOULD be used to ensure such
 access is properly controlled and audited. If any such trust
 relationships have been approved, they MUST be listed in an annual
 audit report and their existence rejustified annually.

 Source restrictions SHOULD be used for all trust relationships
 leading to high-impact systems. Otherwise, the use of source
 restrictions is OPTIONAL. They are laborious to configure manually
 and make, e.g., IP renumbering and IPv6 transition painful. It is
 also easy to make mistakes where, e.g., a secondary server for some
 critical service is not permitted by a source restriction, which
 could increase risk of outages under unusual operating conditions.
 On the other hand, they can significantly reduce the exploitation
 potential of leaked keys.

Ylonen, et al. Expires October 06, 2013 [Page 37]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Failure to configure source restrictions has only mild security
 impact if other recommendations are followed. It is in part
 compensated by regular key rotation that also reduces the potential
 for exploitation of leaked keys, and thus a reasonable balance may be
 to not implement source restrictions for most trust relationships.
 However, source restrictions can completely prevent the exploitation
 of leaked keys (without sophisticated active network-level IP
 spoofing attacks), and thus is warranted for high-impact systems.

6. Continuous Monitoring and Management of SSH Keys and Automated
 Access

 The remediation process (as discussed in Section 5) addresses both
 the one-time analysis and clean-up of existing legacy SSH trust
 relationships and the implementation of an ongoing approval process
 for validating, documenting, and restricting new trust relationships
 that are added to the environment. Following the approval process
 (discussed in Section 5.6) for all new authorized keys added to the
 environment serves as a preventive control. Continuous monitoring of
 trust relationships is needed to provide ongoing detection of non-
 compliance, including instances where the approval process was too
 lenient or was bypassed altogether. Continuous monitoring is also
 important for identifying trust relationships that violate policy,
 that can be removed because they have become unused or otherwise not
 needed, or that require keys to rotated.

6.1. Continuous Monitoring of Changes to Trust Relationships

 Proper management of automated access requires continuous monitoring
 of the IT environment because system administrators operating as root
 may add new trust relationships for any user account. Continuous
 monitoring is also prudent for detecting keys that are no longer
 used, identifying external keys, and identifying changes in the
 patterns of usage of automated access.

 The main rationale for the continuous monitoring of the environment
 and annual audits and requiring reporting and revalidation of certain
 aspects of automated access annually is to enforce proper policy
 (policies usually do not get implemented if their implementation is
 not enforced or if waivers are too easily available). However, IT
 environments are complex and sometimes there is a need to have
 automated access relationships for special purposes that would not
 otherwise be advisable. Special waivers and corresponding approvals
 can be used for implementing such special cases, but they MUST be
 revisited annually and MUST NOT be used to circumvent remediating the
 existing environment.

Ylonen, et al. Expires October 06, 2013 [Page 38]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Ideally, continuous monitoring should be a real-time or near-realtime
 process. For some areas, hourly or daily analysis would generally be
 perfectly sufficient. Using automated tools allows monitoring to be
 performed more frequently, cost-effectively, and more thoroughly. On
 the other hand, if implemented manually using audits, cost
 constraints may limit continuous monitoring to annual audits. Even
 when continuous monitoring is performed using software tools,
 auditors SHOULD do some random sampling and testing annually to
 verify that the continuous monitoring tools are working properly.

 In some respects, continuous monitoring resembles re-performing
 discovery on an ongoing basis. Configured SSH user keys and trust
 relationships throughout the environment need to be discovered, and
 checked for validity. Alerts, audit findings, or reports may be
 produced based on the results of the checks. As in the discovery
 phase, the continuous monitoring process MUST identify every trust
 relationship and authorized key throughout the managed IT environment
 so that they can be compared against a database of approved trust
 relationships.

 For each found authorized key, the trust relationship should be
 analyzed to identify possible instances of non-compliance or
 excessive security risk. Trust relationships leading to moderate-
 impact or high-impact hosts with the following attributes MUST be
 reported for further investigation:

 Trust relationships without proper approval

 Trust relationships without proper justification and an associated
 application/business process

 Trust relationships that have no command restriction configured

 Trust relationships with command restrictions that do not match
 the command restrictions specified during approval

 Trust relationships from low-impact hosts with no command
 restrictions

 Trust relationships that cross defined internal boundaries

 Trust relationships that have not been used in the last 12 months
 (or other time period specified by policy)

 Trust relationships whose keys have not been rotated in the last
 12 months (or other time period specified by policy)

Ylonen, et al. Expires October 06, 2013 [Page 39]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Trust relationships leading to low-impact hosts with the following
 attributes SHOULD be reported for further investigation:

 Trust relationships without proper approval

 Trust relationships without proper justification and an associated
 application/business process

 Trust relationships leading to privileged accounts that have no
 command restriction configured

 Trust relationships that have not been used in the last 12 months
 (or other time period specified by policy)

 Trust relationships whose keys have not been rotated in the last
 12 months (or other time period specified by policy)

 If trust relationships have existing waivers (e.g., for having no
 command restrictions, crossing boundaries, or not being used or
 rotated), then special approval of the waiver MUST be verified and
 waivers SHOULD be re-justified and approved annually. Trust
 relationships that are flagged by continuous monitoring MUST be
 investigated and resolved. Possible resolution activities consist of
 the following:

 Obtaining approvals and justifications (including the associated
 application/business process) for trust relationships that are
 valid, including getting secondary approval by higher-level
 management for trust relationships that cross boundaries. This
 would retroactively apply the approval process described in

Section 5.6.

 Adding command restrictions to the authorized keys file to limit
 access according to policy. (See Section 5.8)

 Removing trust relationships that are unused, not needed, or
 otherwise invalid. (See Section 5.4)

 Rotating private keys. (See Section 5.7)

 Obtaining waivers with appropriate levels of approval.

 Even if waivers are obtained, the resulting risk needs to be
 considered. For example, if the trust relationship from a low-impact
 host to a medium-impact or high-impact host has inadequate command
 restrictions, then the low-impact host MUST be reclassified as having
 the impact level of the higher-impact host, even if a waiver is
 obtained.

Ylonen, et al. Expires October 06, 2013 [Page 40]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Failure to monitor SSH trust relationships prevents the organization
 from enforcing policies related to SSH user keys. Policy enforcement
 and detection of non-compliant trust relationships is needed to
 prevent new keys from re-creating the same type of problems that
 existed in the legacy population of user keys. Failure to enforce
 approvals for newly-added trust relationships allows users to create
 unaudited backdoors or trust relationships that cross boundaries or
 are unrestricted. If there is no continuous monitoring for
 unapproved or inappropriate trust relationships, such trust
 relationships will be essentially permanent.

6.2. Removal of Trust Relationships

 Trust relationships MUST be removed when they are no longer needed.
 Ideally, the business or application owner of a trust relationship
 SHOULD expressly request that it be removed as soon as it is no
 longer needed. In addition, the owner MAY periodically recertify and
 validate the continuing need for each trust relationship.

 Sometimes a trust relationship may be removed by express request,
 e.g., when a business process is changed so that it is no longer
 needed.

 Sometimes a trust relationship may be removed because the application
 or business process it relates to is decommissioned or replaced by
 another application.

 Sometimes a trust relationship may be removed because continuous
 monitoring detects that it is no longer being used. This basically
 implies that something changed in the environment, but the trust
 relationship was inadvertently not removed at that time. (This
 scenario appears to be very common in practice). In addition, some
 trust relationships may be removed because continuous monitoring
 detected an unapproved or otherwise invalid trust relationship.

 When trust relationships are removed, the associated authorized key
 (if it is key-based) MUST be removed from the authorized keys file of
 the destination server.

 When there are no trust relationships remaining using a particular
 identity key, the identity key SHOULD be removed.

6.3. Periodic Rotation of Trust Relationships

 Keys must be regularly rotated as specified in Section 5.7.

7. Policy Recommendations

Ylonen, et al. Expires October 06, 2013 [Page 41]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Effective security policies are important for defining expectations
 for controls and acceptable user behavior. Well-defined policies are
 no less important for governing SSH user keys than for other elements
 of an organization's security program. In fact, because few people
 understand the problem and poor SSH user key management practices are
 so pervasive, policies are essential to the success of any SSH key
 management remediation process.

 To support the key remediation and continuous monitoring steps
 outlined elsewhere in this document, there is a common core set of
 policy statements that should be adopted by all organizations. The
 following policy statements are RECOMMENDED (with limited
 organizational-specific customization and optionally limited to apply
 to moderate-impact and high-impact systems) to provide the governance
 framework for controlling SSH user keys:

 All SSH servers shall be configured to store authorized keys in a
 root-owned /etc directory (or other suitable directory not
 writable by normal users).

 Users shall not create new identity keys or authorized keys, shall
 not share identity keys with other users, and shall not copy or
 move identity keys to other SSH client systems.

 SSH identity keys and authorized keys shall be provisioned only by
 the access management group.

 SSH user key requests shall follow the standard provisioning
 process. All requests for SSH authorized keys shall be
 provisioned only when required by a valid business need and
 approved by the destination account's owner.

 Trust relationships shall not cross security zone boundaries. If
 this is a requirement for a trust relationship, then the new user
 key request shall provide a rationale and require a waiver
 approved by the server operations director and information
 security director.

 Trust relationships shall not allow access from low-impact systems
 to higher-impact systems. If such trust relationships are
 required, then those low-impact systems shall be reclassified as
 higher-impact systems and shall be subject to the higher security
 requirements of higher-impact systems, unless command restrictions
 prevent obtaining an interactive shell and writing arbitrary files
 using such trust relationships.

 Trust relationships for non-interactive access shall be configured
 with command restrictions. If commands cannot be restricted, then

Ylonen, et al. Expires October 06, 2013 [Page 42]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 the new user key request shall provide a rationale and require a
 waiver approved by the server operations director and information
 security director.

 Trust relationships permitting interactive access (especially to
 privileged accounts) shall enforce source restrictions to
 authorized, hardened jump servers or transparent access auditing
 solutions are used that ensure such access is properly controlled.

 A registry of SSH user keys shall be maintained for tracking trust
 relationships (including their owner, purpose, approval,
 restrictions, and business purpose) throughout the environment.

 SSH user keys and corresponding trust relationships shall be
 removed when no longer needed or no longer used.

 Usage of SSH user keys shall be tracked so that unused authorized
 keys can be identified.

 All SSH user keys shall be rotated annually.

 When a user terminates employment or transfers to new job
 responsibilities, all keys assigned to that user shall be rotated,
 or the corresponding authorized key relationships shall be
 removed.

 If a key is compromised or shared by two or more users, then the
 key shall immediately be rotated, or the corresponding authorized
 key relationships shall be removed.

 SSH authorized keys shall be revalidated annually by the
 destination account owner to ensure that trust relationships
 continue to be valid and proper.

 Authorized keys for privileged accounts such as root shall be
 revalidated annually and approved by the server operations
 director and information security director.

 Trust relationships throughout the network shall be monitored at
 least annually to enforce compliance with this policy. At a
 minimum, monitoring activities shall be in place to detect the
 following types of non-compliance for immediate resolution:

 SSH user key trust relationships that bypassed the formal
 provisioning process and were not authorized and configured by
 the access management group

Ylonen, et al. Expires October 06, 2013 [Page 43]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 SSH user key trust relationships that cross security zone
 boundaries

 SSH user keys that have been not rotated in over a year

 Dormant trust relationships that have not been used

 Other policy statements are highly dependent on the risk tolerance
 and context of each organization. Depending on the unique
 circumstances of the organization, these policy statements may or may
 not be applicable. During the remediation process, organizations
 often make risk-based decisions about how to cost-effectively control
 and manage their SSH keys in their own context. It is critical that
 these decisions be properly reflected in security policy in order to
 influence user behavior and provide a framework for organization-
 specific controls. Examples of these types of policy statements are
 provided below:

 All SSH user keys assigned to human users for interactive logins
 shall be assigned a passphrase that is at least 15 characters
 long. (The reason for this policy is self-evident.)

 SSH trust relationships for human accounts shall be limited to
 other human accounts. Human accounts shall never have trust
 relationships to system accounts or service accounts. (This
 policy makes sense for organizations with lots of keys and
 transitive trust relationships that are too difficult to manage.
 Eliminating human-to-system account trust relationships can help
 simplify the mesh of trust and therefore minimize the risk of
 inadvertently allowing unneeded access.)

 SSH user keys shall be used only for automated access and shall
 not be used for interactive logins by human users. (An
 organization may decide to do this to reduce the number of keys in
 the environment and lighten the load on the provisioning process,
 for example, if no automation is available and provisioning is
 done manually.)

 SSH servers shall be configured to deny connections to the root
 account. (If key-based connections to root are not required, then
 setting "PermitRootLogin no" can significantly contain the damage
 that can be done through unauthorized use of keys).

 Unique SSH host keys shall be created for every system. (This is
 essential when SSH host-based authentication is used and for
 protecting against man-in-the-middle attacks.)

Ylonen, et al. Expires October 06, 2013 [Page 44]

Internet-Draft Managing SSH Keys for Automated Access April 2013

8. Considerations for Software Tools

 All requirements specified in this document can be implemented
 manually and with regular audits, without using software tools. Use
 of software tools is OPTIONAL. However, automated software tools for
 managing SSH keys are commercially available from multiple vendors
 and their use is RECOMMENDED in large environments, as they can
 substantially reduce the time, cost, and effort needed for
 remediating existing SSH user keys and provide substantial ongoing
 cost savings for continuously managing and monitoring SSH keys in an
 organization.

 Here are certain key things to consider in planning an SSH key
 management remediation solution and its deployment:

 Does the solution support all required operating systems where SSH
 keys need to be managed (including mainframe, if applicable)?

 Does the solution support all SSH implementations and versions
 that are use in the environment, including their key formats and
 fingerprint formats?

 Does the solution support keys moved to protected, root-only-
 writable locations? Can it help move keys to such locations? How
 does it determine where the keys are stored on each host?

 Can trust relationships that are not actually used be
 automatically detected and proposed for removal (with selective
 approval)?

 Can the solution associate trust relationships and keys with an
 application, business process, or other purpose? Can it enforce
 that all authorized keys have a documented purpose? How is this
 implemented for legacy trust relationships (from time before
 deployment of the solution)? Can it distinguish legacy keys from
 those that are set up afterwards?

 How does the solution implement approvals for new keys? How does
 it integrate to existing workflows and tools? Does it support an
 approval workflow which integrates into external systems?

 Can creation of new keys and trust relationships be automated
 based on approvals done in an existing IT change control system?
 If no existing IT change control system is in use in the
 organization, does the solution provide one to enforce approvals?

 Does the solution support grouping systems based on the impact of
 their disruption or compromise?

Ylonen, et al. Expires October 06, 2013 [Page 45]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Does the solution support rotating SSH user keys?

 How is key rotation implemented for external trust relationships/
 external keys? Can it automatically recognize external keys?

 Does the solution support configuring command restrictions for
 authorized keys/trust relationships? Does it support requiring
 special approvals for trust relationships that do not have a
 command restriction?

 Does the solution support configuring source restrictions for
 authorized keys/trust relationships?

 Does the solution provide continuous monitoring capabilities as
 specified in Section 6?

 If the management system is unavailable for some reason, will
 normal operation of managed hosts be disrupted (other than not
 being able to create/modify trust relationships)?

 Will the solution run as root on managed hosts, or can it use a
 non-root account and "sudo" (or equivalent) to perform limited
 operations as root?

 Is the solution able to retry discovery, key setups, etc. on
 hosts that are down or unreachable at the time of the initial
 attempt? How does the solution cope with poor network
 connectivity?

 Does the solution support user accounts stored in LDAP or Active
 Directory? How does it prevent crashing LDAP or Active Directory
 servers by reading directory contents from all servers
 simultaneously?

 Can the solution discover keys from directories that are not
 readable by root (e.g., NFS directories using the "root_squash"
 option)?

 Does the solution work with SELinux, if such support is needed?

 How can the solution save operational costs in SSH user key
 management in the organization? Have existing user key management
 costs been estimated on an annual level?

8.1. Reducing Cost and Improving Security by Automation

 Some large organizations are seeing over a hundred thousand new
 authorized keys being configured every year. Some trust relationship

Ylonen, et al. Expires October 06, 2013 [Page 46]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 setups may involve installing the same authorized key on thousands of
 servers. Given that setting up and a manual trust relationship can
 easily take fifteen minutes or more, the cost can be millions of
 dollars per year.

 Some software tools allow integration into existing security
 entitlement approval systems, and can implement a suitably formatted
 trust relationship setup request automatically, without manual
 intervention.

 Such automation provides several benefits:

 Substantial cost savings by eliminating the manual work associated
 with trust relationship setups.

 Substantial reduction in outages due to errors in manual key
 setups.

 Need for root access is significantly reduced, as SSH user key
 setups no longer require root access.

 Substantial security improvements from eliminating root access (or
 the need for being able to install new trust relationships) from
 most system administrators (having five people with access to the
 software tool system is much more secure than having two hundred
 administrators able to manually install keys).

9. Security Considerations

 This document is all about security, including how to evaluate the
 impact of disruption or compromise of information systems, how to
 reduce the risk to information system from automated access, how to
 remediate current unmanaged base of SSH user key based trust
 relationships for automated access, and how to manage and
 continuously monitor automated access as an ongoing process.

Section 1.5 defined information system impact levels based on FIPS
 199, but expanding on it by considering information systems having
 automated access to higher-impact information systems as also having
 the impact level of the higher-impact information system.

Section 2.2.6 briefly discussed unmanaged host keys and how they can
 be used to compromise authentication and integrity protection using
 active network-level man-in-the-middle attacks.

Section 3 discussed various threats arising from poorly managed
 automated access and SSH user keys, including virus spread threat,
 unaudited backdoor threat, leaked keys granting near-permanent

Ylonen, et al. Expires October 06, 2013 [Page 47]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 access, and lack of proper termination of access when an employee
 leaves or changes roles. It also discussed how ports opened in
 firewalls may be used for unintended purposes, including command
 execution, access to internal services, or for hiding source of
 attacks, if not properly controlled.

Section 4 discussed assessing the threats and exposure of an
 organization to them as a quick precheck during audit, before
 engaging in a full discovery and remediation project.

Section 5 provided recommendations on how to bring existing trust
 relationships for automated access, particularly SSH user keys, under
 control.

Section 6 provided recommendations for continuous monitoring and
 management of automated access and SSH user keys.

Section 7 provided recommendations for organizational security
 policy.

 As a summary, automated access between systems MUST NOT be overlooked
 in identity and access management. It has become so prevalent that
 many organizations have many times more credentials for automated
 access to their information systems that they have user accounts for
 employees.

 Management of SSH keys is about managing access, with strong ties to
 identity and access management, security architecture, privileged
 access management, IT change control, and security audits.
 Cryptographic properties of the keys are in practice of little
 importance, as all keys generated with default settings by most
 commonly used SSH implementations are still cryptographically
 reasonably strong.

 Virus spread threat using automated trust relationships may remove
 defense in depth against attacks and malware. Automated access may
 provide pathways for bypassing existing privileged access management
 systems. Rogue administrators may use SSH user keys to create near-
 permanent unaudited backdoors, and leaked keys may be used for
 breaking into production servers. Even accidental access using
 poorly configured trust relationships has in the past caused
 substantial financial losses.

Ylonen, et al. Expires October 06, 2013 [Page 48]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Risks of unmanaged, unaudited automated access are sufficiently high
 and the state of their management in some of the largest
 organizations in the world so appalling that all organizations should
 evaluate to what extent they use automated access within and between
 their information systems, how it is managed and audited, and whether
 they are exposed to the risks.

 IT security auditors, policy makers, and security architects are
 urged to take automated access and SSH keys on their agenda.

10. Acknowledgements

 The authors thank and acknowledge the contribution of the following
 people to the development of this document and/or the underlying
 ideas: Bruno Canamasas, Roman Hernandez, Jan Hlinovski, Kalle
 Jaaskelainen, Mitch Klein, Sami Lehtinen, Sami Marttinen, Matthew
 McKenna, S. Moonesamy, Tim Polk, Joe Scaff. We also wish to thank
 anyone else who has helped by providing comments or input.

11. Glossary

 account: A user account on a computer. An account may belong to an
 actual person (interactive user) or may be used internally in a
 system (in which case it is sometimes called a functional account,
 process account, system account, or non-user account).

 Active Directory: A directory service created by Microsoft for
 Windows domain networks, providing a central repository for user
 information, user groups, and various other kinds of configuration
 information. Active Directory makes use of the LDAP and Kerberos
 protocols, among others, and can serve as an LDAP directory and
 Kerberos Key Distribution Center (KDC).

 Advanced Persistent Threat (APT): A group, such as a government,
 with the capability and intent to persistently target an entity
 using a variety of cyberwarfare techniques, such as espionage,
 social engineering, custom malware, and sophisticated hacking and
 evasion techniques.

 authorized key: A public key that has been configured as authorizing
 access to an account by anyone capable of using the corresponding
 private key (identity key) in the SSH protocol. An authorized key
 may be configured with certain restrictions, most notably a forced
 command and a source restriction.

 automated access: Access to a computer without an interactive user,
 generally machine-to-machine access. Automated access is often
 triggered from scripts or schedulers, e.g., by executing an SSH

Ylonen, et al. Expires October 06, 2013 [Page 49]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 client or a file transfer application. Many programs may also use
 automated access using SSH internally, including many privileged
 access management systems and systems management tools.

 automated trust relationship: A trust relationship for automated
 access.

 command restriction: See forced command.

 certificate: A public key signed by a certification authority (CA)
 key, together with additional information about the public key.
 X.509 [RFC3280] is a widely used standard for certificates.
 OpenSSH also implements its own proprietary certificate format;
 however, use of the proprietary format is NOT RECOMMENDED (in part
 because OpenSSH's authorization model does not permit reliably
 determining which trust relationships exist granting access to a
 server).

 CIFS: Common Internet File System, a protocol used on Windows for
 file sharing. The protocol is unencrypted and may be read and
 subverted by a network-level attacker. The protocol is extremely
 widely used in Windows environments, less frequently with Unix/
 Linux.

 CISO: Chief Information Security Officer. A person responsible for
 IT security in an organization.

 COBIT: Control Objectives for Information and Related Technology, a
 framework created by ISACA (Information Systems Audit and Control
 Association) for information technology (IT) management and IT
 governance.

 CryptoAuditor: A product from SSH Communications Security for
 controlling and auditing content of SSH sessions and other
 encrypted communications, including file transfers. Can also be
 used for auditing use of SSH/SFTP connections at a firewall and
 for privileged access auditing for key-based access.

 destination account: In an SSH connection or trust relationship, the
 user account for which authentication is provided and under which
 any commands or other operations performed by the connection are
 executed (acknowledging that some commands, such as "sudo", may
 further escalate privileges).

 destination host: In an SSH connection or trust relationship, the
 destination host of the connection. A destination host would
 typically run an SSH server.

https://datatracker.ietf.org/doc/html/rfc3280

Ylonen, et al. Expires October 06, 2013 [Page 50]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 DSA: Digital Signature Algorithm. An algorithm for public-key
 cryptography, particularly digital signatures. It is a United
 States government standard, specified in FIPS 186-3.

 external key: An authorized key that is used from outside the
 organization (or outside the environment considered for SSH user
 key management purposes), or an identity key that is used for
 authenticating to outside the organization (or outside the
 environment considered for SSH user key management purposes). Key
 rotation can break external keys, and therefore it must be ensured
 that the other side of trust relationships involving external keys
 is also properly updated as part of rotation. Alternatively,
 rotation of external keys may be prevented, but that is not a
 sustainable solution long-term.

 fingerprint: A hash value of a (public) key encoded into a string
 (e.g., into hexadecimal). Several fingerprint formats are in use
 by different SSH implementations.

 FISMA: Federal Information Security Management Act of 2002, a United
 States law that mandates how US government agencies must implement
 their it security.

 forced command: A restriction configured for an authorized key that
 prevents executing commands other than the specified command when
 logging in using the key. In Tectia SSH and OpenSSH, forced
 command can be configured by using a "command=" restriction in an
 authorized keys file.

 functional account: An account used for running applications or
 other processes, as opposed to an interactive account normally
 used by a person. Functional accounts are sometimes also called
 process accounts, system accounts, or non-user accounts (with
 slight nuances in meaning).

 host: A computer or other device on a network. A host may be a
 physical computer, a virtual machine, or any other logical or
 physical device that can communicate on a network, typically using
 one or more IP addresses. Some hosts may be multi-homed, meaning
 that they have more than one IP address.

 host certificate: A certificate for a host key for host
 authentication in the SSH protocol (typically an X.509v3
 certificate). Host certificates can eliminate the need for
 distributing host keys to all communicating hosts, greatly
 simplifying management and rotation of host keys. Widely used
 with Tectia SSH to avoid copying host keys and to make rotating
 them easier.

Ylonen, et al. Expires October 06, 2013 [Page 51]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 host credential: A Kerberos credential that is used for
 authenticating to a Kerberos KDC as a host principal.

 host key: A public key used for authenticating a host in the SSH
 protocol to hosts that want to communicate with it (each host also
 generally has its own private host key). Some hosts may have more
 than one host key (e.g., one for each algorithm). Host keys are
 used for authenticating hosts (machines) themselves, not users or
 accounts, whereas identity keys and authorized keys relate to
 authenticating users/accounts and authorizing access to accounts
 on hosts. See also Section 2.2.6.

 identity key: A private key that is used for authentication in the
 SSH protocol; grants access to the accounts for which the
 corresponding public key has been configured as an authorized key.

 indirect trust relationship: A sequence of trust relationships that
 indirectly leads to another account. For example, account A may
 be able to log into account B, which may be able to log into
 account C; then, account C indirectly trusts account A (and B
 directly trusts A and C directly trusts B). Indirect trust
 relationships may involve many kinds of trust relationships (e.g.,
 SSH keys, Kerberos and privilege escalation).

 interactive user: A person (human) that uses a computer (and may
 type passwords or provide other authentication credentials as
 needed), as opposed to a computer that performs operations on
 another computer in an automated fashion.

 jump host: A server that a user logs into for the purpose of logging
 infrom there to another server. They are used for privileged
 access management, centralizing configuration of access to a large
 number of servers (e.g., at retail locations), and for accessing
 restricted subnets that do not have normal routing from the rest
 of the organization.

 KDC: Key Distribution Center, a component of Kerberos.

 Kerberos: A centralized authentication and single-sign on system.
 Also used as part of Active Directory. See RFC 4120 [RFC4120].

 key: A cryptographic key. In this document, keys generally refer to
 public key cryptography key pairs used for authentication of users
 and/or machines (using digital signatures). Examples include
 identity key and authorized keys. The SSH protocol also uses host
 keys that are used for authenticating SSH servers to SSH clients
 connecting them.

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4120

Ylonen, et al. Expires October 06, 2013 [Page 52]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Key Distribution Center: A component of Kerberos and Active
 Directory infrastructure that verifies credentials and issues
 tickets to principals (e.g., users and hosts). An Active
 Directory server includes a KDC. Frequently multiple KDCs
 synchronize information for redundancy.

 known host: A host whose host key is known (to a particular SSH
 client).

 LDAP: Lightweight Directory Access Protocol, a protocol for
 accessing and maintaining distributed directory information
 services. See RFC 4511 [RFC4511].

 locking down keys: This refers to moving authorized keys to root-
 owned (or otherwise protected) locations, so that non-root users
 cannot add new authorized keys to themselves. This helps prevent
 system administrators and users from creating key-based backdoors
 that may survive the termination of their account and bypass
 privileged access management systems. See Section 5.2 for more
 information.

 NERC: North American Electric Reliability Corporation, an
 organization that, among other things, maintains the Critical
 Infrastructure Protection (CIP) standards that set minimum
 security requirements for protecting power generation and
 distribution infrastructure.

 NFS: Network File System, a file sharing protocol widely used in
 Unix/Linux environments in enterprises and universities. The
 protocol is unencrypted and may be subverted by a network-level
 attacker, permitting modification of any file. (NFS4 adds some
 security but is rarely used at the time of this writing, or is
 used with the security features disabled.)

 OpenSSH: An open source implementation of SSH based on Tatu Ylonen's
 original free version of SSH from 1995 and further developed by
 the OpenBSD group.

 orphaned key: An authorized key for which no corresponding public
 key can be found. An orphaned key may be currently unused, or the
 identity key might just be on a server that was not part of the
 discovery process (it could be an external key). Therefore
 orphaned keys should not be removed without first monitoring
 whether they are actually used.

 password logger: A software or hardware module for recording
 keystrokes, especially user names and passwords, typed by an
 interactive user. Password loggers are nowadays commonly included

https://datatracker.ietf.org/doc/html/rfc4511
https://datatracker.ietf.org/doc/html/rfc4511

Ylonen, et al. Expires October 06, 2013 [Page 53]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 in various malware and used as part of Advanced Persistent Threat
 (APT) attacks. Hardware-based key loggers may used in conjunction
 with physical access to a desktop or laptop (perhaps using a
 social engineering attack, such as getting hired as a janitor) to
 obtain passwords for entry into information systems.

 PCI DSS: A set of Data Security Standards defined by the Payment
 Card Industry Security Standards Council, an organization
 originally formed by major credit card companies.

 PKI: See Public Key Infrastructure.

 privilege escalation mechanism: A means for escalating a user's (or
 processes) privileges from those of one account to those of
 another account (particularly a root or Administrator account).
 Examples of privilege escalation mechanisms include intentional
 provilege escalation tools such as "sudo" and unintentional
 privilege escalation possibilities based on vulnerabilities and
 configuration errors (experience has shown that it is very often
 possible to find vulnerabilities or misconfigurations on that
 enable privilege escalation once inside a host). An attacker
 having access to an account can generally change the configuration
 of the account to cause the user to unknowingly run the attacker's
 programs that may, e.g., steal the user's password and then use
 the password to spread the attack. Also, having high-level access
 on one host on a network may effectively imply access to every
 user account on every host whose home directory is in networked
 storage accessible through the same network as the compromised
 host. Against advanced attackers, even vulnerable embedded
 devices such as switches, printers and copiers can be used to
 perform network-level active attacks against other hosts. Some
 limit will have to be put on what theoretical possiblities are
 considered, however. Privilege escalation possibilities
 effectively imply additional trust relationships that may in turn
 imply a multitude of indirect trust relationships.

 Public Key Infrastructure: An arrangement that binds public keys
 with respective user identities using digital signatures issued by
 a certificate authority (CA). See RFC 3280 [RFC3280].

 Putty: An Open Source SSH client for Windows.

 Reflection for Secure IT: A commercial version of SSH from
 Attachmate.

 root account: In Linux/Unix, a privileged account that is usually
 able to do anything in a computer (including reading any files and
 modifying any programs). In Windows, Local Administrator and

https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3280

Ylonen, et al. Expires October 06, 2013 [Page 54]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 Domain Administrator have similar or even broader power. (This
 document mostly talks about root access as SSH is mostly used on
 Linux/Unix and embedded devices, but the same issues often also
 apply to other technologies and the Windows environment.)

 rotating a key: Key rotation means changing the key, i.e., replacing
 it by a new key. The places that use the key or keys derived from
 it (e.g., authorized keys derived from an identity key, legitimate
 copies of the identity key, or certificates granted for a key)
 typically need to be correspondingly updated. With SSH user keys,
 it means replacing an identity key by a newly generated key and
 updating authorized keys correspondingly. See also external key.

 RSA: An algorithm for public-key cryptography based on the
 difficulty of factoring large integers, invented by Ron Rivest,
 Adi Shamir and Leonard Adleman.

 SELinux: Security-Enhanced Linux, a Linux feature that provides
 mechanisms for supporting access control security policies.
 SELinux is enabled by default on several Linux distributions (at
 least in what is called "targeted" mode, where it protects
 selected services).

 SFTP: SSH File Transfer Protocol, a file transfer and file sharing
 protocol typically used with the SSH protocol and originally
 developed by Tatu Ylonen for ssh-2.0. The protocol is
 unofficially described in SFTP [SFTP]; there is no normative
 reference available at the time of this writing.

 source account: In an SSH connection or trust relationship, a source
 account is the user account on the host initiating the connection,
 typically the user account under which an SSH client runs.

 source host: In an SSH connection or trust relationship, a source
 host is the host initiating the connection (typically by running
 an SSH client).

 source restriction: A restriction configured for an authorized key
 that limits the IP addresses or host names from which login using
 the key may take place. In OpenSSH, source restrictions can be
 configured by using a "from=" restriction in an authorized keys
 file.

 SOX: Sarbanes-Oxley Act of 2002, also known as the Public Company
 Accounting Reform and Investor Protection Act, a United States law
 that, among other things, sets requirements for protecting certain
 sensitive information in listed companies.

Ylonen, et al. Expires October 06, 2013 [Page 55]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 SSH: SSH (Secure Shell) is a protocol and tool for remote system
 administration, file transfers, and for tunneling TCP/IP
 communications securely, originally developed by Tatu Ylonen.

 SSH Communications Security: A company founded by Tatu Ylonen, the
 inventor of SSH, with products improving security and operational
 efficiency of large IT environments, particularly for large SSH
 environments. See http://www.ssh.com [2].

 sudo: A privilege escalation mechanism/tool on Unix/Linux that can
 be used for executing commands as root from a non-root account.
 The operation of "sudo" depends on its configuration. In some
 configurations, certain accounts may perform any command as root
 using "sudo". In some other systems, certain users, such as
 members of a "wheel" group can perform commands as root by
 confirming the operation with the user's password. Several
 commercial tools also exist for the same purpose.

 Tectia Manager: A product for managing SSH host keys and
 configurations, from SSH Communications Security.

 Tectia SSH: A commercial version of SSH servers and clients for
 Windows, z/OS (IBM mainframes), Unix, and Linux from SSH
 Communications Security.

 transparent access auditing: A method of doing privileged access
 management and auditing on the network (using a co-operative man-
 in-the-middle attack to transparently gain access to the
 connection) or at an SSH server (by having auditing code built
 into the server). See, e.g., the CryptoAuditor solution.

 trust relationship: Something that permits a source account to log
 in to a destination account (possibly on a different computer).
 In a sense, the destination account trusts the source account, and
 if the source account is compromised, so is the destination
 account. An example is an authorized key (and corresponding
 identity key) configured for public key authentication in SSH.
 See also indirect trust relationship and privilege escalation.

 Universal SSH Key Manager: A product from SSH Communications
 Security for managing and monitoring SSH keys and other trust
 relationships for automated access.

 user key: A key that is used for granting access to a user account
 in the SSH protocol (as opposed to a host key, which does not
 grant access to anything but serves to authenticate a host). Both
 authorized keys and identity keys are user keys.

http://www.ssh.com

Ylonen, et al. Expires October 06, 2013 [Page 56]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 X.509: A standardized widely used certificate format for public key
 infrastructure (PKI). See RFC 3280 [RFC3280].

12. References

 [FIPS199] Evans, D. L., Bond, P. J., and A. L. Bement, "Standards
 for Security Categorization of Federal Information and
 Information Systems", FIPS Publication 199, February 2004.

 [FIPS200] Gutierrez, C. M. and W. Jeffrey, "Minimum Security
 Requirements for Federal Information and Information
 Systems", FIPS Publication 200, March 2006.

 [NIST800-53]
 Locke, G. and P. D. Gallagher, "Recommended Security
 Controls for Federal Information Systems and
 Organizations", NIST Special Publication 800-53 (revision
 3 with updates as of 05-01-2010), August 2009.

 [KENT] Kent, G. and B. Shrestha, "Unsecured SSH - The Challenge
 of Managing SSH Keys and Associations", SecureIT White
 Paper, 2010.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 4251,
 April 2002.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4251,
 July 2005.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4252] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, January 2006.

 [RFC4253] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

 [RFC4511] Sermersheim, J., "Lightweight Directory Access Protocol
 (LDAP): The Protocol", RFC 4511, June 2006.

https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4252
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4254
https://datatracker.ietf.org/doc/html/rfc4511

Ylonen, et al. Expires October 06, 2013 [Page 57]

Internet-Draft Managing SSH Keys for Automated Access April 2013

 [SFTP] Galbraith, J. and O. Saarenmaa, "SSH File Transfer
 Protocol", draft-ietf-secsh-filexfer-13.txt (work in
 progress), June 2006.

Authors' Addresses

 Tatu Ylonen
 SSH Communications Security

 Email: ylo@ssh.com
 URI: http://www.ssh.com

 Greg Kent
 SecureIT

 Email: gkent@secureit.com

 Murugiah Soyppaya
 NIST

 Email: soyppaya@nist.gov

Ylonen, et al. Expires October 06, 2013 [Page 58]

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-filexfer-13.txt
http://www.ssh.com

