
ALTO WG J. Zhang
Internet-Draft Tongji University
Intended status: Informational K. Gao
Expires: October 23, 2016 Tsinghua University
 Y. Yang
 Yale University
 April 21, 2016

Experiences of Implementing ALTO in OpenDaylight
draft-zhang-alto-opendaylight-impl-01

Abstract

 This text introduces some experiences of implementing ALTO in
 OpenDaylight (ODL). The main key issues about design and
 implementation are discussed. Some of these issues have been figured
 out in the current implementation, the others have not. This text
 also gives some possible designs to discuss.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 23, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Zhang, et al. Expires October 23, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Implementing ALTO in ODL April 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 3
1.2. Changes Since Version -00 3

2. Key Design Issues . 3
3. Design and Implement ECS 4
3.1. Current Solution to Compute the Routing Path 5
3.2. Multi-Path in ECS . 6
3.3. Reactive Mode . 7
3.4. Precise Cost Computation 7
3.5. Available Bandwidth with Shared Links 8
3.6. A Comprehensive Architecture 8

4. Design and Implement Dynamic Maps 9
4.1. Challenges about handling dynamic network 9
4.2. Current Solution about Dynamic Network 10

5. Achieve MD-SAL and Cross Platform Design 12
5.1. Overview of Current ALTO Server in ODL 12
5.2. Implementation of Models 14

6. Discussions . 17
6.1. ECS Extension . 17
6.2. Network State Abstraction 17
6.3. A Loose Coupling Design to Support the Cross Platform . . 17

7. IANA Considerations . 17
8. Security Considerations 17
9. Acknowledgments . 17
10. References . 17
10.1. Informative References 17
10.2. Normative References 18

 Authors' Addresses . 18

1. Introduction

 ODL is one of the most popular Software Defined Networking (SDN)
 controller. We have implemented an ALTO server in ODL. However,
 some issues are very important to the design and implementation of
 ALTO server. In this document, we present some experiences of
 implementing ALTO in ODL, and discuss some key issues about the
 design and implementation.

Zhang, et al. Expires October 23, 2016 [Page 2]

Internet-Draft Implementing ALTO in ODL April 2016

1.1. Terminology

 o ECS: Endpoint Cost Service

 o ODL: OpenDaylight, an implementation of SDN controller

 o SSE: Server-Sent Event

 o MD-SAL: Model-Driven Service Abstraction Layer

1.2. Changes Since Version -00

 o Restated fine-grained ECS problem in Section 2 and refined the
 experience of implementing ECS in ODL in Section 3. The section
 about "Customized Routing Cost" has been removed because of it is
 not a specific problem in ODL.

 o Introduced details about the experience of implementing auto-map
 in Section 4.2.

 o Updated overview of current implementation in Section 5.1 and
 introduced the solution for extensibility problem.

 o Moved the cross platform problem to Section 6.

2. Key Design Issues

 To implement ALTO in OpenDaylight, we identify a set of design and
 implementation issues:

 o T-ALTO-MDSAL: How to use MD-SAL to implement ALTO?

 The core of OpenDaylight is MD-SAL, which provides mechanisms to
 describe, store, and access state in ODL data store. To achieve a
 relatively native design, we should use MD-SAL. At the same time,
 ALTO has defined its own data types such as Endpoint, PID, Vtag,
 Network Map, Cost Map. Hence, a first, basic design issue is how
 to represent the basic ALTO data in ODL data store.

 o T-CrossPlatform: How to support cross platform?

 Balancing the preceding consideration, although we focus on
 implementing ALTO in ODL, we should also consider porting to other
 SDN controllers such as ONOS. Hence, we target a loose coupling
 architecture, to achieve an extensible, cross-platform design as
 much as possible.

 o T-ECS: How to implement ECS?

Zhang, et al. Expires October 23, 2016 [Page 3]

Internet-Draft Implementing ALTO in ODL April 2016

 Going from syntax to semantics, we first consider ECS, which is a
 basic service in ALTO. One may consider the map services as
 aggregation services on top of ECS. Hence, a key implementation
 design is how to compute the cost between two endpoints in ODL.

 Comparing with traditional network, there are several differences
 in the SDN scenario. The central controller can collect the
 topology and statistics information of network easily. But some
 problems like fine-grained path and reactive mode have to be
 solved.

 o T-AutoMap: How to allow a network operator (ALTO server
 administrator) to define automatically generated network maps?

 One possibility to define a network map is to allow the network
 operator to upload a static file defining the PIDs of the network
 map. Although this approach is modular, it is inconvenient. See

Section 16 in [RFC7285]. Conceptually, a network map defines a
 partition of endpoints according to the properties of the
 endpoints. A mechanism (e.g., a description language) which
 allows a network operator to define the grouping conditions and
 then the ALTO server automatically to compute the partition can
 provide substantial value. After computing a network map, the
 ALTO server should also be able to compute the corresponding cost
 map, for each given cost metric. Since network state can be
 dynamic, we need to update network maps and cost maps when network
 state changes.

 o T-Push: How to push updates to ALTO clients?

 Client would like to receive update information as soon as
 possible. See Internet draft [DRAFT-SSE].

3. Design and Implement ECS

 There are two key issues when we try to implement ECS in ODL:

 o How to get an exact forwarding path between two Endpoints.

 o How to provide the reasonable costs computation in one query.

 We have not yet implemented the functionality of ECS completely
 because of some challenges. Some of these challenges are caused by
 the limitation of ODL, but some are general problems in the SDN
 scenario.

 Developers may face several challenges when implementing ECS in ODL.
 The following are the main challenges we faced:

https://datatracker.ietf.org/doc/html/rfc7285#section-16

Zhang, et al. Expires October 23, 2016 [Page 4]

Internet-Draft Implementing ALTO in ODL April 2016

 About computing routing path:

 o Challenge 1: There will be multiple fine-grained paths between two
 Endpoints in the SDN scenario.

 o Challenge 2: The routing path may be re-active and have not been
 applied when the ECS query arrives.

 o Challenge 3: SDN controllers like ODL support multiple
 applications to do the path computation.

 About computing cost:

 o Challenge 4: How to evaluate the precise cost of a known flow.

 o Challenge 5: How to evaluate the reasonable costs when there are
 shared links.

 In the following several subsections, we will talk about details of
 these challenges and our solutions. Some challenges have not been
 solved, and we discuss the reasons and give some proposals in

Section 6.

3.1. Current Solution to Compute the Routing Path

 Currently, our implementation of routing path computation in ODL
 contains two components: Host Tracker and Forwarding Rules Manager
 (FRM) Checker. And this implementation can only work with OpenFlow-
 enabled networks.

 The Host Tracker will handle the ARP packets in the network and
 maintain the information of end hosts. It will store the bindings
 between MAC addresses and IP addresses. Because our ALTO server
 works on OpenFlow based networks, we need to know an OpenFlow match
 to decide a path. The OpenFlow match can be L2 or L3 in the real
 network. But the ECS query message only provides L3 information (IP
 address) of endpoints. So we implement a component like Host Tracker
 to maintain the map from L3 to L2.

 ODL provides an FRM to manage the flow tables of real OpenFlow
 switches connected to the ODL controller. For pro-active paths, we
 can look up FRM to compute them. FRM Checker is such a component
 which provides API to compute pro-active paths by accepting L2 or L3
 matches.

Zhang, et al. Expires October 23, 2016 [Page 5]

Internet-Draft Implementing ALTO in ODL April 2016

 +-------------+
 L3 request -->| FRM Checker |
 +-------------+
 | |
 Look up Flow Tables | | get L2/L3 Mapping
 v v
 +-----+ +--------------+
 | FRM | | Host Tracker |
 +-----+ +--------------+
 : :
 ,-----------.
 ,-' Source of `-.
 (topological)
 `-. information ,-'
 `-----------'

 Figure 1: Overview of Routing Path Computation.

 The overview of path computation module can be presented in Figure 1.
 And the algorithm of looking up FRM is presented in Figure 2.

 while (currentSwitchId != dstSwitchId) {
 r <- loopupFlowTable(switchId, match);
 if (!r) {
 forceComputeRoutingPath(switchId, match);
 r <- loopupFlowTable(switchId, match);
 }
 currentSwitchId = getNextSwitchId(r);
 }

 Figure 2: Algorithm about lookupFRM().

3.2. Multi-Path in ECS

 In the actual environment of network, there may be more than one
 routing path from the source IP to the destination IP. The cost
 between two Endpoints is decided by the actual routing path, but we
 may not get the actual routing path from the pair of the source IP
 and the destination IP. One reason is related to Challenge (2), and
 the subsection will talk about the details. The other reason is that
 the ALTO server cannot get enough information from the input of ECS.

 For example, assume there are two hosts in the network, labeled as H1
 and H2. And there are three switches in the links between H1 and H2.
 The topology is described as Figure 3. When H1 send data to the TCP
 port 22 of H2, the packet will be forwarded along the path "H1 - S1 -
 S3 - S2 - H2". But when H1 send HTTP request to H2, the packet will
 be forwarded along the path "H1 - S1 - S2 - H2".

Zhang, et al. Expires October 23, 2016 [Page 6]

Internet-Draft Implementing ALTO in ODL April 2016

 H1 ---- S1 ---- S2 ---- H2
 \ /
 \ /
 S3

 Figure 3: Multi-Path in Network.

 In this case, the ALTO server will get two paths when looking up FRM
 to compute the routing path. Since the ALTO server does not know
 which type of packet will be sent by H1, it cannot decide which path
 is the actual one.

 This problem is caused by the limitation of ALTO protocol and the
 features of OpenFlow. One of the most important features in
 OpenFlow-enabled networks is to support fine-grained path which makes
 the controlling of paths more flexible. But the original ALTO
 protocol is not expressive in this scenario. A possible solution is
 proposed in [DRAFT-ECS-FLOW]. The implementation of this solution is
 in progress.

3.3. Reactive Mode

 We find this is a common problem in OpenFlow-enabled network. Once
 the network is working on the reactive mode, we may not know the real
 path only by checking devices information. There may be some routing
 paths which are still not active. Only when the special packets are
 sent to the special destination, the rule will be called to insert
 the Flow Table. So we may not get the routing path by looking up
 FRM.

 We do not have a good solution to handle it. Although several
 modules in ODL provide some routing services to compute the path
 (such as l2switch), we still cannot know which module will be active.

 We have tried to extend the input and output format of ECS. But it
 is not enough to solve this challenge.

3.4. Precise Cost Computation

 Cost computation is often based on network statistics. In
 traditional network, we can setup some agents to monitor the network
 statistics in real time. But in SDN scenario, collecting the network
 statistics is easier. OpenFlow switches will store these statistics
 information in the Meter Tables (assume the switches support OpenFlow
 1.3). And the ODL controller can look up these information directly
 without executing any measuring tasks.

Zhang, et al. Expires October 23, 2016 [Page 7]

Internet-Draft Implementing ALTO in ODL April 2016

 The ECS module SHOULD evaluate the path cost as precisely as
 possible. However, OpenFlow switches can only collect their own
 statistics. If we want to get the statistics between endpoints, we
 have to make them aggregate. It MAY NOT be precise. If we want to
 make the evaluation more precise, we may have to do some real
 measurements in the network.

3.5. Available Bandwidth with Shared Links

 Some cost metrics requested by clients may be shared by different
 flows, such as 'bandwidth'.

 For example, a client sends an ECS request to get the available
 bandwidths between a list of source IPs and a list of destination
 IPs. The following example is a very common case:

 src1 --- s1 s5 --- dst1
 \ /
 s3 --- s4
 / \
 src2 --- s2 s6 --- dst2

 Figure 4: Bandwidth with Links Shared.

 In the case described in Figure 4, "s3 - s4" is a link shared by all
 flows between [src1, src2] and [dst1, dst2]. If the client would
 like to select two pairs from (srci, dsti), their paths must share
 bandwidth in the link "s3 - s4". So the ALTO server cannot compute
 the available bandwidth of each flow individually.

 An possible solution is to divide maximum bandwidth and available
 bandwidth into different 'cost-mode'. But it is still helpless to
 compute available bandwidth.

 Another solution is to introduce Routing State Abstraction
 ([DRAFT-RSA]). The details will be discussed in Section 6.

3.6. A Comprehensive Architecture

 The following is a comprehensive architecture to figure out our
 design:

Zhang, et al. Expires October 23, 2016 [Page 8]

Internet-Draft Implementing ALTO in ODL April 2016

 HTTP +--------------+
 Request----->| |
 | ECS Service | +-----------+
 HTTP <-----| |---->| Routing |
 Response +------|-------+ | Path |
 +------|-------+ | Computing |
 | Cost |<----| Module |
 | Computing | +-----------+
 | Module |
 +--------------+

 Figure 5: A Comprehensive Architecture of ECS.

4. Design and Implement Dynamic Maps

 The ALTO server should be able to handle dynamic network. For
 example, when some nodes or links in the network topology change, the
 ALTO server must regenerate Network Maps and recompute Cost Map.

 According to our experiences of implementing ALTO in ODL, there may
 be also several challenges about handling dynamic network. We will
 indicate these challenges and our solutions below. Some challenges
 have been solved, and we will introduce our solution. But some
 challenges still remain to be dealt with. We will also discuss them
 and the possible solutions in Section 6.

4.1. Challenges about handling dynamic network

 The key challenges about dealing with dynamic network are indicated
 below:

 o How to regenerate Network Maps:

 Network Maps are dependent on the network topology. The ALTO
 server should update Network Maps when the topology changes. For
 example, when a new host H1 is added to the network, the ALTO
 server should assign a PID for H1 in one Network Map. The
 challenge is that different Network Maps may have different rules
 to decide PID, but it is difficult to describe these rules. So it
 is hard to regenerate Network Maps automatically.

 o When and How to recompute Cost Map:

 Every Cost Map depends on one Network Map. When the dependent
 Network Map is regenerated, the related Cost Map also need to be
 updated. Generally speaking, the ALTO server should recompute the
 cost for the PID which is updated. But sometimes, the update of

Zhang, et al. Expires October 23, 2016 [Page 9]

Internet-Draft Implementing ALTO in ODL April 2016

 PID does not effect the cost. The ALTO server should decide when
 and how to recompute Cost Map.

 o How to handle updates incrementally and quickly:

 According to [DRAFT-SSE], the ALTO server may provide a service
 which allows user to require incremental updates using SSE. But
 the ALTO server must have the capability to listen, compute and
 maintain the incremental updates. The challenge is how to provide
 incremental updates service correctly and efficiently.

4.2. Current Solution about Dynamic Network

4.2.1. Basic Service to Handle Dynamic Network

 To handle the dynamic network, finding the updates of network is the
 basic capability. The update about hosts is the most basic type of
 updates.

 As the description in Section 5.1.1, the ALTO server introduces a
 module named 'hosttracker' to find new hosts in the network. For
 example, once a new host H1 is added to the network, ALTO server will
 get the address of H1, and record it to the default Network Map.

4.2.2. Solution to Regenerate Network Maps

 Our goal is to provide easy-to-use, yet complete specification and
 algorithms to allow administrators to define grouping of network
 nodes. We have designed an anchor-based Auto-Map service, which can
 generate Network Maps from network topology automatically. This
 service uses the nearest-neighbor algorithm to generate the Network
 Maps.

 Administrators can modify a JSON format configuration file to
 configure the auto-map service. An example configuration file is
 presented by Figure 6.

Zhang, et al. Expires October 23, 2016 [Page 10]

Internet-Draft Implementing ALTO in ODL April 2016

 nearest-network-map-config.json

 {
 "net-map-id": "nearest-network-map",
 "net-map-grp-alg": "nearest-alg",
 "net-map-grp-para": {
 "metric": "hopcount",
 "anchors": {
 "pid1": ["sw1", "sw2"],
 "pid2": ["sw3"],
 "pid3": ["sw4", "sw5"]
 }
 }
 }

 Figure 6: An Example of Network Auto-Map Configuration File.

4.2.3. Solution to Recompute the Cost Map

 Auto-Map service also provides a generic method to define the cost
 computation between two PIDs. The basic idea is to compute inter-PID
 cost from inter-endpoint costs: Given PIDS Pa and Pb, there will
 be |Pa| x |Pb| inter-endpoint costs. We provide multiple definitions
 (median, x-percentile, avg) as the cost from Pa to Pb, and allow
 multiple algorithms to do the computation (total enumeration, random
 sampling).

 Administrators can also setup a JSON format configuration file to
 configure the related arguments. An example configuration file is
 presented by Figure 7.

 cost-map-config.json

 {
 "cost-map-id": "cmap1",
 "uses": ["my-nn-auto-network-map"],
 "cost-type": {
 "cost-mode": "numerical",
 "cost-metric": "hopcount"
 },
 "cost-map-group-metric": "avg",
 "cost-map-group-alg": {
 "alg": "random-sampling",
 "count" : 10000
 }
 }

 Figure 7: An Example of Cost Auto-Map Configuration File.

Zhang, et al. Expires October 23, 2016 [Page 11]

Internet-Draft Implementing ALTO in ODL April 2016

4.2.4. Solution to Handle Incremental Updates

 We are implementing ALTO incremental updates using SSE in ODL. The
 following is a very simple design:

 +----------------+
 | Update Service |
 +----------------+
 |
 | Get diff patch
 |
 +--------------+
 | DAG for Data |
 +--------------+
 |
 | Maintain
 |
 +-------------+
 | Data Change |
 | Listener |
 +-------------+

 Figure 8: A Simple Architecture of the Update Service.

 The update service is a top module to handle HTTP request from the
 client. The "DAG for Data" module computes JSON patches and store
 them to maintain all data changes from listener.

5. Achieve MD-SAL and Cross Platform Design

5.1. Overview of Current ALTO Server in ODL

5.1.1. Architecture

 ALTO server provides two types of user interfaces -- one for
 application developers and the other for network managers. The
 developer interface provides a HTTP server to handle request/response
 defined in [RFC7285]. And the manager interface is a command-line
 interface, which provides commands to operate (add/delete/change) the
 data in data store.

https://datatracker.ietf.org/doc/html/rfc7285

Zhang, et al. Expires October 23, 2016 [Page 12]

Internet-Draft Implementing ALTO in ODL April 2016

 +---+
 | ALTO-NorthBound |
 +---+
 : : : :
 +-----------+ +-----------+ +----------+ +-----------+
 | ECS-Route | | EPS-Route | | MS-Route | | IRD-Route |
 +-----------+ +-----------+ +----------+ +-----------+
 : :
 : +------------+
 : | Routed RPC |
 : +------------+
 : / \
 +----------+ ... +------------+ +----------+
 | Instance | | Manual Map | | Auto-Map |
 +----------+ Resource | Instance | | Instance |
 | `..... Pool ...+------------+ +----------+
 | : | |
 +---+
 | OpenDaylight Data Store |
 +---+

 Figure 9: ALTO Architecture Overview.

 As depicted in Figure 9, the services in this server are model-
 driven, and the foundation of these services is the data store in
 ODL. The models in this ALTO server define two major things: data
 types and the interfaces of RPCs (See [DRAFT-ALTO-YANG]. As it can
 be seen from the figure, there are five conceptual components whose
 names and functionalities are introduced in the following sections.

5.1.2. Components

 The following is an introduction about the main components in this
 ALTO server.

 o Northbound:

 The most important functionality of the northbound is to forward
 the incoming requests to the corresponding route. It has also
 defined the base URL for ALTO resources. Other connection-related
 operations can be taken here, such as authentication.

 o Route:

 Route, short for northbound route, is where the ALTO protocol is
 processed. Upon a request arrival, it must check the media types,
 parse the request body (if any) to customized input formats and
 forward to the corresponding instance. When the output is

Zhang, et al. Expires October 23, 2016 [Page 13]

Internet-Draft Implementing ALTO in ODL April 2016

 returned, the route must transform it into RFC-compatible format,
 set the correct media type and forward it to the northbound.

 o Instance:

 Instance implements the ALTO services. Different instances can
 use different information sources and have different internal
 storage and logic.

 o Datastore:

 Datastore is where the related data, including network statistics
 and user configurations, are stored. The OpenDaylight has already
 provided a tree-like datastore based on the YANG model.

 o Resource Pool:

 The resource pool is where the instances SHOULD be registered. It
 is essential to support the standard service models and the
 standard northbound routes, and to provide information to the IRD.

5.1.3. Extensibility

 In the practice of implementing ALTO server, we find extensibility is
 very important. ALTO needs extensibility because of two aspects.

 The one is the protocol extension. There are more and more ALTO
 protocol extensions, and some of them have been used in the practice.
 ALTO server SHOULD provide a easy way to enable additional services
 for protocol extensions. In the design of Figure 9, we can add new
 route modules for the additional services easily.

 The other one is the different implementations of services. A better
 practice is to allow different implementations for the services with
 the same interface. The architecture of Figure 9 allow different
 service instances to share the same route modules. It is enough
 extensible.

5.2. Implementation of Models

 Programming in ODL is model-driven since Lithium release. So we
 should define the data types and RPCs by defining the YANG model.
 But when we try to use the YANG model defined in [DRAFT-ALTO-YANG] to
 implement the ALTO server in ODL, several problems occur, making some
 services not work.

 In the following, we present the problems about the YANG model and
 our corresponding solutions.

Zhang, et al. Expires October 23, 2016 [Page 14]

Internet-Draft Implementing ALTO in ODL April 2016

5.2.1. The definition of 'cost'.

 Outputs of the Cost Map and ECS both require a data type named
 'cost', which stands for the cost between a source and a destination.

 Section A.1 of [DRAFT-ALTO-YANG] defines 'cost' as following:

 grouping alto-cost {
 anyxml cost {
 mandatory true;
 description
 "ALTO cost is a JSONValue, which could be
 an object, array, string, etc. (Ref: RFC 7159 Sec.3.)";
 }
 }

 In this definition, 'cost' is declared as the 'anyxml' statement,
 which is used to represent an unknown chunk of XML (see [RFC6020]).
 It is because that 'cost' is defined as a JSONValue in [RFC7285],
 which could be any valid types in JSON.

 But when we tried to implement the 'cost' type with its definition in
 the Lithium Release of ODL, we found that 'anyxml' was not
 implemented by the YANG parser as we expected.

 Actually, there are two problems needed to be solved:

 1. The Cost Map and ECS need different definitions of 'cost' type to
 generate different JAVA classes in ODL.

 2. The 'cost' type could be different built-in types in different
 Cost Maps or outputs of ECS.

 For the first problem, the 'augment' statement in YANG model could
 solve it.

 For the second problem, however, we cannot use the 'anyxml' statement
 because JAVA is not dynamically typed. In order to support different
 built-in types, we use 'string' to define 'cost' type. But ALTO
 server must parse the value of 'cost' by itself.

 Following is the current YANG model for the 'cost' type:

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc7285

Zhang, et al. Expires October 23, 2016 [Page 15]

Internet-Draft Implementing ALTO in ODL April 2016

 module alto-cost-default {
 namespace "urn:opendaylight:alto:costdefault";
 prefix "alto-cost-default";

 import alto-service {prefix alto-restconf;}

 augment "/alto-restconf:endpoint-cost-service/alto-restconf:
 output/alto-restconf:endpoint-cost-service/alto-restconf:
 endpoint-cost-map/alto-restconf:dst-costs" {
 leaf cost-default {
 type string;
 }
 }

 augment "/alto-restconf:resources/alto-restconf:cost-maps
 /alto-restconf:cost-map/alto-restconf:map/ alto-restconf:
 dst-costs" {
 leaf cost-default {
 type string;
 }
 }
 }

5.2.2. The definition of 'constraint'

 'Constraint' is an optional capability in [RFC7285]. The definition
 provided by [DRAFT-ALTO-YANG] is presented as follows:

 typedef constraint {
 type string {
 pattern "(gt|ge|lt|le|eq) [0-9]+";
 }
 ...
 }

 This definition cannot support float 'cost' type. And we give the
 following definition to replace with it.

 typedef constraint {
 type string {
 pattern "(gt|ge|lt|le|eq) [0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?";
 }
 ...
 }

https://datatracker.ietf.org/doc/html/rfc7285

Zhang, et al. Expires October 23, 2016 [Page 16]

Internet-Draft Implementing ALTO in ODL April 2016

6. Discussions

6.1. ECS Extension

 To address some issues in Section 3, we need to extend the data
 format of ECS. For example, ODL must know the TCP port of the
 destination to compute the actual routing path. So the client must
 indicate this information in the JSON of request.

6.2. Network State Abstraction

 In some cases, the client send an ECS request to get the available
 bandwidths of some flows, which have shared links. The traditional
 method cannot give reasonable bandwidths for each flow. A possible
 solution to solve this issue is to introduce Routing State
 Abstraction.

6.3. A Loose Coupling Design to Support the Cross Platform

 The current architecture of the ALTO server couples with the
 implementation of ODL. A loose coupling architecture design is
 expected. It will be very helpful to support the cross platform.

 According to the discussion in Section 3.1, however, some services
 cannot decouple with ODL completely, such as ECS.

7. IANA Considerations

 This document does not define any new media type or introduce any new
 IANA consideration.

8. Security Considerations

 This document does not introduce any privacy or security issue not
 already present in the ALTO protocol.

9. Acknowledgments

 The authors thank discussions with Xin (Tony) Wang and reviews by Dan
 Peng and Qiao Xiang.

10. References

10.1. Informative References

Zhang, et al. Expires October 23, 2016 [Page 17]

Internet-Draft Implementing ALTO in ODL April 2016

 [DRAFT-ALTO-YANG]
 Shi, X. and Y. Yang, "A YANG Data Model for Base ALTO
 Data", 2015, <https://datatracker.ietf.org/doc/draft-shi-

alto-yang-model/>.

 [DRAFT-ECS-FLOW]
 Wang, J. and Q. Xiang, "ALTO Extension: Endpoint Cost
 Service for Flows", 2015,
 <https://datatracker.ietf.org/doc/draft-wang-alto-ecs-

flows/>.

 [DRAFT-RSA]
 Gao, K., Wang, X., Yang, Y., and G. Chen, "ALTO Extension:
 A Routing State Abstraction Service Using Declarative
 Equivalence", 2015, <https://datatracker.ietf.org/doc/

draft-gao-alto-routing-state-abstraction/>.

 [DRAFT-SSE]
 Roome, W. and Y. Yang, "ALTO Incremental Updates Using
 Server-Sent Events (SSE)", 2015,
 <https://datatracker.ietf.org/doc/draft-ietf-alto-incr-

update-sse/>.

10.2. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997,
 <http://xml.resource.org/public/rfc/html/rfc2119.html>.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", Oct 2010,
 <http://xml.resource.org/public/rfc/html/rfc6020.html>.

 [RFC7285] Alimi, R., Penno, R., Yang, Y., Kiesel, S., Previdi, S.,
 Roome, W., Shalunov, S., and R. Woundy, "Application-Layer
 Traffic Optimization (ALTO) Protocol", 2014,
 <http://xml.resource.org/public/rfc/html/rfc7285.html>.

Authors' Addresses

 J. (Jensen) Zhang
 Tongji University
 4800 Cao'an Road
 Shanghai 201804
 China

 Email: jingxuan.n.zhang@gmail.com

https://datatracker.ietf.org/doc/draft-shi-alto-yang-model/
https://datatracker.ietf.org/doc/draft-shi-alto-yang-model/
https://datatracker.ietf.org/doc/draft-wang-alto-ecs-flows/
https://datatracker.ietf.org/doc/draft-wang-alto-ecs-flows/
https://datatracker.ietf.org/doc/draft-gao-alto-routing-state-abstraction/
https://datatracker.ietf.org/doc/draft-gao-alto-routing-state-abstraction/
https://datatracker.ietf.org/doc/draft-ietf-alto-incr-update-sse/
https://datatracker.ietf.org/doc/draft-ietf-alto-incr-update-sse/
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/html/rfc6020.html
http://xml.resource.org/public/rfc/html/rfc7285.html

Zhang, et al. Expires October 23, 2016 [Page 18]

Internet-Draft Implementing ALTO in ODL April 2016

 Kai Gao
 Tsinghua University
 30 Shuangqinglu Street
 Beijing 100084
 China

 Email: gaok12@mails.tsinghua.edu.cn

 Y. Richard Yang
 Yale University
 51 Prospect St
 New Haven CT
 USA

 Email: yry@cs.yale.edu

Zhang, et al. Expires October 23, 2016 [Page 19]

