IS-IS Protocol Extension For Building Distribution Trees
draft-yong-isis-ext-4-distribution-tree-03

Abstract

This document proposes an IS-IS protocol extension to support IGP based multicast transport architecture and solution [IGP-MCAST].

Status of this document

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 27, 2015.
Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to RFC 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Table of Contents

1. Introduction...3
 1.1. Conventions used in this document.......................3
2. IS-IS Protocol Extension.......................................3
 2.1. RTADDR sub-TLV..3
 2.2. RTADDRV6 sub-TLV.....................................5
 2.3. The Group Address Sub-TLV..............................6
3. Security Considerations..7
4. IANA Considerations..7
5. Acknowledgements...7
6. References..7
 6.1. Normative References..................................7
 6.2. Informative References.................................7
1. Introduction

This document proposes an IS-IS protocol extension to support IGP based multicast transport architecture and solution [IGP-MCAST].

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].

2. IS-IS Protocol Extension

2.1. RTADDR sub-TLV

This is a sub-TLV that is used in either a Router Capabilities TLV or an MT Capabilities TLV. Each RTADDR sub-TLV contains a root IPv4 address and multicast group addresses that associate to the tree. A router may use multiple RTADDR sub-TLVs to announce multiple root addresses and associated multicast groups with each root. RTADDR sub-TLV format is below.
Where:

subType: RTADDR (TBD)

Length: variable depending on the number of associated groups

Root IPv4 Address: IPv4 Address for a router that is a tree root

S bit: When set, the rooted tree for single area only. Otherwise, the rooted tree crosses multiple areas.

D bit: When set, the tree root is as of default tree root. Otherwise, the default tree is auto-calculated. [IGP-MCAST] When clear, the tree root is another distribution tree beside the default tree.

RESV: 6 reserved bits. MUST be sent as zero and ignored on receipt.

Tree Priority: An eight bit unsigned integer where larger magnitude means higher priority. Zero means no priority.
Num of Groups: the number of group addresses. When D bit sets, the number of group addresses is 0, which means that indicated tree root is the default tree root (supersede the auto-calculate one).

Group Address: IPv4 Address for the group

Group Mask: Group Mask: multicast groups mask. If the mask bit is a one, the Group Address bit must match that corresponding bit in the packet destination address to be associated with the tree whose root is given.

One router may be the root for multiple trees. Each tree associates to a set of multicast groups. In this case, a router encodes multiple RTADDR sub-TLVs to announce root addresses, one for each root, in either a Router Capabilities TLV or an MT Capabilities TLV. The group address/mask in different sub-TLVs can overlap. See [IGP-MCAST] for details.

2.2. RTADDRV6 sub-TLV

This sub-TLV is used in an IPv6 network. It has the same format and usage except that the addresses are in IPv6.
2.3. The Group Address Sub-TLV

The Group Address TLV and a set of Group Address sub-TLVs are defined in [RFC 7176]. The GIP-ADDR and GIPv6-ADDR sub-TLVs are used in this solution. An edge router uses the GIP-ADDR sub-TLV or GIPv6-ADDR to announce its interested multicast groups. The GIP-
ADDR sub-TLV applies to an IPv4 network and GIPv6-ADDR sub-TLV for IPv6 network.

When using a GIP-ADDR or GIPv6-ADDR sub-TLV for IGP multicast, the field VLAN-ID MUST set to zero and be ignored. Other field usage remains the same as [RFC7176]

3. Security Considerations

See Security Considerations in [IGP-MCAST].

4. IANA Considerations

IANA is requested to assign two new sub-TLV numbers for RTADDR and RTADDRV6 as specified in Sections 2.1 and 2.2. These sub-TLVs can be used under both the Router Capability (#242) and MT Capability (#144) TLVs. To avoid confusion, each sub-TLV should be assigned the same sub-Type number under each of these two TLVs.

5. Acknowledgements

Authors like to thank Mike McBride and Linda Dunbar for their valuable inputs.

[Editor note: the previous draft has been split into two drafts: draft-yong-isis-ext-4-distribution-tree-03 and draft-yong-rtgwg-igp-multicast-arch-00 based on AD and chair's suggestion.]

6. References

6.1. Normative References

6.2. Informative References

Authors' Addresses

Lucy Yong
Huawei USA

Phone: 918-808-1918
Email: lucy.yong@huawei.com

Weiguo Hao
Huawei Technologies
101 Software Avenue,
Nanjing 210012
China

Phone: +86-25-56623144
Email: haoweiguo@huawei.com

Donald Eastlake
Huawei
155 Beaver Street
Milford, MA 01757 USA

Phone: +1-508-333-2270
EMail: d3e3e3@gmail.com

Andrew Qu
MediaTek
San Jose, CA 95134 USA

Email: laodulaodu@gmail.com

Jon Hudson
Brocade
130 Holger Way
San Jose, CA 95134 USA

Phone: +1-408-333-4062
Email: jon.hudson@gmail.com

Uma Chunduri