
SIPCore R. Shekh-Yusef, Ed.
Internet-Draft Avaya
Updates: 3261 (if approved) V. Pascual
Intended status: Standards Track Oracle
Expires: September 9, 2016 C. Holmberg
 Ericsson
 March 8, 2016

The Session Initiation Protocol (SIP) OAuth
draft-yusef-sipcore-sip-oauth-03

Abstract

 This document defines an authorization framework for SIP that is
 based on the OAuth 2.0 framework, and adds a simple identity layer on
 top of that, based on the OpenID Connect Core 1.0, to enable Clients
 to verify the identity of the End-User based on the authentication
 performed by an Authorization Server, as well as to obtain basic
 profile information about the End-User.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Shekh-Yusef, et al. Expires September 9, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4
1.2. Definitions . 4
1.3. Use Cases . 4
1.3.1. Enterprise SSO 4
1.3.2. 3GPP . 5
1.3.3. Confidential SIP Hardphone 5
1.3.4. Public SIP Hardphone 5
1.3.5. SIP SSO . 6

1.4. Roles . 7
1.5. ID Token . 7
1.6. Authentication Types 8

2. Benefits . 8
2.1. Single Sign-On . 8
2.2. Service Authorization 8
2.3. Third-Party Authentication 9

3. Authorization Code Grant type 9
3.1. Operations Overview 9
3.2. Authentication . 12
3.3. Registration . 13
3.4. Subsequent Requests 14
3.5. Token Refresh . 14
3.6. Services . 15

4. Implicit Grant Type . 16
4.1. OAuth Implicit Grant 16
4.1.1. Overview . 16
4.1.2. Authentication 17
4.1.3. Registration . 18
4.1.4. Subsequent Requests 19

Shekh-Yusef, et al. Expires September 9, 2016 [Page 2]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

4.1.5. Services . 19
4.2. OpenID Implicit Grant 20

5. Resource Owner Password Credentials Grant type 21
5.1. Operations Overview 21
5.2. Registration and Acquiring Tokens 22
5.3. Discarding Credentials 23
5.4. Token Refresh . 23
5.5. Authenticated Requests 23
5.6. Examples . 24

6. Outbound . 25
6.1. Authorization Code Grant type 25
6.2. Resource Owner Password Credentials Grant type 25

7. Security Considerations 25
8. IANA Considerations . 25
9. Acknowledgments . 25
10. Normative References . 25

 Authors' Addresses . 26

1. Introduction

 The SIP protocol [RFC3261] uses the framework used by the HTTP
 protocol for authenticating users, which is a simple challenge-
 response authentication mechanism that allows a server to challenge a
 client request and allows a client to provide authentication
 information in response to that challenge.

 The SIP protocol does not have an authorization framework to allow
 the system to control access to various services provided by the
 system.

 OAuth 2.0 [RFC6749] defines a token based authorization framework to
 allow clients to access resources on behalf of their user. It also
 defines four types of authorization grants, which the client uses to
 request the access token.

 The OpenID Connect 1.0 [OPENID] specifications defines a simple
 identity layer on top of the OAuth 2.0 protocol, which enables
 Clients to verify the identity of the End-User based on the
 authentication performed by an Authorization Server, as well as to
 obtain basic profile information about the End-User.

 This document defines an authorization framework for SIP that is
 based on the OAuth 2.0 framework, and adds the identity layer on top
 of that, based on the OpenID Connect Core 1.0 specification

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc6749

Shekh-Yusef, et al. Expires September 9, 2016 [Page 3]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Definitions

 Types of SIP services:

 * Basic SIP Services: make/receive call, transfer, call forward,
 etc.

 * Advanced SIP Services: services provided by SIP application
 servers, e.g. Voice Mail, Conference Services, Presence, IM,
 ...

 Single Sign-On (SSO)

 SSO is a property that allows the user to be authenticated once
 and as a result have access to multiple services in the system.

 Authentication

 The process of verifying the identity of a user trying to get
 access to some network services.

 Authorization

 The process of controlling an authenticated user access to
 network services and the level of service provided to the user.

1.3. Use Cases

1.3.1. Enterprise SSO

 An enterprise is interested in providing its users with an SSO
 capability to the various corporate services. The enterprise has an
 authorization server for controlling the user access to their network
 and would like to extend that existing authorization server to
 control the user access to the various services provided by their SIP
 network.

 The user is expected to provide his corporate credentials to login to
 the corporate network and get different types of services, regardless
 of the protocol used to provide the service, and without the need to
 create different accounts for these different types of services.

https://datatracker.ietf.org/doc/html/rfc2119

Shekh-Yusef, et al. Expires September 9, 2016 [Page 4]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

1.3.2. 3GPP

 The 3GPP network has a requirement to allow a user using a WebRTC IMS
 Client (WIC) to authenticate to a WebRTC Authorization Function (WAF)
 and in response be given an access token that allows the user to
 register and get service from the 3GPP SIP network.

 The WIC downloads an IMS webpage from the WebRTC Web Server Function
 (WWSF) using HTTP. The WIC then requests an access token from the
 WAF using HTTP, which the WIC then uses to register to the SIP
 network throught the P-CSCF enhanced for WebRTC (eP-CSCF) element.

1.3.3. Confidential SIP Hardphone

 A SIP hardphone with rich UI, that has the capability to maintain the
 confidentiality of user's crecentials, is used to authenticate to an
 authorization server, get a token, and use that token to register and
 get service from the SIP network.

 When the phone interacts with the authorization server and gets
 challenged to provide credentials, the phone will prompt the user to
 enter his credentials which will be used to authenticate to the
 authorization server.

1.3.4. Public SIP Hardphone

 A SIP hardphone with limited UI capabilities, that is incapable of
 maintaining confidentiality of user's crecentials, is used to
 register with the SIP network by providing an access code obtaied
 from an authorization server.

 When the phone interacts with the SIP network without providing any
 credentials, the phone gets challenged to provide proper credentials.

 The user will then use an out of band method, e.g browser, to
 authenticate to the authorization server and get a short-lived
 numeric access code.

 The user will then use the phone's keypad to provide the numeric
 access code to the SIP phone. The phone will then use the access
 code to register and get service from the SIP network. The SIP Proxy
 will exchange the access code with access token from the
 authorization server.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 5]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

1.3.5. SIP SSO

 An enterprise is interested in providing its users with an SSO
 capability to the various corporate SIP services.

 The enterprise wants to control the services provided to their SIP
 users and the level of service provided to the user by their SIP
 application servers without the need to create different accounts for
 these services.

 The enterprise wants to utilize an existing authentication mechanism
 provided by SIP, but would like to be able to control who gets access
 to what service and when.

 The user is expected to use his SIP credentials to login to the SIP
 network and get access to the basic services, and to get access to
 the services provided by the various SIP application servers without
 being challenged to provide credentials for each type of service.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 6]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

1.4. Roles

 resource owner

 An entity capable of granting access to a protected resource.
 When the resource owner is a person, it is referred to as an
 end-user.

 In a typical SIP network, it is the management element in the
 system that acts as a resource owner.

 resource server

 The server hosting the protected resources or services, capable
 of accepting and responding to protected resource and services
 requests using access tokens.

 OAuth 2.0 client

 An application making protected resource requests on behalf of
 the resource owner and with its authorization. The term
 "client" does not imply any particular implementation
 characteristics (e.g., whether the application executes on a
 server, a desktop, or other devices).

 SIP client

 An application making requests to access SIP services on behalf
 of the end-user.

 authorization server

 The server issuing tokens to the OAuth 2.0 client or SIP Client
 after successfully authenticating the resource owner and
 obtaining authorization.

 proof-of-possession (pop)

 A hash used by one party to prove to another party that it is
 in possession of some shared credentials, without sending the
 credentials on the wire.

1.5. ID Token

 ID token, as defined in the OpenID document, is a security token that
 contains claims about the authentication of an end-user by an
 authorization server.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 7]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

1.6. Authentication Types

 There are two types of user authentications in SIP:

 o Proxy-to-User: which allows a server that is providing a service
 to authenticate the identity of a user before providing the
 service.

 o User-to-User: which allows a user recieving a request to
 authenticate the identity of the remote user before processing the
 request.

 The mechanism defined in this document addresses the proxy-to-user
 authentication only. For user-to-user authentication refer to the
 mechanism defined in [STIR].

2. Benefits

 This section describes the benefit of this authorization framework:

2.1. Single Sign-On

 With the existing mechanism, the proxy and application servers might
 need to challenge many of the requests sent by a client, which adds
 traffic that could be avoided with this authorization mechanism.

 Single Sign-On is a property that allows the user to be authenticated
 once and as a result have access to multiple services in the system.

 This authorization mechanism would enable Single Sign-On, as the user
 will be authenticated once and as a result given a token and a
 refresh token to allow the user access to various services based on
 the token scope.

2.2. Service Authorization

 This authorization mechanism allows the system to centrally control
 the services provided to the user, e.g conference services, voice
 mail, etc. The mechanism also allow control over the level of
 services provided to the user; for example, if the user is given
 access to conference services, the system controls whether the user
 gets access to video conference services or only audio conference
 services.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 8]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

2.3. Third-Party Authentication

 This authorization mechanism allows the user to be authenticated and
 obtain tokens using some Third-Party Authorization mechanism and
 still get services from the system.

3. Authorization Code Grant type

3.1. Operations Overview

 The following figure provides a high level view of flow of messages
 for the Authorization Code Grant type:

 Authentication

 User Proxy Authorization
 Agent Server

 | | |
 | F1 REGISTER | |
 |------------------------------>| |
 | F2 401 | |
 |<------------------------------| |
 | | |
 | F3 GET /authorize?response_type=code&... |
 |-->|
 | | F4 401 |
 |<--|
 | | |
 | | |
 o master-key = HMAC-SHA256(HA1, realm + nonce) |
 | | |
 | F5 GET /authorize?response_type=code&... with credentials |
 |-->|
 | | |
 | | |
 | o master-key=HMAC-SHA256(HA1, realm + nonce)
 | | |
 | | F6 200 [code] |
 |<--|
 | | |
 | | |

Shekh-Yusef, et al. Expires September 9, 2016 [Page 9]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 Registration

 User Proxy Authorization
 Agent Server

 | | |
 | F7 REGISTER code, pop | |
 |------------------------------>| |
 | | F8 POST /token [code] |
 | |------------------------------>|
 | | |
 | | F9 200 OK [id-token, |
 | | access_token, |
 | | refresh_token] |
 | |<------------------------------|
 | | |
 | | |
 | | F10 GET /userinfo [access_token]
 | |------------------------------>|
 | | |
 | | F11 200 OK [user-info, |
 | | master-key] |
 | |<------------------------------|
 | | |
 | F12 200 OK | |
 |<------------------------------| |
 | | |
 | | |

 Subsequent Requests

 | | |
 o pop = HMAC-SHA256(master-key, digest-string) |
 | | |
 | F13 INVITE pop | |
 |------------------------------>| |
 | | |
 | | |
 | o The proxy verifies the pop. |
 | | |
 | F14 180 Ringing | |
 |<------------------------------| |
 | | |

Shekh-Yusef, et al. Expires September 9, 2016 [Page 10]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 Token Refresh

 User Proxy Authorization
 Agent Server

 | | |
 | | F15 POST /token |
 | | [grant_type=refresh_token& |
 | | refresh_token=<ref_token> |
 | |------------------------------>|
 | | |
 | | F16 200 OK [access_token, |
 | | refresh_token] |
 | |<------------------------------|
 | | |
 | | |

 The UA initially sends a REGISTER request (F1) without providing any
 credentials.

 The proxy challenges the UA by responding with 401 (F2) that includes
 the address of the Authorization Server.

 [[OPEN ISSUE]] How should the UA be redirected to the Authorization
 Server: 1. New SIP parameter? 2. Extend the Bearer scheme? 3.
 Define a new Scheme?

 The UA will then contact the Authorization Server without providing
 any credentials in the first request (F3). The Authorization Server
 challenges the request using the Digest scheme (F4), and the client
 retries the request (F5) and provides the user's credentials.

 The Authorization Server verifies the request from the client; if the
 verification is successful, the Authorization Server responds with
 200 OK (F6) and includes a code in the body part.

 The UA then retries the request (F7) and include the code in the body
 of the request. The proxy then contacts the Authorization Server and
 exchanges the code for tokens (F8 and F9), and gets the user
 information (F10 and F11). The proxy then sends 200 OK to the UA to
 complete the registration process.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 11]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

3.2. Authentication

 The UA initiates the process by sending a REGISTER request (F1) to
 the proxy. The proxy will redirect the UA to the Authorization
 Server by responding with 401 (F2) that includes the address of the
 Authorization Server in the form of an HTTP URI.

 The UA constructs the initial request (F3) to the Authorization
 Server without providing any user credentials, but with the following
 URI parameters in the query component:

 response_type (REQUIRED)

 Value MUST be set to "code".

 user_id (REQUIRED)

 The user's identification with the Authorization Server.

 scope (OPTIONAL)

 The scope of the access request

 state (RECOMMENDED)

 The value of this parameter is a nonce created by the client to
 prevent replay attack. The nonce is a uniquely generated value
 for each request. This parameter might not be included with the
 initial request that does not include credentials (F3).

 The Authorization Server uses the user identification specified in
 the user_id parameter to verify that the user has an account in the
 system, and then challenges the request by responding with 401 (F4)
 with Digest scheme.

 The UA will generate a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user's HA1 and
 the concatenation of realm and nonce received in the challenge from
 the server.

 The UA will then send a new authorization request (F5), but this time
 include the credentials requested by the server. The UA will use the
 same parameters values used in the initial authorization request with
 the exception of the state parameter which will get a new nonce
 value.

 When the server receives the request with the credentials (F5), the
 server will verify the digest provided by the UA; if that is

Shekh-Yusef, et al. Expires September 9, 2016 [Page 12]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 successful, the server will respond with 200 OK (F6) and include a
 code in the body of the response with the following parameters:

 grant_type (REQUIRED)

 Value MUST be set to "authorization_code".

 code (REQUIRED)

 The authorization code received from the authorization server.

 The server then generates a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user's HA1, and
 the concatenation of realm and nonce sent in the challenge (F4) to
 the client.

3.3. Registration

 The UA will send a new REGISTER request (F7) and include the code in
 the body of the request with the following parameters:

 grant_type (REQUIRED)

 Value MUST be set to "authorization_code".

 code (REQUIRED)

 The authorization code received from the authorization server.

 The proxy sends a POST request (F8) to the Authorization Server and
 include the following parameters in the body:

 grant_type (REQUIRED)

 Value MUST be set to "authorization_code".

 code (REQUIRED)

 The authorization code received from the authorization server.

 If the request is valid and authorized, the authorization server
 responds with a 200 OK (F9) with id_token, access token, and
 refresh_token in the body.

 The UA sends a GET request (F10) to the Authorization Server to fetch
 the user information, and includes the access token in the body of
 the request. In response the Autorization Server will respond with

Shekh-Yusef, et al. Expires September 9, 2016 [Page 13]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 200 OK and include the user information and the master-key associated
 with the user in the body part.

 The proxy then responds with 200 OK (F12) to the UA to complete the
 registration process.

3.4. Subsequent Requests

 When the UA wants to send any request to the proxy, it MUST include
 the Authorization header and use the Bearer scheme to carry the
 proof-of-possession of the master-key.

 The pop is calculated using the master-key as follows:

 pop = HMAC-SHA256(master-key, digest-string)

 The following is an example of an Authorization header with Bearer
 scheme:

 Authorization: Bearer pop=<pop>

 See rfc4474, section 9, for the SIP headers to hash to create digest-
 string.

 [[OPEN ISSUE]] The Bearer scheme is used to deliver tokens without
 providing any proof of possession. We probably need to use different
 scheme later on.

3.5. Token Refresh

 The proxy makes a refresh request to the Authorization Server by
 sending a refresh POST request (F13) that includes a body with the
 grant_type and the refresh_token.

 For example:

 grant_type=refresh_token&refresh_token=<refresh_token>

 If the proxy fails to refresh the token, then it MUST challenge the
 next request from the UA, and as a result the UA MUST go through the
 authorization process again to obtain new tokens.

https://datatracker.ietf.org/doc/html/rfc4474#section-9

Shekh-Yusef, et al. Expires September 9, 2016 [Page 14]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

3.6. Services

 When the UA tries to access a service on behalf of a user, e.g.
 Voice Mail Service, the proxy forwards the request to the server
 providing the service and MUST include an Authorization header with
 the Bearer scheme that carries the token needed to get service, as
 follows:

 Authorization: Bearer token=<token>

Shekh-Yusef, et al. Expires September 9, 2016 [Page 15]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

4. Implicit Grant Type

 The impicit grant type is used by the SIP UA to directly obtain
 access tokens from the Authorization Server to be able to register
 and get service from the SIP network.

 This grant type does not support the issuance of refresh tokens,
 which means that the SIP UA must re-authenticate again to the
 Authorization Server to get a new token before the current token
 expires.

4.1. OAuth Implicit Grant

4.1.1. Overview

 The following figure provides a high level view of flow of messages
 for the OAuth Implicit Grant type:

 Authentication

 User Proxy Authorization
 Agent Server

 | | |
 | F1 GET /authorize?response_type=token... |
 |-->|
 | | |
 | | F2 401 |
 |<--|
 | | |
 | | |
 | F3 GET /authorize?response_type=token +credentials |
 |-->|
 | | |
 | | F4 200 OK [access_token] |
 |<--|
 | | |

Shekh-Yusef, et al. Expires September 9, 2016 [Page 16]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 Registration

 | | |
 | F5 REGISTER username@domain.com, access_token |
 |------------------------------>| |
 | | F6 POST /introspect |
 | | [token=<access_token>] |
 | |------------------------------>|
 | | |
 | | F7 200 OK |
 | |<------------------------------|
 | F8 200 OK | |
 |<------------------------------| |
 | | |

4.1.2. Authentication

 The UA starts the process by sending an HTTP GET request to the
 Authorization Server without providing any credentials in the first
 request (F1).

 The UA constructs the initial request (F1) to the Authorization
 Server with the following URI parameters in the query component:

 response_type (REQUIRED)

 Value MUST be set to "token".

 user_id (REQUIRED)

 The user's identification with the Authorization Server.

 scope (OPTIONAL)

 The scope of the access request.

 The Authorization Server challenges the request using the Digest
 scheme (F2). The client retries the request (F3) and provides the
 user's credentials. In response the Authorization Server responds
 with 200 OK (F4) with the Access Token in the body.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 17]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

4.1.3. Registration

 The UA starts the registration process with the SIP proxy by sending
 a REGISTER request (F5) with the access token it obtained in the
 previous steps (F1-F4).

 The UA adds the following parameters to the body of the REGISTER
 request:

 access_token (REQUIRED)

 The access token issued by the authorization server.

 token_type (REQUIRED)

 The type of the token issued by the authorization server. Value
 is case insensitive.

 expires (RECOMMENDED)

 The lifetime in seconds of the access token.

 scope (OPTIONAL)

 The scope of the access request.

 If introspection is used [RFC7662], then the proxy validates the
 access token by sending an HTTP POST request (F6), with the
 parameters sent as "application/x-www-form-urlencoded" data, to the
 Authorization Server and include the following parameters:

 token (REQUIRED)

 The string value of the token.

 token_type_hint (OPTIONAL)

 A hint about the type of the token submitted for introspection.

https://datatracker.ietf.org/doc/html/rfc7662

Shekh-Yusef, et al. Expires September 9, 2016 [Page 18]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 Authorization Server then validates the request and responds with 200
 OK (F7), with a JSON object in the body with the following
 parameters:

 active (REQUIRED)

 Boolean indicator of whether or not the presented token is
 currently active.

 scope (OPTIONAL)

 The scope of the access request.

 Other parameters

 TBD.

4.1.4. Subsequent Requests

 All subsequent requests from the UA MUST include a valid access
 token. The UA MUST obtain a new access token before the access token
 expiry period to continue to get service from the system.

4.1.5. Services

 When the proxy forwards a request from a UA to an application server,
 it makes sure to keep the access token and scope in the message to
 allow the application server to provide the proper service to the
 user.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 19]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

4.2. OpenID Implicit Grant

 The following figure provides a high level view of flow of messages
 for the OpenID Implicit Grant type:

 User Proxy Authorization
 Agent Server

 | | |
 | F1 GET /authorize?response_type=id_token%20token... |
 |-->|
 | | |
 | | F2 401 |
 |<--|
 | | |
 | F3 GET /authorize?response_type=id_token%20token +credentials |
 |-->|
 | | |
 | | F4 200 OK [id-token, |
 | | access_token] |
 |<--|
 | | |
 | F5 GET /userinfo [access_token] |
 |-->|
 | | |
 | | F6 200 OK [user-info] |
 |<--|
 | | |
 | F7 REGISTER username@domain.com, access_token |
 |------------------------------>| |
 | | |
 | | F8 POST /authorize |
 | | [token=access_token] |
 | |------------------------------>|
 | | |
 | | F9 200 OK |
 | |<------------------------------|
 | | |
 | F10 200 OK | |
 |<------------------------------| |
 | | |

Shekh-Yusef, et al. Expires September 9, 2016 [Page 20]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

5. Resource Owner Password Credentials Grant type

5.1. Operations Overview

 The following figure provides a high level view of flow of messages
 for the Resource Owner Password Credentials Grant type:

 UA Proxy
 --
 | |
 | F1 REGISTER |
 |--->|
 | |
 | F2 401 WWW-Authenticate: Digest |
 |<---|
 | |
 | |
 o master-key = HMAC-SHA256(HA1, realm + nonce) |
 | |
 | F3 REGISTER with Authorization |
 |--->|
 | |
 | |
 | o master-key = HMAC-SHA256(HA1, realm + nonce)
 | |
 | F4 200 OK [token, expires, ...] |
 |<---|
 | |
 | |
 o pop = HMAC-SHA256(master-key, token + digest-string) |
 | |
 | F5 INVITE token, pop |
 |--->|
 | |
 | o The server verifies the pop.
 | |
 | F6 180 Ringing |
 |<---|
 | |

 During registration the UA initially sends a REGISTER request (F1)
 without providing any credentials.

 The proxy then challenges the UA by responding with 401 (F2) that
 includes the Digest scheme in the www-authenticate header.

Shekh-Yusef, et al. Expires September 9, 2016 [Page 21]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 The UA will generate a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user's HA1 and
 the concatenation of realm and nonce received in the challenge from
 the server. The UA will continue to use the existing operation of
 handling the Digest challenge and then sends a new REGISTER request
 (F3) with the credentials to the server.

 When the server receives the request with the credentials (F3), the
 server will verify the digest provided by the UA; if that is
 successful, the server will accept the registration (F4) and include
 the details of the token in the response.

 The server then generates a master-key that is based on an HMAC-Hash
 algorithm, e.g. HMAC-SHA256, that takes an input the user's HA1, and
 the concatenation of realm and nonce sent in the challenge to the
 client.

 At the end of the above process the UA would have registered with the
 proxy and both the UA and the proxy would have created the same
 master-key without sending the master-key on the wire.

 Later when the UA wants to send a request to the proxy it MUST always
 include the token and SHOULD include the pop as defined in section

4.6.

5.2. Registration and Acquiring Tokens

 The UA MUST request the access token during the registration process
 with the proxy, by including a body with the grant_type as
 "password". Initially, the UA sends a REGISTER request without
 providing any credentials.

 The proxy MUST then challenge the UA by responding with 401 with the
 Digest scheme in the WWW-Authenticate header.

 When the UA gets challenged by the proxy to provide its credentials,
 the UA MUST include its credentials in the new REGISTER request in
 the authorization header as it is done with the existing mechanism,
 and MUST include a body with the grant_type as "password".

 In addition, the UA MUST generate a master-key as follows:

 master-key = HMAC-SHA256(HA1, realm + nonce)

 Where

 o HA1 - this is the user's H(A1) as defined in [DIGEST].

Shekh-Yusef, et al. Expires September 9, 2016 [Page 22]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 o realm - this is the realm that is returned by the server in the
 response to the initial request from the UA.

 o nonce - this is the nonce that is returned by the server in the
 response to the initial request from the UA.

 When the server receives the request with the credentials, the server
 will verify the digest provided by the UA; if that is successful, the
 server will accept the registration and include the details of the
 token in the response.

 [[OPEN ISSUE]] How should the tokens be transported to the UA? in the
 body of the 200 OK? or a SIP header?

 The server then generates a master-key following the same procedure
 followed by the client.

 As a result of this procedure both the UA and the server would have
 created the same master-key without sending the master-key on the
 wire.

5.3. Discarding Credentials

 After successfully receiving the access and refresh tokens from the
 proxy, the UA SHOULD discard the user credentials.

5.4. Token Refresh

 The UA makes a refresh request to the token by sending a refresh
 REGISTER request that includes the authorization header and a body
 with the grant_type, the refresh_token, and the proof-of-possession
 of the master-key.

 For example:

 grant_type=refresh_token&refresh_token=<refresh_token>&pop=<pop>

5.5. Authenticated Requests

 When the UA wants to send any request to the proxy, it MUST include
 the Authorization header and use the Bearer scheme to carry the
 access token, and the proof-of-possession of the master-key.

 For example:

 Authorization: Bearer token=<token>, pop=<pop>

Shekh-Yusef, et al. Expires September 9, 2016 [Page 23]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 See rfc4474, section 9, for the SIP headers to hash to create the
 value for the proof.

 [[OPEN ISSUE]] The Bearer scheme is used to deliver tokens without
 providing any proof of possession. We probably need to use different
 scheme later on.

5.6. Examples

 REGISTER sip:registrar.biloxi.com SIP/2.0
 Via: SIP/2.0/TCP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
 Max-Forwards: 70
 To: Bob <sip:bob@biloxi.com>
 From: Bob <sip:bob@biloxi.com>;tag=456248
 Call-ID: 843817637684230@998sdasdh09
 CSeq: 1826 REGISTER
 Contact: <sip:bob@192.0.2.4>
 Expires: 7200
 Content-Length: 19

 grant_type=password&pop=<pop>

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7
 ;received=192.0.2.4
 To: Bob <sip:bob@biloxi.com>;tag=2493k59kd
 From: Bob <sip:bob@biloxi.com>;tag=456248
 Call-ID: 843817637684230@998sdasdh09
 CSeq: 1826 REGISTER
 Contact: <sip:bob@192.0.2.4>
 Expires: 7200
 Content-Length: 0

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

https://datatracker.ietf.org/doc/html/rfc4474#section-9

Shekh-Yusef, et al. Expires September 9, 2016 [Page 24]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

6. Outbound

RFC5626 defines a mechanism that allows a UA to simultaneously
 connect and establish registration with multiple outbound proxies to
 get service.

 This section describes that impact of outbound on this authorization
 mechanism.

6.1. Authorization Code Grant type

 During initial registration with the primary proxy, the UA is able to
 get an authorization code that it will use to register with the
 primary proxy. Assuming the authorization server is shared between
 the various outbound proxies, the UA will be able to use the same
 authorization code to register with the secondary proxies and as a
 result each one of the secondary proxies will get the master-key
 associated with the user to be used for the calculation of the proof-
 of-possession.

6.2. Resource Owner Password Credentials Grant type

 During registration the proxy challenges the UA, and both the proxy
 and the UA create a master-key based on HA1, realm, and nonce. Since
 the nonce is not shared between the various proxies, it is not
 possible for the outbound proxies to use the same master-key; as a
 result, the UA is expected to maintain a master-key and token per
 outbound proxy.

7. Security Considerations

 <Security considerations text>

8. IANA Considerations

 <IANA considerations text>

9. Acknowledgments

 <Acknowledgments text>

10. Normative References

 [OPENID] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", February 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Shekh-Yusef, et al. Expires September 9, 2016 [Page 25]

Internet-Draft The Session Initiation Protocol (SIP) OAuth March 2016

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, H., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.

 [RFC7662] Richer, J., "OAuth 2.0 Token Introspection", RFC 7662,
 October 2015.

Authors' Addresses

 Rifaat Shekh-Yusef (editor)
 Avaya
 250 Sidney Street
 Belleville, Ontario
 Canada

 Phone: +1-613-967-5267
 EMail: rifaat.ietf@gmail.com

 Victor Pascual
 Oracle
 Spain

 EMail: victor.pascual.avila@oracle.com

 Christer Holmberg
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: christer.holmberg@ericsson.com

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7662

Shekh-Yusef, et al. Expires September 9, 2016 [Page 26]

