
Workgroup: DNSOP Working Group

Internet-Draft:

draft-yorgos-dnsop-dry-run-dnssec-01

Published: 11 July 2022

Intended Status: Standards Track

Expires: 12 January 2023

Authors: Y. Thessalonikefs

NLnet Labs

W. Toorop

NLnet Labs

R. Arends

ICANN

dry-run DNSSEC

Abstract

This document describes a method called "dry-run DNSSEC" that allows

for testing DNSSEC deployments without affecting the DNS service in

case of DNSSEC errors. It accomplishes that by introducing a new DS

Type Digest Algorithm that signals validating resolvers that dry-run

DNSSEC is used for the zone. DNSSEC errors are then reported with

DNS Error Reporting, but any bogus responses to clients are

withheld. Instead, validating resolvers fallback from dry-run DNSSEC

and provide the response that would have been answered without the

presence of a dry-run DS. A further option is presented for clients

to opt-in for dry-run DNSSEC errors and allow for end-to-end DNSSEC

testing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Overview

3.1. Use cases

3.1.1. DNSSEC adoption

3.1.2. Experimental DNSSEC configuration

3.1.3. Key rollover

3.2. Opt-in end-to-end DNSSEC testing

4. Signaling

4.1. Feedback from IETF 113

4.1.1. Hash is created from DNSKEY (or CDNSKEY)

4.1.2. Idea: Have a general purpose DS Digest Type for

signaling

4.1.3. Idea from Petr: Normalize the different DS hacks

4.2. The dry-run DS structure

5. Provisioning

5.1. Feedback from IETF 113

5.1.1. Registry supports only fixed sized hashes per hash

algorithm

5.2. Parent zone records

5.2.1. CDS and CDNSKEY Consideration

6. Security Considerations

7. IANA Considerations

7.1. DRY-RUN DS Type Digest Algorithm

7.1.1. Single timeline

7.1.2. Multiple timeline

7.2. Wet-Run EDNS0 Option

8. Acknowledgements

9. Normative References

Appendix A. Implementation Status

Appendix B. Change History

Authors' Addresses

1. Introduction

DNSSEC was introduced to provide DNS with data origin authentication

and data integrity. This brought quite an amount of complexity and

fragility to the DNS which in turn still hinders general adoption.

When an operator decides to publish a newly signed zone there is no

¶

real DS

dry-run DS

dry-run zone

dry-run parent zone

dry-run resolver

wet-run client

way to realistically check that DNS resolution will not break for

the zone.

Recent efforts that improve troubleshooting DNS and DNSSEC include

Extended DNS Errors [RFC8914] and DNS Error Reporting [DNS-ERROR-

REPORTING]. The former defines error codes that can be attached to a

response as EDNS options. The latter introduces a way for resolvers

to report those error codes to the zone operators.

This document describes a method called "dry-run DNSSEC" that builds

upon the two aforementioned efforts and gives confidence to

operators to adopt DNSSEC by introducing a new DS Type Digest

Algorithm. The zone operator signs the zone and makes sure that the

DS record published on the parent side uses the specific DS Type

Digest Algorithm. Validating resolvers that don't support the DS

Type Digest algorithm ignore it as per [RFC6840], Section 5.2.

Validating resolvers that do support dry-run DNSSEC make use of

[RFC8914] and [DNS-ERROR-REPORTING] to report any DNSSEC errors to

the zone operator. If a DNSSEC validation error was due to dry-run

DNSSEC, validation restarts by ignoring the dry-run DS in order to

give the real DNS response to the client.

This allows real world testing with resolvers that support dry-run

DNSSEC by reporting DNSSEC feedback, without breaking DNS resolution

for the domain under test.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

The actual DS record for the delegation.

The DS record with the special DS type digest algorithm

that signals dry-run DNSSEC for the delegation.

A zone that is DNSSEC signed but uses a dry-run DS to

signal the use of the dry-run DNSSEC method.

A zone that supports dry-run DNSSEC for its

delegation, that is support for publishing the dry-run DS.

A validating resolver that supports dry-run

DNSSEC.

A client that has opted-in to receive the actual

DNSSEC errors from the upstream validating resolver instead of

the insecure answers.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6840

3. Overview

Dry-run DNSSEC offers zone operators the means to test newly signed

zones and a turn-key action to conclude testing and commit to the

tested DNSSEC records. Operators that want to use dry-run DNSSEC

SHOULD support [DNS-ERROR-REPORTING] and have a reporting agent in

place to receive the error reports.

The only change from normal operations when signining a zone with

dry-run DNSSEC is to not publish the real DS record on the parent

but publish the dry-run DS record instead. See Section 4 for more

information on the dry-run DS record itself, and Section 5 on the

parent-child communication for the dry-run DS record.

Validating resolvers that don't support the DS Type Digest algorithm

ignore it as per [RFC6840], Section 5.2. Validating resolvers that

support dry-run DNSSEC are signaled to treat the zone as a dry-run

zone. Validating resolvers that support dry-run DNSSEC MUST support

[DNS-ERROR-REPORTING].

Valid answers as a result of dry-run validation yield authentic data

(AD) responses and clients that expect the AD flag can already

profit from the transition.

Invalid answers instead of SERVFAIL yield the response that would

have been answered when no dry-run DS would have been present in the

parent. For zones that had only dry-run DS RRs in the parent, an

invalid answer yields an insecure response. This is not proper data

integrity but the delegation should not be considered DNSSEC signed

at this point. For zones that had other non-dry-run DS RRs in the

parent, validation MUST restart by using those RRs instead.

[DNS-ERROR-REPORTING] is used for invalid answers and it can

generate reports for errors in dry-run DNSSEC zones. This helps with

monitoring potential DNS breakage when testing a DNSSEC

configuration for a zone. This is also the main purpose of dry-run

DNSSEC.

The signed zone is publicly deployed but DNSSEC configuration errors

cannot break DNS resolution yet. DNS Error Reports can pinpoint

potential issues back to the operator. When the operator is

confident that the DNSSEC configuration under test does not

introduce DNS breakage, the turn-key action to conclude testing and

commit to the singed zone is to replace the dry-run DS with the real

DS record on the parent zone.

3.1. Use cases

Dry-run DNSSEC can be used to test different DNSSEC scenarios. From

adopting DNSSEC for a zone, which is the main goal of this document,

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6840

to testing experimental DNSSEC configurations and key rollovers.

Dry-run resolvers generate error reports in case of validation

errors in dry-run zones and they fallback to the non-dry-run part of

the zones to complete validation.

3.1.1. DNSSEC adoption

This use case tests DNSSEC adoption for an insecure zone. The zone

is signed and a single dry-run DS record is published on the parent.

Validation errors yield error reports but invalid answers do not

result in SERVFAIL responses to the clients. In the absence of real

DS records, resolvers fallback to no DS records for the zone. The

zone is treated as insecure, yielding insecure responses of the DNS

data.

3.1.2. Experimental DNSSEC configuration

This use case can test a completely different DNSSEC configuration

for an already signed zone. The zone is doubly signed and there are

at least two DS RRs in the parent zone. Dry-run resolvers try to use

the dry-run part of the zone. In case of validation errors they

fallback to the real DS and restart validation which may or may not

lead to further validation errors depending on the real DNSSEC

status of the zone.

3.1.3. Key rollover

As with the experimental case above, but for the benefit of testing

a key rollover before actually committing to it. The rollover can be

tested by introducing the real DS also as a dry-run DS record as the

first step. Normal key rollover procedures can continue by

introducing the new key as another dry-run DS record. In case of

validation errors, dry-run resolvers fallback to the real DS and

restart validation. When testing was successful, the same exact

procedure can be followed by replacing the dry-run DS steps with

real DSes.

A special key rollover case could be for the root. This can be made

possible by specifying the dry-run DS Digest Type in the

<DigestType> element in http://data.iana.org/root-anchors/root-

anchors.xml or a different way of indicating in the xml file.

3.2. Opt-in end-to-end DNSSEC testing

For further end-to-end DNS testing, a new EDNS0 option code TBD

(Wet-Run DNSSEC) is introduced that a client can send along with a

query to a validating resolver. This signals dry-run resolvers that

the client has opted-in to DNSSEC errors for dry-run zones. Dry-run

resolvers that support opt-in MUST respond with the dry-run DNSSEC

¶

¶

¶

¶

¶

http://data.iana.org/root-anchors/root-anchors.xml
http://data.iana.org/root-anchors/root-anchors.xml

error if any and MUST attach the same EDNS0 option code TBD in the

response to mark the error response as coming from a dry-run zone.

Dry-run resolvers that support opt-in MUST cache the DNSSEC status

of the dry-run validation next to the actual DNSSEC status. This

enables cached answers to both regular and opt-in clients.

Additional Extended DNS Errors can still be attached in the error

response by the validating resolver as per [RFC8914].

4. Signaling

Signaling to dry-run resolvers that a delegation uses dry-run DNSSEC

happens naturally with the DS record returned from the parent zone

by specifying new DS Digest Type Algorithm(s).

The current version of the document describes two different

timelines: one where a single DS Digest Type Algorithm is introduced

and one where multiple DS Digest Type Algorithms are introduced.

For the single timeline, the algorithm specifies the use of dry-run

DNSSEC for the zone. The actual DS Digest Type Algorithm is encoded

in the first byte of the RDATA. This results in variable length DS

RDATA in relation to the DS Digest Type Algorithm and is discussed

further in Section 5. For more information about the record see

Section 4.2.

For the multiple timeline, each algorithm has a potential dry-run

equivalent. This can be realised by either burning a bit in the DS

Digest Type Algorithm, so that all current and future algorithms

have a dry-run DNSSEC equivalent, or by explicitly specifying

algorithms for each current and future algorithm. The current

convention for this document is to specify a new one for SHA-256

only at the moment.

In all timelines, resolvers that do not support dry-run DNSSEC and

have no knowledge of the introduced DS Digest Type Algorithms ignore

it as per [RFC6840], Section 5.2.

4.1. Feedback from IETF 113

Note to the RFC Editor: please remove this entire section before

publication.

This is addressed feedback as a result of IETF 113. We keep it here

for future reference while the document is advancing.

We currently have settled for augmenting the DS with information

regarding dry-run DNSSEC by specifying additional DS Digest Type(s)

which does not affect current logic in the name servers and

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6840

resolvers alike (except from the added support by dry-run

resolvers).

4.1.1. Hash is created from DNSKEY (or CDNSKEY)

Feedback from Gavin Brown from CentralNIC.

DNSKEYs do have space for flags which are ignored. There was a

suggestion to use the flags in the DNSKEY to signal Dry-run, but

we do not like it, because it makes the move to actual DNSSEC

impossible without also changing the DNSKEY RRset.

4.1.2. Idea: Have a general purpose DS Digest Type for signaling

From Ben Schwartz

To avoid polluting the digest type space with all the different

ideas.

Although there are a lot of DS hacks that need to convey

information about the delegation, we find the dry-run DS logic to

be tightly coupled with the actual DS record. So it is not a hack

per say but an addition to the DS information.

Sure, it will be another draft dependency then. Personally we'd

prefer Petr's idea (see below).

4.1.3. Idea from Petr: Normalize the different DS hacks

There are now several drafts on hold because they want to

"misuse" DS for signalling. Petr's proposal: Why not have a range

of RR types for which the parent is authoritative (like DS, and

what NS should have been).

This could work for Dry-run, we could have a DDS RR type which

would have the same rdata as DS, but then signals Dry-run.

We like it, but it creates another dependency for all these

drafts (including ours) to progress.

4.2. The dry-run DS structure

This is only relevant for the single timeline as described in

Section 4.

The dry-run DS record is a normal DS record with updated semantics

to allow for dry-run signaling to a validating resolver. The DS Type

Digest Algorithm value MUST be TBD (DRY-RUN). The first octet of the

DS Digest field contains the actual Type Digest Algorithm, followed

by the actual Digest:

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Key Tag | Algorithm | DRY-RUN |

+-+

| Digest Type | /

+-+-+-+-+-+-+-+-+ Digest /

/ /

+-+

Dry-run resolvers encountering such a DS record will know to mark

this delegation as dry-run DNSSEC and extract the actual Type Digest

Algorithm and Digest from the dry-run DS Digest field.

Validating resolvers that have no knowledge for the DRY-RUN DS Type

Digest Algorithm MUST disregard the DS record as per [RFC6840],

Section 5.2.

5. Provisioning

This section discusses the communication between a dry-run DNSSEC

zone and the parent domain and the procedures that need to be in

place in order for the parent to publish a dry-run DS record for the

delegation. Most of the burden falls with the parent zone since they

have to understand the delegation's intent for use of dry-run

DNSSEC. If the parent does not accept DS records, they need to

provide a means so that the child can mark the DNSKEY(s) as dry-run

DNSSEC. This can be achieved either by a flag on the parent's

interface, or their willingness to accept and inspect DS records

that accompany DNSKEYs for use of the DRY-RUN DS Type Digest

Algorithm. The case of CDS/CDNSKEY is discussed below.

One issue in the single timeline is that the DS record will have

variable length RDATA for the single defined DS Digest Type

Algorithm and that could trigger parsing errors on the registrars.

This is the main reason for the multiple timeline existence. This is

something that could be addressed by the registrars and allow for

the single timeline.

5.1. Feedback from IETF 113

Note to the RFC Editor: please remove this entire section before

publication.

This is addressed feedback as a result of IETF 113. We keep it here

for future reference while the document is advancing.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6840

5.1.1. Registry supports only fixed sized hashes per hash algorithm

Feedback from Gavin from CentralNic.

We could also have a dry-run hash algorithm per DS algorithm;

this is presented in Section 4.

Disadvantage burn hash algorithms twice as fast.

Registries could also just change this rule for dry-run.

5.2. Parent zone records

The only change that needs to happen for dry-run DNSSEC is for the

parent to be able to publish the dry-run DS record. If the parent

accepts DS records from the child, the child needs to provide the

dry-run DS record. If the parent does not accept DS records and

generates the DS records from the DNSKEY, support for generating the

dry-run DS record, when needed, should be added to the parent if

dry-run DNSSEC is a desirable feature.

When the child zone operator wants to complete the DNSSEC

deployment, the parent needs to be notified for the real DS record

publication.

5.2.1. CDS and CDNSKEY Consideration

CDS works as expected by providing the dry-run DS content for the

CDS record. CDNSKEY cannot work by itself; it needs to be

accompanied by the aforementioned CDS to signal dry-run DNSSEC for

the delegation. Thus, parents that rely only on CDNSKEY need to add

support for checking the accompanying CDS record for the DRY-RUN DS

Type Digest Algorithm and generating a dry-run DS record if such a

record is encountered.

Operators of a dry-run child zone are advised to publish both CDS

and CDNSKEY so that both cases above are covered.

6. Security Considerations

For the use case of DNSSEC adoption, dry-run DNSSEC disables one of

the fundamental guarantees of DNSSEC, data integrity. Bogus answers

for expired/invalid data will become insecure answers providing the

potentially wrong information back to the requester. This is a

feature of this proposal but it also allows forged answers by third

parties to affect the zone. This should be treated as a warning that

dry-run DNSSEC is not an end solution but rather a temporarily

intermediate test step of a zone going secure.

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

¶

[DNS-ERROR-REPORTING]

[RFC2119]

7. IANA Considerations

7.1. DRY-RUN DS Type Digest Algorithm

The changes needed for either the single timeline or multiple

timeline as described in Section 4.

7.1.1. Single timeline

This document defines a new entry in the "Delegation Signer (DS)

Resource Record (RR) Type Digest Algorithms" registry:

Value Digest Type Status Reference

TBD DRY-RUN OPTIONAL [this document]

Table 1

7.1.2. Multiple timeline

This document defines a new entry in the "Delegation Signer (DS)

Resource Record (RR) Type Digest Algorithms" registry:

Value Digest Type Status Reference

TBD SHA-256 DRY-RUN OPTIONAL [this document]

Table 2

7.2. Wet-Run EDNS0 Option

This document defines a new entry in the "DNS EDNS0 Option Codes

(OPT)" registry on the "Domain Name System (DNS) Parameters" page:

Value Name Status Reference

TBD Wet-Run DNSSEC Optional [this document]

Table 3

8. Acknowledgements

Martin Hoffmann contributed the idea of using the DS record of an

already signed zone also as a dry-run DS in order to facilitate

testing key rollovers.

9. Normative References

Arends, R. and M. Larson, "DNS Error

Reporting", <https://datatracker.ietf.org/doc/html/draft-

ietf-dnsop-dns-error-reporting>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-error-reporting
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-error-reporting
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC6840]

[RFC8174]

[RFC8914]

Weiler, S., Ed. and D. Blacka, Ed., "Clarifications and

Implementation Notes for DNS Security (DNSSEC)", RFC

6840, DOI 10.17487/RFC6840, February 2013, <https://

www.rfc-editor.org/info/rfc6840>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Kumari, W., Hunt, E., Arends, R., Hardaker, W., and D.

Lawrence, "Extended DNS Errors", RFC 8914, DOI 10.17487/

RFC8914, October 2020, <https://www.rfc-editor.org/info/

rfc8914>.

Appendix A. Implementation Status

Note to the RFC Editor: please remove this entire section before

publication.

In the following implementation status descriptions, "dry-run

DNSSEC" refers to dry-run DNSSEC as described in this document.

None yet.

Appendix B. Change History

Note to the RFC Editor: please remove this entire section before

publication.

draft-yorgos-dnsop-dry-run-dnssec-00

Initial public draft.

draft-yorgos-dnsop-dry-run-dnssec-01

Document restructure and feedback incorporation from IETF 113.

Authors' Addresses

Yorgos Thessalonikefs

NLnet Labs

Science Park 400

1098 XH Amsterdam

Netherlands

Email: george@nlnetlabs.nl

Willem Toorop

NLnet Labs

¶

¶

¶

¶

* ¶

¶

* ¶

¶

https://www.rfc-editor.org/info/rfc6840
https://www.rfc-editor.org/info/rfc6840
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8914
https://www.rfc-editor.org/info/rfc8914
mailto:george@nlnetlabs.nl

Science Park 400

1098 XH Amsterdam

Netherlands

Email: willem@nlnetlabs.nl

Roy Arends

ICANN

Email: roy.arends@icann.org

mailto:willem@nlnetlabs.nl
mailto:roy.arends@icann.org

	dry-run DNSSEC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview
	3.1. Use cases
	3.1.1. DNSSEC adoption
	3.1.2. Experimental DNSSEC configuration
	3.1.3. Key rollover

	3.2. Opt-in end-to-end DNSSEC testing

	4. Signaling
	4.1. Feedback from IETF 113
	4.1.1. Hash is created from DNSKEY (or CDNSKEY)
	4.1.2. Idea: Have a general purpose DS Digest Type for signaling
	4.1.3. Idea from Petr: Normalize the different DS hacks

	4.2. The dry-run DS structure

	5. Provisioning
	5.1. Feedback from IETF 113
	5.1.1. Registry supports only fixed sized hashes per hash algorithm

	5.2. Parent zone records
	5.2.1. CDS and CDNSKEY Consideration

	6. Security Considerations
	7. IANA Considerations
	7.1. DRY-RUN DS Type Digest Algorithm
	7.1.1. Single timeline
	7.1.2. Multiple timeline

	7.2. Wet-Run EDNS0 Option

	8. Acknowledgements
	9. Normative References
	Appendix A. Implementation Status
	Appendix B. Change History
	Authors' Addresses

