
Internet Draft Daniel Zappala
Expiration: September 1997 USC Information Sciences Institute
File: draft-zappala-multicast-routing-me-00.txt

 A Route Setup Mechanism For Multicast Routing

 March 26, 1997

Status of Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 This document describes a multicast route setup protocol that can be
 used to install alternate paths and pinned routes when they are
 requested by receivers. We describe the protocol, derive some of its
 properties, and address its applicability to unicast route setup.

Zappala Expiration: September 1997 [Page 1]

https://datatracker.ietf.org/doc/html/draft-zappala-multicast-routing-me-00.txt

Internet Draft Multicast Route Setup March 1997

1. Introduction

 This document describes a multicast route setup protocol that can be
 used to install alternate paths and pinned routes when they are
 requested by receivers. This protocol is designed as part of the
 interdomain multicast routing architecture described in [7]. In
 general, this protocol is useful when multicast routers wish to
 install explicit routes in a multicast tree without coordinating the
 routing of the entire tree according to a globally defined metric.
 Thus, in addition to being used as prescribed in [7], this protocol
 may also be used to install a QoS route for a receiver. We have
 focused on designing a multicast route setup protocol; a later
 section describes the relevance of our work to unicast route setup.

 For the purposes of this document, we assume that receivers use a
 reservation protocol such as RSVP [8,2] to reserve resources for
 unicast and multicast flows. By default, these reservations are
 obtained over an opportunistic, shortest-path multicast tree computed
 and installed by a multicast routing protocol, likely either DVMRP
 [6], MOSPF [5], PIM [4] or CBT [1]. Each sender may have its own
 tree, or all senders may use a shared tree. Throughout this document
 we assume sender trees, although the mechanism is equally applicable
 to shared trees.

 We also assume that a receiver, or some entity acting on behalf of a
 receiver, may request several services in place of its current
 opportunistic route:

 o "Alternate Path": A route that is an alternative to the
 currently installed route. A receiver may wish to use an
 alternate path when it is unable to reserve resources along its
 current path.

 o "Pinned Route": A route that remains unchanged unless a node
 along the route fails. A receiver may wish to know that once it
 has secured a reservation, the route will not change unless it
 fails, and hence the reservation will likely remain in place.
 When an application does not use a pinned route (the route is
 opportunistic), the reservation protocol must adapt the
 reservation whenever the route adapts to a shorter path, even if
 the original path is still working.

 Using these basic services, a receiver may ask for an alternate path
 that is opportunistic, an alternate path that is pinned, or it may
 ask to pin its current route. Note that an opportunistic alternate
 path has some pinned hops while the remaining hops are opportunistic;
 see [7] for more details.

Zappala Expiration: September 1997 [Page 2]

Internet Draft Multicast Route Setup March 1997

 As part of the architecture described in [7], we assume that a
 receiver asks its first-hop router for an alternate path or a pinned
 route. This router in turn contacts a local route construction agent
 to construct a route and encodes the response as an explicit route.
 The setup protocol connects the receiver to the multicast tree along
 this new path. Along the way, the setup protocol pins any hop that
 is listed in the route; thus if the receiver wants a pinned route,
 then every hop between the receiver and the sender must be listed.

2. The MORF Multicast Route Setup Protocol

 We have designed the MORF multicast route setup protocol to install
 routes provided by local route construction agents. For each
 multicast tree built by the multicast routing protocol, MORF creates
 its own parallel multicast tree consisting of alternate paths and
 pinned routes. Each branch of this tree, called the Setup Tree, is
 constructed using a Setup message originated by a leaf router on
 behalf of local receivers. The Setup message contains an explicit
 route indicating the path the Setup should travel (Table 1). As the
 Setup travels upstream, MORF notifies the multicast routing protocol
 that it is overriding some local portions of the multicast tree with
 some branches in the Setup Tree. The multicast routing protocol adds
 these branches to the multicast tree and prunes any conflicting
 branches from the original tree (Figure 1a). The resulting multicast
 tree reflects the path installed by MORF (Figure 1b). The multicast
 tree may be for a single sender [4], or multiple senders may
 rendezvous via a core [4,1]. In either case, the protocol is the
 same; in the following discussion we refer to sender-based trees for
 simplicity.

 Table 1: MORF Protocol Messages

 Messages Parameters

 Setup(Group,Target,Route) Group : multicast group
 Failure(Group,Target,JoinRt,TreeRt) Target : sender or core
 Teardown(Group,Target) Route : explicit route
 SetupRt: route from Setup
 TreeRt : route used by tree

Zappala Expiration: September 1997 [Page 3]

Internet Draft Multicast Route Setup March 1997

 [See postscript version for figures]

 Figure 1: Using a Setup Message to Install a Route

 Since the Setup Tree overrides default opportunistic routing, each
 router in the Setup Tree must have a mechanism to detect failures of
 an alternate path or a pinned route. The setup protocol may rely on
 a unicast routing protocol to exchange query messages with its
 neighbors to determine whether they are alive, or it may use its own
 similar mechanism. Once a failure is detected, MORF sends a Teardown
 message both upstream and downstream of the failure to remove failed
 branches from the Setup Tree (Figure 2a). At each hop, MORF notifies
 the multicast routing protocol of the branches it is removing. The
 multicast routing protocol re-builds the multicast tree to reflect
 its metric, often the shortest path to the sender (Figure 2b).

 [See postscript version for figures]

 Figure 2: Using a Teardown to Remove a Failed Route

 The above examples represent the simplified case when a Setup does
 not conflict with the rest of the Setup Tree. However, the setup
 protocol must also resolve Setup messages from different leaves that
 use conflicting routes, because leaf routers may use independent
 route construction agents. MORF resolves conflicts by choosing the
 first route that is installed for any given branch of the tree.
 Where subsequent routes meet this branch, they must conform to the
 route used from that point upward toward the source. If the setup
 protocol does not follow this restriction, then a number of looping
 scenarios may arise; Section 2.1 discusses these cases and the manner
 in which they are prevented.

 Figure 3 shows an example of how all Setup messages except the first
 one must match the route already used by the Setup Tree. When a Setup
 message adds a node to the Setup Tree, it caches the route it will
 use to travel from that node upward toward the sender. If a
 subsequent Setup message arrives at that node, it compares the
 remaining route it must travel to the route cached locally. If the

Zappala Expiration: September 1997 [Page 4]

Internet Draft Multicast Route Setup March 1997

 routes do not match, the node stops processing the Setup and sends a
 Failure message downstream (Figure 3a). The Failure message contains
 the route used by the failed Setup and the route used by the tree
 from the rejecting node upward (Table 1). A router receiving a
 Failure message merges the two routes it contains to construct a new
 route that will match the tree, then sends a second Setup with this
 route (Figure 3b).

 [See postscript version for figures]

 Figure 3: Matching Setup Messages

 It is from this mechanism -- "Match or Fail" -- that MORF derives its
 name. By using this restriction, MORF may increase the setup
 latency, but it prevents any loops from forming while the tree is
 constructed. The remainder of this section discusses potential
 looping scenarios and analyzes the tradeoffs of MORF versus other
 potential solutions for preventing loops.

 2.1 Looping Scenarios

 When Setup messages are not restricted to matching the rest of the
 Setup Tree, a number of possible looping scenarios arise. Figure
 4a shows two Setups, each using a strict explicit route. Based on
 their order of arrival, as shown, if the Setups merge they form a
 loop. This loop can be prevented if nodes A and C compare the
 routes and detect the loop will form. However, when three joins
 are involved, as in Figure 4b, a single node cannot prevent the
 loop from forming without having more information available.

 [See postscript version for figures]

 Figure 4: Loops Formed by Setup Messages

 To prevent loops, a node can use one of two strategies:

 1. Before adding a parent, the node checks all its descendants
 to be sure the parent is not already a descendant.

Zappala Expiration: September 1997 [Page 5]

Internet Draft Multicast Route Setup March 1997

 2. Before adding a child, the node checks all its ancestors to
 be sure the new child is not already an ancestor.

 We discuss each of these in turn. Due to the dynamic nature of
 multicast trees, a node may not know all of its ancestors or
 descendants. While a node knows the route embedded in the Setup
 message it has sent upstream, that message may have merged with
 another Setup carrying a different route. Likewise, other Setups
 may have merged downstream, adding new descendants.

 One approach to keep nodes updated concerning upstream and
 downstream merges is to distribute information after each merge.
 Following solution (1) above, each Setup that merges can send a
 Merge message upstream containing its route (Figure 5a). Every
 node can then know all its descendants and thereby detect any
 loops. Alternatively, in keeping with solution (2) above, each
 Setup that merges can send a Merge message downstream containing
 the upstream portion of the route it merged with (Figure 5b).
 This allows every node to detect loops by knowing all its
 ancestors. We denote these two mechanisms as "Merge Up" and
 "Merge Down", respectively. In both of these approaches,
 information distributed by the Merge messages may be stale, so
 loops such as that shown in Figure 4 may still form temporarily
 before being broken.

 [See postscript version for figures]

 Figure 5: Merging Setup Messages Instead of Matching

 As opposed to these solutions, which in some cases will only
 detect loops after they have been formed, the strategy we use in
 MORF prevents any loops from forming. By requiring each Setup to
 match the upstream route already in place on the tree, MORF in
 effect enforces solution (2) by requiring that each node know its
 ancestors before it is added to the tree. Once a node is added to
 the multicast tree, its ancestors do not change. The cost of this
 strategy is that each Setup may take an extra roundtrip between
 itself and the rest of the tree. The following section more
 completely analyses the tradeoffs of MORF versus the other
 mechanisms discussed above.

Zappala Expiration: September 1997 [Page 6]

Internet Draft Multicast Route Setup March 1997

 2.2 Analysis of Setup Mechanisms

 Table 2: Comparison of Setup Mechanisms

 Mechanism Message Storage Setup Loop
 Name Overhead Overhead Latency Handling

 MORF O(1) O(a) 1 or 3 trips Prevent
 Merge Down O(1) O(a) 1 trip Detect/Break
 Merge Up O(d) O(d) 1 trip Detect/Break

 Table 2 compares the setup mechanisms discussed above when
 building a single multicast tree, assuming there is no packet loss
 and that one receiver joins the tree at a time. The columns
 listing message and storage overhead consider the behavior of each
 mechanism at a single node. Overhead in these cases is expressed
 in terms of a, the number of ancestors of a node, or d, the number
 of descendants of a node. The setup latency column lists time in
 terms of the number of trips taken between a receiver and the
 multicast tree.

 Clearly the Merge Up mechanism does not scale well because each
 node must store each descendent as well as send one message
 upstream for each descendant. The advantages of using a
 receiver-oriented mechanism are lost with Merge Up; a sender-
 oriented mechanism has the same message overhead, but only the
 sender must store the descendants.

 The MORF and Merge Down mechanisms have a similar overhead in this
 situation. The MORF mechanism may have a longer setup latency,
 but in return has the distinct advantage that it may prevent
 rather than just detect loops, as discussed above.

 When we relax the assumption that one receiver joins the tree at
 time, thus allowing multiple simultaneous Setups, the other
 tradeoffs of these two mechanisms become more apparent. In this
 situation, MORF must take into account conflicting Setups. We
 assume that it will use a binary exponential backoff to prevent
 thrashing. If we also assume a message transmission takes a
 uniform time t when sent over any link, then the dynamic setup
 latency for MORF:

 Latency_MORF = 3Lt(c+1) + sum{i=1->c} b*2^{i-1},

 where L is the average length of the branch from a receiver to the
 rest of the tree, b is the backoff constant, and c is the number
 of conflicts the Setup encounters.

Zappala Expiration: September 1997 [Page 7]

Internet Draft Multicast Route Setup March 1997

 When considering these dynamic conditions, each node using the
 Merge Down mechanism may potentially send O(a) messages
 downstream, since each ancestor may send the node one Merge
 message. In addition, the setup latency for Merge Down must take
 into account the time required to break loops. The worst case
 time to break a loop of m nodes is t(m-1), so the setup latency
 can be given by:

 Latency_MergeDown = 2Lt + sum{i=1->l} (m_i-1)t,

 where l is the number of loops encountered and m_i is the number
 of nodes in loop i.

 As can be seen from this analysis, the Merge Down mechanism
 requires a robust protocol design to ensure that loops are quickly
 detected and broken. The more merges that occur simultaneously,
 the longer it will take for the mechanism to distribute the
 information needed to break the loops. The Merge Down mechanism
 will also have to detect when a Merge message is lost, as that
 event can cause a loop to persist. In contrast, MORF uses a
 simpler protocol to prevent loops and uses more complexity only at
 the edges of the network.

 2.3 Unicast Route Setup

 Previous work has studied the efficacy of using source routing to
 support unicast real-time applications [3]. One way to use source
 routes to provide alternate paths or pinned routes is to embed the
 source route in an application's packets. Assuming the route will
 be inserted by a filter at a sender's nearest router, no
 modifications to applications will be needed. However, because
 many routers currently delay processing of source routed packets,
 this mechanism may not be applicable to applications with strict
 delay requirements.

 An alternative is for the sender's nearest router to insert a
 label in the application's packets rather than a source route.
 This label can reference an alternate path or pinned route that is
 installed using MORF. Because unicast applications involve only
 one receiver, the setup latency will only be 1 trip. Either the
 sender or receiver can initiate the route setup, although
 initiating at the sender will require trivial modifications to the
 protocol.

3. Acknowledgments

 Bob Braden, Deborah Estrin, and Scott Shenker provided valuable
 feedback on this work.

Zappala Expiration: September 1997 [Page 8]

Internet Draft Multicast Route Setup March 1997

References

[1] A. J. Ballardie, P.F. Francis, and J. Crowcroft, "Core Based Trees",
 In "ACM SIGCOMM", August 1993.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, "Resource
 ReSerVation Protocol (RSVP) - Version 1 Functional Specification",
 work in progress, November 1996.

[3] Lee Breslau, ""Adaptive Source Routing of Real-Time Traffic in
 Integrated Services Networks"", PhD thesis, University of Southern
 California, December 1995.

[4] Stephen Deering, Deborah Estrin, Dino Farinacci, Van Jacobson,
 Ching-Gung Liu, and Liming Wei, An Architecture for Wide-Area
 Multicast Routing, In "ACM SIGCOMM", August 1994.

[5] J. Moy, "Multicast Extensions to OSPF", RFC 1584, March 1994.

[6] D. Waitzman, C. Partridge, and S. Deering, "Distance Vector
 Multicast Routing Protocol", RFC 1075, November 1988.

[7] Daniel Zappala, Bob Braden, Deborah Estrin, and Scott Shenker,
 "Interdomain Multicast Routing Support for Integrated Services
 Networks", work in progress, March 1997.

[8] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and
 Daniel Zappala, "RSVP: A New Resource ReSerVation Protocol", "IEEE
 Network", September 1993.

Security Considerations

 Security considerations are not discussed in this memo.

Author's Address

 Daniel Zappala
 USC Information Sciences Institute
 4676 Admiralty Way, Floor 10
 Marina del Rey, CA 90292
 EMail: daniel@isi.edu

https://datatracker.ietf.org/doc/html/rfc1584
https://datatracker.ietf.org/doc/html/rfc1075

Zappala Expiration: September 1997 [Page 9]

