
Network Working Group T. Yoshino
Internet-Draft W. Zhu
Intended status: Standards Track Google, Inc.
Expires: September 30, 2017 March 29, 2017

WiSH: A General Purpose Message Framing over Byte-Stream Oriented Wire
Protocols (HTTP)

draft-yoshino-wish-02

Abstract

 This document defines a general purpose message framing named WiSH
 which supports bi-directional message-based communication over byte-
 stream oriented protocols such as HTTP (in its standard semantics).
 The WiSH framing is designed to be compatible with WebSocket. You
 may want to think about WiSH as a binary and bi-directional
 alternative to the framing defined for the server-sent events [SSE].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 30, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Yoshino & Zhu Expires September 30, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Background . 3
3. Conformance Requirements and Terminology 4
4. WiSH Protocol . 4
5. Framing . 4
6. Using WiSH over HTTP . 5

 7. Content Negotiation and WebSocket Compatibility Consideration 5
7.1. Subprotocol Negotiation 6
7.2. Compression Negotiation 7
7.3. Valid UTF-8 Requirement 7

8. Acknowledgements . 8
9. References . 8
9.1. Normative References 8
9.2. Non-normative References 8

 Authors' Addresses . 9

1. Introduction

 The WebSocket protocol was proposed to provide native client-server
 bi-directional messaging for the Web. It has been implemented and
 deployed widely, but there are still missing semantics and
 functionalities. See [BidiwebSurvey].

 WiSH is a message framing format for use over the standard HTTP
 semantics to provide bi-directional messaging semantics. WiSH stands
 for Web in Strict HTTP. The communication protocol providing the
 HTTP semantics can be HTTP/1.1 [RFC7231], HTTP/2 [RFC7540], HTTP/2 +
 QUIC [QUIC], or any future protocols. Wire-protocol functionalities
 such as compression, multiplexing, session priority, etc. are
 provided by the underlying protocol [TransportAbstraction]. Unlike
 HTTP/2, HTTP/1.1 doesn't specify if earlier 2xx responses are allowed
 [RFC7540]. Therefore when HTTP/1.1 is used as the underlying
 protocol, full-duplex communication may be broken if the client,
 server or any proxy chooses to buffer or reject earlier 2xx
 responses. Since proxies may buffer response bodies, communication
 over WiSH may experience extra latency compared to WebSocket. When
 HTTPS is used, response buffering by proxies is less likely to
 happen.

 Wire-protocol features of WebSocket, such as handshake or control
 messages, are all dropped. The WiSH framing respects the semantics
 of the underlying protocol (as opposed to turning it to a transport
 protocol). The concept of fragmentation is retained for enabling

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540

Yoshino & Zhu Expires September 30, 2017 [Page 2]

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

 starting message transmission before determining the final length of
 the message.

 Application-level protocols may use WiSH as the framing protocol to
 support bi-directional communication over HTTP and for Web and
 Internet clients.

2. Background

 There has been several attempts to improve bi-directional message-
 based communication on the Web.

 The server-sent events [SSE] realized message-based communication in
 the server-to-client direction, by introducing a new Web API and a
 special message framing format while using HTTP as the wire protocol.
 Except for the issue of possible buffering by intermediaries, the
 server-sent events work well with existing intermediaries and
 frameworks that support HTTP.

 WebSocket introduced both a new Web API and a new wire protocol to
 realize bi-directional message-based communication. Because the wire
 protocol is incompatible with HTTP, intermediaries and frameworks
 have to be upgraded to understand the protocol to support WebSocket.

 In parallel to the development of WebSocket, HTTP has been greatly
 improved with HTTP/2. There are more improvements upcoming e.g.
 QUIC to the HTTP. At the same time, the Web APIs for HTTP have also
 been improved. The XMLHttpRequest is being replaced with the Fetch
 API [Fetch] which allows for streamed uploading and downloading of
 the body part of HTTP messages by using the Streams API [Streams].
 The Streams API also enables implementing data transfer and various
 data processing (e.g. compression/decompression, message framing) in
 the form of the transform stream. The transform stream mechanism is
 designed to allow for optimizing transfer and processing by
 offloading some part of them from the JavaScript world.

 It's desirable that further evolution of bi-directional message-based
 communication utilize HTTP/2 to reduce cost of development and
 standardization. Bidi communication should be multiplexed with
 normal HTTP traffic and should benefit from future transport-level
 improvements such as QUIC.

 The WiSH idea is based on the above analysis. Combination of the
 Fetch API and transform streams enables efficient processing of the
 WiSH framing. Use of the HTTP semantics as-is reduces cost and makes
 the Web simpler. Once the WiSH idea is successfully adopted, binding
 to the WebSocket API could be introduced as further optimization for
 existing WebSocket users.

Yoshino & Zhu Expires September 30, 2017 [Page 3]

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

3. Conformance Requirements and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps can
 be implemented in any manner, so long as the end result is
 equivalent. In particular, the algorithms defined in this
 specification are intended to be easy to understand and are not
 intended to be performant.

4. WiSH Protocol

 WiSH frames messages over an HTTP request or response body using the
 framing defined in Section 5.

 The "Content-Type" header value of the underlying HTTP request/
 response message MUST be "application/web-stream".

5. Framing

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-------+-+-------------+-------------------------------+
 |F|C|0|0|opcode |0|Payload |Extended payload length |
 |I|M| | |4 bit | |length |16 bit if payload length is 126|
 |N|P| | | | |7 bit |64 bit if payload length is 127|
 +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
 | |
 + - - - - - - - - - - - - - - - +-------------------------------+
 | |Payload Data |
 +-------------------------------+ - - - - - - - - - - - - - - - +
 | |
 +---+

 WiSH framing is compatible with the framing defined in [RFC6455] for
 the WebSocket protocol.

 The opcode field indicates how to interpret the payload data field.
 WiSH uses the following opcodes.

 o %x0 denotes a continuation frame

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455

Yoshino & Zhu Expires September 30, 2017 [Page 4]

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

 o %x1 denotes a text frame

 o %x2 denotes a binary frame

 Any values not listed here are reserved.

 The FIN bit together with the continuation frame opcode, payload
 length and extended payload length work in the same way as WebSocket
 to represent frames and messages. The fragmentation mechanism allows
 for flushing part of a large message payload without waiting for the
 total size of the message to be determined.

 The CMP bit indicates whether the message is compressed. The CMP bit
 of the first frame MUST be set to 1 when compression is enabled for
 the message. Otherwise, it MUST be set to 0. The CMP bit of non-
 first frames MUST be always set to 0.

 The message type distinction by the opcode field (text and binary) is
 kept to allow better Web support. One of the possible use cases is
 to use the text type for exchanging metadata encoded in JSON, etc.,
 and the binary type for exchanging non-metadata messages.

 The status code and status reason defined in the WebSocket protocol
 are dropped.

 The ping and pong control message of the WebSocket protocol are
 dropped. If such a feature is needed, it should be provided by
 underlying protocols.

 The permessage-deflate extension [RFC7692] is defined for the
 WebSocket protocol, to add a compression mechanism to it. No
 extension mechanism is defined for WiSH. Compression can be
 implemented by underlying protocols or in the application layer if
 needed. What contents are exchanged and in what encoding they are
 exchanged over WiSH are to be defined by the application layer.

6. Using WiSH over HTTP

 Standard HTTP (REST) semantics should be followed, especially the
 choice of the HTTP method. Some HTTP semantics may not be
 applicable, e.g. the "Cache-Control" header, when the body is
 streamed. However, such limitation is not specific to WiSH.

7. Content Negotiation and WebSocket Compatibility Consideration

 In this section, we discuss how to bridge WiSH and WebSocket.

https://datatracker.ietf.org/doc/html/rfc7692

Yoshino & Zhu Expires September 30, 2017 [Page 5]

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

 The JavaScript binding and wire protocol handshake with WebSocket
 port is future work. Current thoughts are documented at
 [BidiwebBinding].

7.1. Subprotocol Negotiation

 When layered over HTTP, a client and server MAY choose to negotiate a
 subprotocol (in the WebSocket term) to use by using the standard HTTP
 "Accept" and "Content-Type" headers. In order to be compatible with

RFC6455, a client MAY list offered subprotocols as follows:

 Accept: application/web-stream; protocol=foo; q=1,
 application/web-stream; protocol=bar; q=0.5

 Following the "application/web-stream" media type, a parameter named
 "protocol" is specified with the subprotocol name as its value. A
 client offers multiple subprotocols by listing multiple "application/
 web-stream" media type with the "protocol" parameter with different
 values.

 The client MAY indicate that the media type of the request body is
 WiSH by using the "Content-Type" header as follows:

 Content-Type: application/web-stream

 Where compatibility with WebSocket matters, symmetric subprotocols
 MUST be used. When multiple subprotocols are offered, a client MUST
 NOT specify the "protocol" parameter because it's not determined
 which subprotocol will be chosen by the server until the negotiation
 is done. When a single subprotocol is offered, a client MAY specify
 the "protocol" parameter which is the same as the one specified in
 the "Accept" header.

 The server chooses one subprotocol from the offered ones and notifies
 the chosen subprotocol with the "Content-Type" header as follows:

 Content-Type: application/web-stream; protocol=foo

 The client SHOULD NOT start streaming any data (with the request
 body) before the client receives all the response headers from the
 server, which concludes the negotiation process.

 Where compatibility with WebSocket doesn't matter, the "Content-Type"
 header value MAY differ between the HTTP request and HTTP response
 (see Section 6). This includes a combination of WiSH and non-WiSH
 media type.

https://datatracker.ietf.org/doc/html/rfc6455

Yoshino & Zhu Expires September 30, 2017 [Page 6]

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

7.2. Compression Negotiation

 When layered over HTTP, a client and server MAY choose to negotiate a
 compression to use by using the standard HTTP "Accept-Encoding" and
 "Content-Encoding" headers. A client MAY list offered compression
 methods as follows:

 Accept-Encoding:
 web-stream-deflate;
 client_max_window_bits; server_max_window_bits=10, q=1,
 web-stream-deflate;
 client_max_window_bits; server_max_window_bits; q=0.5

 Each element in the header value consists of the identifier of the
 compression method followed by parameters configuring the method.
 The "web-stream-deflate" compression method in the example shows how
 the compression algorithm used for the "permessage-deflate" can be
 configured for the example. This example includes the
 "client_max_window_bits" for WebSocket compatibility which indicates
 whether or not the client supports the "client_max_window_bits"
 parameter.

 The client MAY indicate use of the compression method for the HTTP
 request body by using the "Content-Encoding" header as follows:

 Content-Encoding: web-stream-deflate

 The server chooses one compression method from the offered ones and
 notifies the chosen compression method with the "Content-Encoding"
 header as follows:

 Content-Encoding: web-stream-deflate

 The server MAY also choose not to include the "Content-Encoding"
 header to indicate that it rejects use of any compression method.

 The client SHOULD NOT start streaming any data (with the request
 body) before the client receives all the response headers from the
 server, which concludes the negotiation process.

7.3. Valid UTF-8 Requirement

 In RFC6455, endpoints are required to _Fail the WebSocket Connection_
 when they find that the byte stream in a text message is not a valid
 UTF-8 stream. To conform to the requirement, RFC6455 server
 frameworks check UTF-8 validness. The contents of text messages of
 WiSH also MUST be a valid UTF-8 stream. However, WiSH endpoints are
 not required to check UTF-8 validness. This provides more

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Yoshino & Zhu Expires September 30, 2017 [Page 7]

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

 flexibility to server development. For example, a server may choose
 to check UTF-8 validness inside a JSON parser.

8. Acknowledgements

 Thank you to the following people for giving feedback to the
 document: Ben Christensen, Costin Manolache, Kari Hurtta, Loic
 Hoguin, Roberto Peon, Van Catha.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
6455, DOI 10.17487/RFC6455, December 2011,

 <http://www.rfc-editor.org/info/rfc6455>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI 10
 .17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7692] Yoshino, T., "Compression Extensions for WebSocket", RFC
7692, DOI 10.17487/RFC7692, December 2015,

 <http://www.rfc-editor.org/info/rfc7692>.

9.2. Non-normative References

 [SSE] WHATWG, "HTML Living Standard", October 2016,
 <https://html.spec.whatwg.org/multipage/comms.html>.

 [Fetch] WHATWG, "Fetch Standard", October 2016,
 <https://fetch.spec.whatwg.org/>.

 [Streams] WHATWG, "Standard", October 2016,
 <https://streams.spec.whatwg.org/>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
http://www.rfc-editor.org/info/rfc6455
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7692
https://datatracker.ietf.org/doc/html/rfc7692
http://www.rfc-editor.org/info/rfc7692
https://html.spec.whatwg.org/multipage/comms.html
https://fetch.spec.whatwg.org/
https://streams.spec.whatwg.org/

Yoshino & Zhu Expires September 30, 2017 [Page 8]

Internet-DraWiSH: A General Purpose Message Framing over Byt March 2017

 [BidiwebSurvey]
 Yoshino, T. and W. Zhu, "Non Request-Response
 Communication over the Web, and What's Missing", January
 2014, <https://github.com/bidiweb/bidiweb-semantics/blob/

master/SurveyOfProtocolGaps.md>.

 [BidiwebBinding]
 Bidiweb, , "Issue about WiSH JavaScript binding", March
 2017, <https://github.com/bidiweb/wish/issues/12>.

 [TransportAbstraction]
 Zhu, W., "http-transport-abstraction", July 2016,
 <https://github.com/bidiweb/http-transport-abstraction>.

 [QUIC] Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Secure and Reliable Transport for HTTP/2",
 July 2016.

Authors' Addresses

 Takeshi Yoshino
 Google, Inc.

 Email: tyoshino@google.com

 Wenbo Zhu
 Google, Inc.

 Email: wenboz@google.com

https://github.com/bidiweb/bidiweb-semantics/blob/master/SurveyOfProtocolGaps.md
https://github.com/bidiweb/bidiweb-semantics/blob/master/SurveyOfProtocolGaps.md
https://github.com/bidiweb/wish/issues/12
https://github.com/bidiweb/http-transport-abstraction

Yoshino & Zhu Expires September 30, 2017 [Page 9]

