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Abstract

This memo introduces "Signaling In-Network Computing operations"

(SINC), a mechanism to enable signaling in-network computing

operations on data packets in specific scenarios like NetReduce,

NetDistributedLock, NetSequencer, etc. In particular, this solution

allows to flexibly communicate computational parameters, to be used

in conjunction with the payload, to in-network SINC-enabled devices

in order to perform computing operations.
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1. Introduction

According to the original design, the Internet performs just "store

and forward" of packets, and leaves more complex operations at the

end-points. However, new emerging applications could benefit from

in-network computing to improve the overall system efficiency

([GOBATTO], [ZENG]).

The formation of the COmputing In-Network (COIN) Research Group 

[COIN], in the IRTF, encourages people to explore this emerging

technology and its impact on the Internet architecture. The "Use

Cases for In-Network Computing" document [I-D.irtf-coinrg-use-cases]

introduces some use cases to demonstrate how real applications can

benefit from COIN and show essential requirements demanded by COIN

applications.

Recent research has shown that network devices undertaking some

computing tasks can greatly improve the network and application

performance in some scenarios, like for instance aggregating path-

computing [NetReduce], key-value(K-V) cache [NetLock], and strong

consistency [GTM]. Their implementations mainly rely on programmable

network devices, by using P4 [P4] or other languages. In the context
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of such heterogeneity of scenarios, it is desirable to have a

generic and flexible framework, able to explicitly signaling the

computing operation to be performed by network devices, which should

be applicable to many use cases, enabling easier deployment.

This document specifies such a Signaling In-Network Computing (SINC)

framework for, as the name states, in-network computing operation.

The computing functions are hosted on network devices, which, in

this memo, are generally named as SINC switches/routers.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] and [RFC8174] when, and only when, they appear in

all capitals, as shown here.

3. SINC Relevant Use Cases

Hereafter a few relevant use cases are described, namely NetReduce,

NetDistributedLock, and NetSequencer, in order to help understanding

the requirements for a framework. Such a framework, should be

generic enough to accommodate a large variety of use cases, besides

the ones described in this document.

3.1. NetReduce

Over the last decade, the rapid development of Deep Neural Networks

(DNN) has greatly improved the performance of many Artificial

Intelligence (AI) applications like computer vision and natural

language processing. However, DNN training is a computation

intensive and time consuming task, which has been increasing

exponentially (computation time gets doubled every 3.4 months 

[OPENAI]) in the past 10 years. Scale-up techniques concentrating on

the computing capability of a single device cannot meet the

expectation. Distributed DNN training approaches with synchronous

data parallelism like Parameter Server [PARAHUB] and All-Reduce 

[MGWFBP] are commonly employed in practice, which on the other hand,

become increasingly a network-bound workload since communication

becomes a bottleneck at scale.

Comparing to host-oriented solutions, in-network aggregation

approaches like SwitchML [SwitchML] and SHARP [SHARP] could

potentially reduce to nearly half the bandwidth needed for data

aggregation, by offloading gradients aggregation from the host to

network switches. The SwitchML solution uses UDP for network

transport. The system solely relies on application layer logic to

trigger retransmission for packet loss, which leads to extra latency

and reduces the training performance. The SHARP solution on the
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contrary, uses Remote Direct Memory Access (RDMA) to provide

reliable transmission [ROCEv2]. As the Infini-Band (IB) technology

requires specific hardware support, this solution is not very cost-

effective. NetReduce [NetReduce] does not depend on dedicated

hardware and provides a general in-network aggregation solution that

is suitable for Ethernet networks.

3.2. NetDistributedLock

In the majority of distributed system, the lock primitive is a

widely used concurrency control mechanism. For large distributed

systems, there is usually a dedicated lock manager that nodes

contact to gain read and/or write permissions of a resource. The

lock manager is often abstracted as Compare And Swap (CAS) or Fetch

Add (FA) operations.

The lock manager is typically running on a server, causing a

limitation on the performance by the speed of disk I/O transaction.

When the load increases, for instance in the case of database

transactions processed on a single node, the lock manager becomes a

major performance bottleneck, consuming nearly 75% of transaction

time [OLTP]. The multi-node distributed lock processing superimposes

the communication latency between nodes, which makes the performance

even worse. Therefore offloading the lock manager function from the

server to the network switch might be a better choice, since the

switch is capable of managing lock function efficiently. Meanwhile

it liberate the server for other computation tasks.

The test results in NetLock [NetLock] show that the lock manager

running on a switch is able to answer 100 million requests per

second, nearly 10 times more than what a lock server can do.

3.3. NetSequencer

Transaction managers are centralized solutions to guarantee

consistency for distributed transactions, such as GTM in Postgre-XL

([GTM], [CALVIN]). However, as a centralized module, transaction

managers have become a bottleneck in large scale high-performance

distributed systems. The work by Kalia et al. [HPRDMA] introduces a

server based networked sequencer, which is a kind of task manager

assigning monotonically increasing sequence number for transactions.

In [HPRDMA], the authors shows that the maximum throughput is 122

Million requests per second (Mrps), at the cost of an increased

average latency. This bounded throughput will impact the scalability

of distributed systems. The authors also test the bottleneck for

varies optimization methods, including CPU, DMA bandwidth and PCIe

RTT, which is introduced by the CPU centric architecture.
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For a programmable switch, a sequencer is a rather simple operation,

while the pipeline architecture can avoid bottlenecks. It is worth

implementing a switch-based sequencer, which sets the performance

goal as hundreds of Mrps and latency in the order of microseconds.

4. In-Network Generic Operations

The COIN use case draft [I-D.irtf-coinrg-use-cases] illustrates some

general requirements for scenarios like in-network control and

distributed AI, where the aforementioned use cases belong to. One of

the requirements is that any in-network computing system must

provide means to specify the constraints for placing execution logic

in certain logical execution points (and their associated physical

locations). In case of NetReduce, NetDistributedLock, and

NetSequencer, data aggregation, lock management and sequence number

generation functions can be offloaded onto the in-network device. It

can be observed that those functions are based on "simple" and

"generic" operators, as shown in Table 1. Programmable switches are

capable of performing basic operations by executing one or more

operators, without impacting the forwarding performance ([NetChain],

[ERIS]).

Use Case Operation Description

NetReduce
Sum value

(SUM)

The in-network device sums the data

together and outputs the resulting

value.

NetLock

Compare And

Swap or

Fetch-and-Add

(CAS or FA)

By comparing the request with the

status of its own lock, the in-network

device sends out whether the host has

the acquired the lock. Through the CAS

and FA, host can implement shared and

exclusive locks.

NetSequencer
Fetch-and-Add

(FA)

The in-network device provides a

monotonically increasing counter number

for the host.

Table 1: Example of in-network operations.

5. SINC Framework Overview

This section describes the various elements of the SINC framework

and explains how they work together.

The SINC protocol and extensions are designed for deployment in

limited domains, such as a data center network, rather than

deployment across the open Internet. The requirements and semantics

are specifically limited, as defined in the previous sections.
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Figure 1 shows the overall SINC framework, consisting of Hosts, the

SINC Ingress Proxy, SINC switch/router (SW/R), the SINC Egress Proxy

and normal switches/routers(if any).

Figure 1: General SINC deployment.

In the SINC domain, a host MUST be SINC-aware. It defines the data

operation to be executed. However, it does not need to be aware of

where the operation will be executed and how the traffic will be

steered in the network. The host sends out packets with a SINC

header containing the definition and parameters of data operations.

The SINC header could be placed directly after the transport layer,

before the computing data as part of the payload. However, the SINC

header can also potentially be positioned at layer 4, layer 3, or

even layer 2, depending on the network context of the applications

and the deployment consideration. This will be discussed in further

details in [I-D.zhou-sinc-deployment-considerations].

The SINC proxies are responsible for encapsulating/decapsulating

packets in order to steer them through the right network path and

nodes. The SINC proxies may or may not be collocated with hosts. The

SINC Ingress Proxy encapsulates and forwards packets containing a

SINC header, to the right node(s) with SINC operation capabilities.

Such an operation may involve the use of protocols like Service

Function Chaining (SFC [RFC7665]), LISP [RFC9300], Geneve [RFC8926],

or even MPLS [RFC3031]. Based on the definition of the required data

processing and the network capabilities, the SINC ingress proxy can

determine whether the data processing defined in the SINC header

could be executed in a single node or in multiple nodes. The SINC

Egress Proxy is responsible for decapsulating packets before

forwarding them to the destination host.

The SINC switch/router is the node equipped with in-network

computing capabilities. Upon receiving a SINC packet, the SINC

switch/router data-plane processes the SINC header, executes

required operations, updates the payload with results (if necessary)

and forwards the packet to the destination.

¶

 +---------+                                             +---------+

 | Host A  |                                             | Host B  |

 +---------+                                             +---------+

      |                                                       |

      |                                                       |

 +------------+   +------+   +-----------+   +------+   +-----------+

 |SINC Ingress|   |      |   |           |   |      |   |SINC Egress|

 |Proxy       |-->| SW/R |-->| SINC SW/R |-->| SW/R |-->|Proxy      |

 +------------+   +----- +   +-----------+   +------+   +-----------+
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The SINC workflow is as follows:

Host A transmits a packet with the SINC header and data to the

SINC Ingress proxy.

The SINC Ingress proxy encapsulates and forwards the original

packet to a SINC switch/router(s).

The SINC switches/routers verifies the source, checks the

integrity of the data and performs the required data processing

defined in the SINC header. When the computing is done, if

necessary, the payload is updated with the result and then

forwarded to the SINC Egress proxy.

When the packet reaches the SINC Egress Proxy, the

encapsulation will be removed and the inner packet will be

forwarded to the final destination (Host B).

6. Data Operation Mode

According to the SINC scenarios, the SINC processing can be divided

into two modes: individual computing mode and batch computing mode.

Individual operations include all operations that can be performed

on data coming from a single packet (e.g., Netlock). Conversely,

batch operations include all operations that require to collect data

from multiple packets (e.g., NetReduce data aggregation).

6.1. Individual Computing Mode

The NetLock is a typical scenario involving individual operations,

where the SINC switch/router acts as a lock server, generating a

lock for a packet coming from one host.

This kind of operation has some general aspects to be considered:

Initialization of the context on the computing device. The

context is the information necessary to perform operations on the

packets. For instance, the context for a lock operation includes

selected keys, lock states (values) for granting locks.

Error conditions. Operations may fail and, as a consequence,

sometimes actions needs to be taken, e.g. sending a message to

the source host. However, error handling is not necessarily

handled by the SINC switch/router, which could simply roll back

the operation and forward the packet unchanged to the destination

host. The destination host will in this case perform the

operation. If the operation fails again, the destination host

will handle the error condition and may send a message back to

¶

1. 

¶

2. 

¶

3. 

¶

4. 

¶

¶

¶

¶

¶

*

¶

*



the source host. In this way SINC switches/router operation

remains relatively simple.

6.2. Batch Computing Mode

The batch operations require to collect data from multiple before

actually being able to perform the required operations. For

instance, in the NetReduce scenario, the gradient aggregation

requires packets carrying gradient arrays from each host to generate

the desired result array.

In this scenario, beside the general issues mentioned for the

individual operations, the batch operation may fail because some

packets do not arrive (or arrive too late). The time the packets are

temporarily cached on the SINC switch/router should be carefully

configured. On the one hand, it has to be sufficiently long so that

there is enough time to receive all required packets. On the other

hand, it has to be sufficiently short so that no retransmissions are

triggered at the transport or application layers on the end hosts.

Similarly to the error condition for the individual operations, if

the SINC switch/router does not receive all required packets in the

configured time interval, it can simply forward the packets to the

end host so that they deal with packet losses and retransmissions if

necessary.

7. SINC Header

The SINC header carries the data operation information and it has a

fixed length of 16 octets, as shown in Figure 2.

Figure 2: SINC Header.

Reserved: Flags field reserved for future use. MUST be set to

zero on transmission and MUST be ignored on reception.

Done flag (D): Zero (0) indicates that the request operation is

not yet performed. One (1) indicates the operation has been done.

The source host MUST set this bit to 0. The in-network switch/

¶
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¶

¶

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Reserved  |D|L|                    Group ID                   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|     No. of Data Sources       |    Data Source ID             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           SeqNum                              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|       Data Operation          |    Data Offset                |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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router performing the operation MUST set this flag to 1 after the

operation is executed.

Loopback flag (L): Zero (0) indicates that the packet SHOULD be

sent to the destination after the data operation. One (1)

indicates that the packet SHOULD be sent back to the source node

after the data operation.

Group ID: The group ID identifies different groups. Each group is

associated with one task.

Number of Data Sources: Total number of data source nodes that

are part of the group.

Data Source ID: Unique identifier of the data source node of the

packet.

Sequence Number (SeqNum): The SeqNum is used to identify

different requests within one group.

Data Operation: The operation to be executed by the SINC switch/

router. Appendix A briefly discusses possible operations.

Data Offset: The in-packet offset from the SINC header to the

data required by the operation. This field is useful in cases

where the data is not right after the SINC header, the offset

indicates directly where, in the packet, the data is located.

8. SINC Control Plane Requirements

The SINC control plane has to configure SINC network elements to

ensure the proper execution of the computing task. The SINC

framework can work with either centralized or distributed control

planes However, this document does not assume any specific control

plane design. The basic requirements of the control plane shall

include the following:

The SINC control plane should be aware of the switch resources.

This may be achieved by regularly querying the devices.

The SINC control plane should be able to select the switches/

roouters based on certain constraints. For instance selecting

switches/routers that are able to perform a specific more complex

operations, or being able to distribute the load on various

alternative switches/routers without increasing the transmission

delay.

The SINC control plane should be able to provide the necessary

configuration so that packets flow to the right place and

encapsulation/decapsulation operations are performed correctly.
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[RFC2119]

[RFC8174]

This means for instance configuring the parameters of the

selected transport and its forwarding rules.

The SINC control plane should provide monitoring and failover

mechanism in order to handle errors and failures.

9. Security Considerations

In-network computing exposes computing data to network devices,

which inevitably raises security and privacy considerations. The

security problems faced by in-network computing include, but are not

limited to:

Trustworthiness of participating devices

Data hijacking and tampering

Private data exposure

This documents assume that the deployment is done in a trusted

environment. For example, in a data center network or a private

network.

A fine security analysis will be provided in future revisions of

this memo.

10. IANA Considerations

This document makes no requests to IANA.
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Appendix A. Computing Capability Operation abstraction

In-Network computing can greatly help distributed applications that

make an intensive usage of the network. Yet, not all of the

operations can be performed in-network, since the computational

resources are usually very limited. Disassembling complex tasks into

basic calculation operation, such as addition, subtraction, Max,

etc. is the most appropriate approach for offloading these

operations on in-network devices at line rate.

SINC aims at providing a general way for signaling the operation to

be performed on the data. As such, the definition of the operations

are orthogonal to the SINC proposal it self, as long as it is

possible to identify the different operations via a code point. An

example of basic operation that may be performed in-network are

listed in Table 2

OpName Operation Explanation

Max Maximum value of several parameters

MIN Minimum value

SUM Sum value

¶

¶

https://www.rfc-editor.org/rfc/rfc9300
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OpName Operation Explanation

PROD Product value

LAND Logical and

BAND Bit-wise and

LOR Logical or

BOR Bit-wise or

LXOR Logical xor

BXOR Bit-wise xor

WRITE Write value accord to key

READ Read value accord to key

DELETE Delete value accord to key

CAS

Compare and swap. compare the value of the key and old value.

If not same, swap old value to key value. Return old key

value.

CAADD

Compare and add. compare the value of the key and expected

value. If same, add add-value to key value. Return old key

value.

CASUB

Compare and subtract. compare the value of the key and

expected value. If same, sub sub-value to key value. Return

old key value.

FA
Fetch and add. Fetch value according key. Add add-value to

key value. Return old key-value.

FASUB
Fetch and subtract.Fetch value according key. Subtract sub-

value to key value. Return old key value.

FAOR
Fetch and OR. Fetch value according key. Key value get

logical or operation with parameter. Return old key value.

FAADD
Fetch and ADD. Fetch value according key. Key value get

logical add operation with parameter. Return old key value.

FANAND
Fetch and NAND. Fetch value according key. Key value get

logical NAND operation with parameter. Return old key value.

FAXOR
Fetch and XOR. Fetch value according key. Key value get

logical XOR operation with parameter. Return old key value.

Table 2: Example of in-network operations.
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