
NETWORK WORKING GROUP M. Short
Internet-Draft L. Zhu
Updates: 4178 (if approved) K. Damour
Intended status: Standards Track D. McPherson
Expires: July 7, 2011 Microsoft Corporation
 January 3, 2011

SPNEGO Extended Negotiation (NEGOEX) Security Mechanism
draft-zhu-negoex-04

Abstract

 This document defines the SPNEGO Extended Negotiation (NEGOEX)
 Security Mechanism. NEGOEX enhances the capabilities of SPNEGO by
 providing a security mechanism which can be negotiated by the SPNEGO
 protocol as defined in RFC4178.

 The NEGOEX protocol itself is a security mechanism negotiated by
 SPNEGO. When the NEGOEX security mechanism is selected by SPNEGO,
 NEGOEX provides a method allowing selection of a common
 authentication protocol based on factors beyond just the fact that
 both client and server support a given security mechanism. NEGOEX
 OPTIONALLY adds a pair of meta-data messages for each negotiated
 security mechanism. The meta-data exchange allows security
 mechanisms to exchange auxiliary information such as trust
 configurations, thus NEGOEX provides more flexibility than just
 exchanging security mechanism OIDs in SPNEGO.

 NEGOEX preserves the optimistic token semantics of SPNEGO and applies
 that recursively. Consequently a context establishment mechanism
 token can be included in the initial NEGOEX message, and NEGOEX does
 not require an extra round-trip when the initiator's optimistic token
 is accepted by the target.

 Similar to SPNEGO, NEGOEX defines a few new GSS-API extensions that a
 security mechanism MUST support in order to be negotiated by NEGOEX.
 This document defines these GSS-API extensions.

 Unlike SPNEGO however, NEGOEX defines its own way for signing the
 protocol messages in order to protect the protocol negotiation. The
 NEGOEX message signing or verification can occur before the security
 context for the negotiated real security mechanism is fully
 established.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the

Short, et al. Expires July 7, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4178

Internet-Draft NEGOEX January 2011

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 7, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Short, et al. Expires July 7, 2011 [Page 2]

Internet-Draft NEGOEX January 2011

Table of Contents

1. Introduction . 4
2. Requirements Terminology 6
3. Presentation Language and Primitive Data Types 7
3.1. Basic Block Size . 7
3.2. Miscellaneous . 7
3.3. Constants . 7
3.4. Numbers . 7
3.5. Enum Types . 7
3.6. Typedef Declarations 8
3.7. Array Types . 8
3.8. Constructed Types . 8

4. Vector Types . 10
5. NEGOEX Messages . 11
6. Cryptographic Computations 12
7. The NEGOEX Protocol . 12
7.1. High-level NEGOEX Message Flow 12
7.2. NEGOEX Supported Security Mechanisms 13
7.3. ConversationID . 13
7.4. Generation of the Initiator Initial Token 13

 7.5. Receipt of the Initial Initiator Token and Generation
 of the Initial Acceptor Response 15
 7.6. Receipt of the Acceptor Initial Response and
 Completion of Authentication after the Negotiation
 Phrase . 16

7.7. Finalizing Negotiation 16
8. Supporting GSS-API Extensions 17
8.1. GSS_Query_meta_data 17
8.2. GSS_Exchange_meta_data 18
8.3. GSS_Query_mechanism_info 19
8.4. GSS_Inquire_context 19

9. Security Considerations 19
10. Acknowledgements . 20
11. IANA Considerations . 20
12. Normative References . 20
Appendix A. Protocol Data Structures and Constant Values 20

 Authors' Addresses . 24

Short, et al. Expires July 7, 2011 [Page 3]

Internet-Draft NEGOEX January 2011

1. Introduction

 If more than one GSS-API mechanism is shared between the initator and
 the acceptor, the Simple and Protected (GSS-API) Negotiation
 Mechanism (SPNEGO) as defined in [RFC4178] can be deployed to choose
 a mutually preferred one. This pseudo mechanism does well in the
 most basic scenarios but suffers from a couple of drawbacks, notably:

 o Since the SPNEGO negotiation is based on purely on exchanging
 security mechanism OIDs, security mechanisms can be selected which
 cannot successfully authenticate the initator. Just because an
 initator and acceptor support the same security mechanism does not
 mean that they have a mutually trusted authentication authority.
 In such cases, the authentication will fail with the preferred
 security mechanism, but might succeed with another common
 mechanism.

 o Secondly, the SPNEGO negotiation model is inadequate when the
 choice cannot be made by the acceptor in the initial response. In
 SPNEGO, the negotiation information is sent one-way from the
 initiator for the acceptor to make a choice, and the acceptor must
 choose one when it makes the initial response. This negotiation
 model is counter intuitive. The selection of a security mechanism
 is typically the result of selecting one type of credentials from
 the available set, and the initiator typically does not wish to
 reveal credentials information often associated with user
 identities. In practice, in order to operate in this model, the
 Kerberos GSS-API mechanism [RFC4121] must acquire the context
 establishment token in the initial call to GSS_Init_sec_context().
 If the initiator fails to acquire the initial Kerberos GSS-API
 context token, it must not offer Kerberos; otherwise the SPNEGO
 context negotiation will fail without being able to select the
 next available mechanism that could work. Obtaining the initial
 Kerberos GSS-API context token may require multiple round-trips of
 network calls and the cost of the operation can be substantial.
 It is suboptimal when multiple GSS-API mechanisms have to add the
 extra cost that would not exist if the negotiated security
 mechanism were selected based on configuration.

 The SPNEGO Extended Negotiation (NEGOEX) Security Mechanism is
 designed to address these concerns. NEGOEX is a security mechanism
 that is negotiated by SPNEGO, and when negotiated, it can recursively
 negotiate other security mechanisms.

 Any security mechanism negotiated by NEGOEX MUST support integrity
 protection and addition GSS-API interfaces specified in Section 8.

 The basic form of NEGOEX works as follows:

https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4121

Short, et al. Expires July 7, 2011 [Page 4]

Internet-Draft NEGOEX January 2011

 1. The initiator proposes a list of mechanisms in decreasing
 preference order. For each of these mechanism, NEGOEX OPTIONALLY
 includes a mechanism specific meta-data token. GSS-API
 extensions are defined later in this document for NEGOEX to query
 the meta-data token for inclusion in the NEGOEX message.

 2. The acceptor then passes the meta-data token from the initiator
 to the intended security mechanism. A meta-data token for a
 security mechanism not supported on the acceptor side is ignored.
 New GSS-API extensions are defined later in this document for a
 security mechanism to consume the meta-data token. When
 processing the received meta-data tokens, a security mechanism
 that reports a failure is removed from the set of mutually
 supported mechanisms. The acceptor then responds with the list
 of mutually supported mechanisms in decreasing preference order.
 For each of these mechanism, NEGOEX again OPTIONALLY supplies a
 mechanism specific meta-data token in the response which it
 obtains from each remaining supported mechanism via the new GSS-
 API extensions described in the initial step.

 3. The initiator then passes the meta-data tokens to the intended
 security mechanisms by invoking the new GSS-API extensions. When
 processing the received meta-data token, a security mechanism
 that reports a failure is removed from the set of mutually
 supported mechanisms for this negotiation context. The initiator
 then selects one from the set of mutually-supported mechanisms.
 If more than one security mechanism is available, unless
 otherwise specified, the highest one in the acceptor's preference
 order SHOULD be selected. Later when the common security
 mechanism is identified, the security mechanism may also
 negotiate mechanism-specific options during its context
 establishments. This will be inside the mechanism tokens, and
 invisible to the NEGOEX protocol during step 5.

 4. The selected security mechanism provides keying materials to
 NEGOEX via new GSS-API extensions which defined later in this
 document. NEGOEX signs and verifies the negotiation NEGOEX
 messages to protect the negotiation.

 5. The initiator and the acceptor proceed to exchange tokens until
 the GSS-API context for selected security mechanism is
 established. Once the security context is established, the per-
 message tokens are generated and verified in accordance with the
 selected security mechanism.

 NEGOEX does not work outside of SPNEGO. When negotiated by SPNEGO,
 NEGOEX uses the concepts developed in the GSS-API specification
 [RFC2743]. The negotiation data is encapsulated in context-level

https://datatracker.ietf.org/doc/html/rfc2743

Short, et al. Expires July 7, 2011 [Page 5]

Internet-Draft NEGOEX January 2011

 tokens. Therefore, callers of the GSS-API do not need to be aware of
 the existence of the negotiation tokens but only of the SPNEGO
 pseudo-security mechanism.

 In its basic form NEGOEX requires at least one extra round-trip.
 Network connection setup is a critical performance characteristic of
 any network infrastructure and extra round trips over WAN links,
 packet radio networks, etc. really make a difference. In order to
 avoid such an extra round trip the initial security token of the
 preferred mechanism for the initiator may be embedded in the initial
 NEGOEX token. The optimistic mechanism token may be accompanied by
 the meta-data tokens and the optimistic mechanism token MUST be that
 of the first mechanism in the list of the mechanisms proposed by the
 initiator. The NEGOEX MESSAGE_TYPE_INITIATOR_NEGO message that
 contains signatures for protecting the NEGOEX negotiation may also
 accompany the optimistic mechanism token. If the target preferred
 mechanism matches the initiator's preferred mechanism, and when the
 NEGOEX negotiation protection messages are included along with the
 mechanism token, no additional round trips are incurred by using the
 NEGOEX protocol with SPNEGO.

 NEGOEX does not update the ASN.1 structures of SPNEGO [RFC4178]
 because a widely deployed SPNEGO implementation does not have the
 ASN.1 extensibility marker in the message definition. There is no
 change to the SPNEGO messages.

 NEGOEX uses a C-like definition language to describe message formats.

 The rest of the document is organized as follows:

 o Section 3 defines the encoding of NEGOEX data structures and all
 the primitive data types.
 o Section 6 describes the cryptographic framework required by the
 NEGOEX for protecting the NEGOEX negotiation.
 o Section 7 defines the NEGOEX messages and the NEGOEX protocol.
 o Section 8 defines the new GSS-API extensions that a security
 mechanism MUST support in order to be negotiated by NEGOEX.
 o Section 9 contains the security considerations for NEGOEX.
 o Appendix A contains all the protocol constructs and constants.

2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc2119

Short, et al. Expires July 7, 2011 [Page 6]

Internet-Draft NEGOEX January 2011

3. Presentation Language and Primitive Data Types

 The following very basic and somewhat casually defined presentation
 syntax will be used in all NEGOEX messages. Although it resembles
 the programming language "C" in its syntax, it would be risky to draw
 too many parallels. The purpose of this presentation language is to
 document NEGOEX only; it has no general application beyond that
 particular goal.

 This section also defines all the primitive data types. The
 semantics of the data types is explained in the next section.

3.1. Basic Block Size

 The representation of all data items is explicitly specified. The
 basic data block size is one octet. Multiple octet data items are
 concatenations of octets, from left to right, from top to bottom
 Unless otherwise specific a multi-octet numeric is in little endian
 order with the least significant octet first.

3.2. Miscellaneous

 Comments start with "//"' and continue until the end of the line.

3.3. Constants

 Constants are denoted using "#define" followed by the symbolic name
 and then the constant value.

3.4. Numbers

 UCHAR is the data type for a one-octet number.

 ULONG is the data type for a 4-octet number encoded in little endian.

 USHORT is the data type for a 2-octet number encoded in little
 endian.

 ULONG64 is the data type for a 8-octet number encoded in little
 endian.

 GUID is the data type for a 16-octet number encoded in little endian.

3.5. Enum Types

 An enum type is the data type for a number with a small number of
 permissible values. An instance of an enum type is a 4-octet number
 encoded in little endian.

Short, et al. Expires July 7, 2011 [Page 7]

Internet-Draft NEGOEX January 2011

 The definition of an enum type follows the simple "C" convention.

 MESSAGE_TYPE is an enum type defined as follows:

 enum
 {
 MESSAGE_TYPE_INITIATOR_NEGO = 0,
 MESSAGE_TYPE_ACCEPTOR_NEGO,
 MESSAGE_TYPE_INITIATOR_META_DATA,
 MESSAGE_TYPE_ACCEPTOR_META_DATA,
 MESSAGE_TYPE_CHALLENGE,
 // an exchange message from the acceptor
 MESSAGE_TYPE_AP_REQUEST,
 // an exchange message from the initiator
 MESSAGE_TYPE_VERIFY,
 MESSAGE_TYPE_ALERT,
 } MESSAGE_TYPE;

 MESSAGE_TYPE_INITIATOR_NEGO has the value 0, and MESSAGE_TYPE_ALERT
 has the value 7.

3.6. Typedef Declarations

 A typedef creates a synonym for the type. This is used to create
 more meaningful names for existing types.

 The following two type synonyms are defined.

 typedef GUID AUTH_SCHEME;
 typedef GUID CONVERSATION_ID;

3.7. Array Types

 Arrays are a data structure which holds multiple variables of the
 same data type consecutively and the number of elements is fixed. An
 array is declared using "C" convention. The following defines an
 array of 32 octets.

 UCHAR Random[32];

3.8. Constructed Types

 Structure types may be constructed from primitive types for
 convenience. Each specification declares a new, unique type. The
 syntax for definition is much like that of C.

Short, et al. Expires July 7, 2011 [Page 8]

Internet-Draft NEGOEX January 2011

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } T;

 Structure definitions may be embedded.

 The following types are defined as constructed types:

 struct
 {
 ULONG ExtensionType; // negative extensions are critical
 BYTE_VECTOR ExtensionValue;
 } EXTENSION;

 An extension has two fields. The ExtensionType field indicates how
 the extension data should be interpreted. The ExtensionValue field
 contains the extension data.

 //
 // schemes defined for the checksum in the VERIFY message
 //

 struct
 {
 ULONG cbHeaderLength;
 ULONG ChecksumScheme;
 ULONG ChecksumType; // in the case of RFC3961 scheme, this is
 // the RFC3961 checksum type
 BYTE_VECTOR ChecksumValue;
 } CHECKSUM;

 The CHECKSUM structure contains 4 fields. The cbHeaderLength length
 contains the length of the structure defintion in octets, and this
 field has a value of 20.

 The ChecksumScheme field describes how checksum is computed and
 verified. Currently only one value is defined.

 #define CHECKSUM_SCHEME_RFC3961 1

 When the value of the ChecksumScheme field is 1
 (CHECKSUM_SCHEME_RFC3961), the ChecksumValue field contains a
 sequence of octets computed according to [RFC3961] and the
 ChecksumType field contains the checksum type value defined according

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Short, et al. Expires July 7, 2011 [Page 9]

Internet-Draft NEGOEX January 2011

 to [RFC3961].

4. Vector Types

 Vectors are a data structure which holds multiple variables of the
 same data type consecutively and the number of elements is not fixed.
 A vector contains a fixed length header followed by a variable length
 payload. The header of a vector structure contains the count of
 elements and the offset to the payload. In this document all the
 offset fields are relative to the beginning of the containing NEGOEX
 message. The size of each element is specified by the vector type
 definition.

 The following vector types are defined.

 struct
 {
 ULONG ByteArrayOffset; // each element contains an octet/byte
 ULONG ByteArrayLength;
 } BYTE_VECTOR;

 BYTE_VECTOR encapsulates a variable length array of octets (or bytes)
 that are stored consecutively. Each element in is a byte (8 bits).

 struct
 {
 ULONG AuthSchemeArrayOffset;
 // each element contains an AUTH_SCHEME
 USHORT AuthSchemeCount;
 } AUTH_SCHEME_VECTOR;

 AUTH_SCHEME_VECTOR encapsulates a variable length array of
 AUTH_SCHEMEs that are stored consecutively. Each element is a
 structure of the type AUTH_SCHEME.

 struct
 {
 ULONG ExtensionArrayOffset;
 // each element contains an EXTENSION
 USHORT ExtensionCount;
 } EXTENSION_VECTOR;

 EXTENSION_VECTOR encapsulates a variable length array of EXTENSIONs
 that are stored consecutively. Each element is a structure of the
 type EXTENSION.

https://datatracker.ietf.org/doc/html/rfc3961

Short, et al. Expires July 7, 2011 [Page 10]

Internet-Draft NEGOEX January 2011

5. NEGOEX Messages

 The following structure is the MESSAGE_HEADER:

 struct
 {
 ULONG64 Signature; // contains MESSAGE_SIGNATURE
 MESSAGE_TYPE MessageType;
 ULONG SequenceNum; // the message sequence number of this,
 // conversation, starting with 0 and sequentially
 // incremented
 ULONG cbHeaderLength; // the header length of this message,
 // including the message specific header, excluding the
 // payload
 ULONG cbMessageLength; // the length of this message
 CONVERSATION_ID ConversationId;
 } MESSAGE_HEADER;

 The following structure is the NEGO_MESSAGE:

 struct
 {
 MESSAGE_HEADER Header;
 // MESSAGE_TYPE_INITIATOR_NEGO for the initiator,
 // MESSAGE_TYPE_ACCEPTOR_NEGO for the acceptor
 UCHAR Random[32];
 ULONG64 ProtocolVersion;
 // version of the protocol, this contains 0
 AUTH_SCHEME_VECTOR AuthSchemes;
 EXTENSION_VECTOR Extensions;
 } NEGO_MESSAGE;

 The following structure is the EXCHANGE_MESSAGE:

 struct
 {
 MESSAGE_HEADER Header;
 // MESSAGE_TYPE_CHALLENGE for the acceptor,
 // or MESSAGE_TYPE_AP_REQUEST for the initiator
 // MESSAGE_TYPE_INITIATOR_META_DATA for
 // the initiator metadata
 // MESSAGE_TYPE_ACCEPTOR_META_DATA for
 // the acceptor metadata
 AUTH_SCHEME AuthScheme;
 BYTE_VECTOR Exchange;
 // contains the opaque handshake message for the
 // authentication scheme
 } EXCHANGE_MESSAGE;

Short, et al. Expires July 7, 2011 [Page 11]

Internet-Draft NEGOEX January 2011

6. Cryptographic Computations

 The message signing and verification in NEGOEX is based on [RFC3961].
 [RFC3961] is used here as a generic framework and this application is
 not Kerberos specific.

 A security mechanism MUST support [RFC3961] in order to be negotiated
 by NEGOEX.

7. The NEGOEX Protocol

 This section describes the NEGOEX protocol and it defines NEGOEX
 messages in the order that the messages can appear on the wire. The
 enum type MESSAGE_TYPE defined in Section 3.5 lists all NEGOEX
 message types. A GSS-API context token for NEGOEX consists of one or
 more NEGOEX messages. If there is more than one NEGOEX message,
 these messages are concatenated together. The smallest data unit for
 NEGOEX to compute the checksum for negotiation protection is s NEGOEX
 message. Note that NEGOEX is not a GSS-API mechanism itself and the
 initial NEGOEX context establishment token does not follow the
 mechanism-independent token format defined in Section 3.1 of
 [RFC2743].

 The object identifier of the NEGOEX within SPNEGO is iso(1)
 identified-organization(3) dod(6) internet(1) private(4)
 enterprise(1) microsoft (311) security(2) mechanisms(2) negoex(30).

7.1. High-level NEGOEX Message Flow

 The following text art summarizes the protocol message flow:

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1

Short, et al. Expires July 7, 2011 [Page 12]

Internet-Draft NEGOEX January 2011

 Initiator Acceptor

 INITIATOR_NEGO
 +*INITIATOR_META_DATA
 *AP_REQUEST
 --------->
 ACCEPTOR_NEGO
 ACCEPTOR_META_DATA*+
 <--------- CHALLENGE*

 .
 .

 *AP_REQUEST --------->
 <--------- CHALLENGE*

 .
 .
 *AP_REQUEST
 VERIFY --------->
 CHALLENGE*
 <--------- VERIFY
 * Indicates optional or situation-dependent messages that are
 not always sent.
 + Indicates there can be more than one instance.

7.2. NEGOEX Supported Security Mechanisms

 NEGOEX maintains an ordered list of supported security mechanisms
 names to determine priority of security mechanisms. A security
 mechanism negotiable by NEGOEX is identified by a unique identifier
 of data type AUTH_SCHEME defined in Section 3.5. Supported security
 mechanisms are referenced by their corresponding authentication
 scheme IDs. The authentication scheme ID of a security mechanism is
 returned to NEGOEX by calling GSS_Query_mechanism_info() with the
 name of the security mechnism as defined in Section 8.3.

7.3. ConversationID

 Both initiator and acceptor must keep protocol state in the form of a
 GUID, which will be referred to hereafter as the ConversationID.

7.4. Generation of the Initiator Initial Token

 The GSS-API initiator makes the first call to GSS_Init_sec_context()
 with no input token, and the output token will be a NEGO_MESSAGE
 message with the MESSAGE_TYPE_INITIATOR_NEGO message followed by zero

Short, et al. Expires July 7, 2011 [Page 13]

Internet-Draft NEGOEX January 2011

 or more EXCHANGE_MESSAGE messages containing meta-data tokens,
 followed by zero or one AP_REQUEST messages containing an optimistic
 initial context token.

 The initiator generates a cryptographic strength random 16 byte
 value, stores it as the ConversationID, then sets the MESSAGE_HEADER
 header field with the same name to that value. The ConversationID in
 subsequent NEGOEX messages MUST remain the same. The initiator also
 fills the Random field using a secure random number generator. The
 initiator fills the AuthSchemes with available security mechanisms
 supported by the initiator in decreasing preference order.

 The extensions field contains NEGOEX extensions for future
 extensibility. There are no extensions defined in this document.
 All negative extension types (the highest bit is set to 1) are
 critical. If the receiver does not understand a critical extension,
 the authentication attempt must be rejected.

 The initiator can OPTIONALLY include a meta-data token, one for each
 available security mechanism.

 A meta-data token is returned to NEGOEX for a security mechanism
 using GSS_Query_meta_data() extension as defined in Section 8.1. If
 a non-empty meta-data token is returned, then the meta-data token is
 encapsulated in an EXCHANGE message with the message type
 MESSAGE_TYPE_INITIATOR_META_DATA. On GSS_Query_meta_data call
 failure, NEGOEX SHOULD remove the security mechanism from the set of
 authentication schemes to be negotiated.

 The AuthScheme field signifies the security mechanism for which the
 EXCHANGE message is targeted. If a security mechanism fails to
 produce the metadata token, it should be removed from the list of
 supported security mechanism for this negotiation context.

 If there is more than one exchange message, the order in which the
 exchange message is included bears no significance. In other words,
 the exchange messages are in an unordered set. The NEGO_MESSAGE MAY
 be followed by a set of MESSAGE_TYPE_INITIATOR_META_DATA messages as
 described above, in which case all the NEGOEX messages concatenated
 are returned as a single output token.

 The first mechanism in the initiator proposed list can OPTIONALLY
 include its initial context token in an AP_REQUEST message.

 Both an AP_REQUEST(short for MESSAGE_TYPE_AP_REQUEST) message and a
 INITIATOR_META_DATA(short for MESSAGE_TYPE_INITIATOR_META_DATA)
 message are instances of the EXCHANGE_MESSAGE structure with
 different message type values. An AP_REQUEST message contains the

Short, et al. Expires July 7, 2011 [Page 14]

Internet-Draft NEGOEX January 2011

 type MESSAGE_TYPE_AP_REQUEST while an INITIATOR_META_DATA message
 contains the type MESSAGE_TYPE_INITIATOR_META_DATA.

7.5. Receipt of the Initial Initiator Token and Generation of the
 Initial Acceptor Response

 Upon receipt of the NEGO_MESSAGE from the initiator, the acceptor
 verifies the NEGO_MESSAGE to make sure it is well-formed. The
 acceptor extracts the ConversationID from the NEGO_MESSAGE and stores
 it as the ConversationID for the context handle. The acceptor then
 computes the list of authentication schemes that are mutually
 supported by examining the set of security mechanisms proposed by the
 initiator and the meta-data tokens from the initiator. The meta-data
 tokens are passed to the security mechanism via
 GSS_Exchange_meta_data() as defined in Section 8.2. On
 GSS_Exchange_meta_data call failure, NEGOEX SHOULD remove the
 security mechanism from the set of authentication schemes to be
 negotiated.

 The acceptor MUST examine the NEGOEX extensions in the NEGO_MESSAGE.
 If there is an unknown critical extension, the authentication must be
 rejected.

 The acceptor's output token is a NEGO_MESSAGE but with the the
 Header.MessageType set to MESSAGE_TYPE_ACCEPTOR_NEGO followed by zero
 or more EXCHANGE_MESSAGE containing meta-data tokens. The
 AuthSchemes field contains the list of mutually supported security
 mechanism in decreasing preference order of the acceptor. The
 acceptor does not need to honor the preference order proposed by the
 initiator when computing its preference list.

 As with the initiator, the acceptor can OPTIONALLY include a meta-
 data token, one for each available security mechanism.

 A meta-data token is obtained by NEGOEX for a security mechanism
 using GSS_Query_meta_data() extension as defined in Section 8.1. If
 a non-empty meta-data token is returned, then the meta-data token is
 encapsulated in an EXCHANGE message with the message type
 MESSAGE_TYPE_ACCEPTOR_META_DATA. For a given security mechanism if a
 meta-token is received from the initiator, GSS_Query_meta_data() MUST
 be invoked on the acceptor side for that security mechanism, and the
 output meta-data token, if present, MUST be included in the NEGOEX
 reply. On GSS_Query_meta_data call failure, NEGOEX SHOULD remove the
 security mechanism from the set of authentication schemes to be
 negotiated.

Short, et al. Expires July 7, 2011 [Page 15]

Internet-Draft NEGOEX January 2011

7.6. Receipt of the Acceptor Initial Response and Completion of
 Authentication after the Negotiation Phrase

 Upon receipt of the initial response token from the acceptor, the
 application calls GSS_Init_sec_context with the response token. The
 initiator verifies the NEGOEX message received to make sure it is
 well-formed. The initiator ensures the correct context handle by
 verifying that the ConversationID of the context handle matches the
 conversation ID in the NEGOEX message received. The initiator then
 computes the list of authentication schemes that are mutually
 supported by examining the set of security mechanisms returned by the
 acceptor and the meta-data tokens from the acceptor The meta-data
 tokens are passed to the security mechanism via
 GSS_Exchange_meta_data() as defined in Section 8.2. On
 GSS_Exchange_meta_data call failure, NEGOEX SHOULD remove the
 security mechanism from the set of authentication schemes to be
 negotiated.

 The initiator MUST examine the NEGOEX extensions in the NEGO_MESSAGE.
 If there is an unknown critical extension, the authentication must be
 rejected.

 After the initial exchange of NEGO_MESSAGE messages, the initiator
 MUST choose the negotiated security mechanism. The negotiated
 security mechanism cannot be changed once it is selected.

 The initiator and the acceptor can then proceed to exchange handshake
 messages by returning GSS_S_CONTINUE_NEEDED to the calling
 application as determined by the negotiated security mechanism until
 its authentication context is established. The context tokens of the
 negotiated security mechanism are encapsulated in an
 EXCHANGE_MESSAGE. If the context token is from the initiator, the
 EXCHANGE_MESSAGE message has the message type
 MESSAGE_TYPE_AP_REQUEST; otherwise, the message type is
 MESSAGE_TYPE_CHALLENGE.

7.7. Finalizing Negotiation

 After the security mechanism has been selected, the initiator and
 acceptor can use GSS_Inquire_context to obtain the Negoex_Verify_key
 as defined in Section 8.4 to determine if there is a shared key for
 the VERIFY message. When there is a shared key established returned
 by GSS_Inquire_context as defined in Section 8.4, a VERIFY message is
 produced using the required checksum mechanism per RFC 3961 and
 included in the output token. The returned protocol key is used as
 the base key in the parlance of RFC3961 to sign all the NEGOEX
 messages in the negotiation context.

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Short, et al. Expires July 7, 2011 [Page 16]

Internet-Draft NEGOEX January 2011

 A VERIFY message is a VERIFY_MESSAGE structure. The AuthScheme field
 signifies from which security mechanism the protocol key was
 obtained. The checksum is computed based on RFC3961 and the key
 usage number is 23 for the message signed by the initiator, 25
 otherwise. The checksum is performed over all the previous NEGOEX
 messages in the context negotiation.

 struct
 {
 MESSAGE_HEADER Header; // MESSAGE_TYPE_VERIFY
 AUTH_SCHEME AuthScheme;
 CHECKSUM Checksum;
 // contains the checksum of all the previously
 // exchanged messages in the order they were sent.
 } VERIFY_MESSAGE;

 Note that the VERIFY_MESSAGE message can be included before the
 security context for the negotiated security mechanism is fully
 established.

8. Supporting GSS-API Extensions

 This section defined all the required GSS-API extensions required by
 NEGOEX which must be supported by security mechanisms usable with
 NEGOEX.

8.1. GSS_Query_meta_data

 Inputs:

 o input_context_handle CONTEXT HANDLE
 o targ_name INTERNAL NAME, optional
 o deleg_req_flag BOOLEAN,
 o mutual_req_flag BOOLEAN,
 o replay_det_req_flag BOOLEAN,
 o sequence_req_flag BOOLEAN,
 o conf_req_flag BOOLEAN,
 o integ_req_flag BOOLEAN,

 Outputs:

 o metadata OCTET STRING,
 o output_context_handle CONTEXT HANDLE

 Return major_status codes:

https://datatracker.ietf.org/doc/html/rfc3961

Short, et al. Expires July 7, 2011 [Page 17]

Internet-Draft NEGOEX January 2011

 o GSS_S_COMPLETE indicates that the context referenced by the
 input_context_handle argument is valid, and that the output
 metadata value represents the security mechanism's provided
 metadata. A security mechanism may return empty metadata.
 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided. Return values other than
 major_status and minor_status are undefined.
 o GSS_S_NO_CRED indicates that no metadata could be returned about
 the referenced credentials either because the input cred_handle
 was invalid or the caller lacks authorization to access the
 referenced credentials.
 o GSS_S_UNAVAILABLE indicates that the authentication security
 service does not support this operation.
 o GSS_S_FAILURE indicates that the requested operation failed for
 reasons unspecified at the GSS-API level. Return values other
 than major_status and minor_status are undefined.

 GSS_Query_meta_data is used to retrieve a security mechanism's
 metadata.

8.2. GSS_Exchange_meta_data

 Inputs:

 o input_context_handle CONTEXT HANDLE
 o cred_handle CREDENTIAL HANDLE, optional
 o targ_name INTERNAL NAME, optional
 o deleg_req_flag BOOLEAN,
 o mutual_req_flag BOOLEAN,
 o replay_det_req_flag BOOLEAN,
 o sequence_req_flag BOOLEAN,
 o conf_req_flag BOOLEAN,
 o integ_req_flag BOOLEAN,
 o metadata OCTET STRING,

 Outputs:

 o output_context_handle CONTEXT HANDLE

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the metadata was provided to the
 security mechanism.
 o GSS_S_NO_CONTEXT indicates that no valid context was recognized
 for the input context_handle provided. Return values other than
 major_status and minor_status are undefined.

Short, et al. Expires July 7, 2011 [Page 18]

Internet-Draft NEGOEX January 2011

 o GSS_S_NO_CRED indicates that the metadata passed requested
 credentials not available via this credential handle.
 o GSS_S_UNAVAILABLE indicates that the security mechanism does not
 support this operation.
 o GSS_S_FAILURE indicates that the requested operation failed for
 reasons unspecified at the GSS-API level. Return values other
 than major_status and minor_status are undefined.

 GSS_Exchange_meta_data is used to provide the metadata to each
 security mechanism.

8.3. GSS_Query_mechanism_info

 Inputs:

 o SecMechName STRING,

 Outputs:

 o AuthScheme AUTH_SCHEME

 Return major_status codes:

 o GSS_S_COMPLETE indicates that the authentication scheme value
 represents the security mechanism's AUTH_SCHEME.
 o GSS_S_FAILURE indicates that the security mechanism does not
 support NEGOEX. Return values other than major_status and
 minor_status are undefined.

 GSS_Query_mechanism_info returns a security mechanism's
 authentication scheme value.

8.4. GSS_Inquire_context

 The following output is added to GSS_Inquire_context as defined in
 [RFC2743].

 Outputs:

 o Negoex_Verify_key OCTET STRING

 This new output is the key to be used by NEGOEX for the VERIFY
 message.

9. Security Considerations

 Security mechanism SHOULD support providing VERIFY key material.

https://datatracker.ietf.org/doc/html/rfc2743

Short, et al. Expires July 7, 2011 [Page 19]

Internet-Draft NEGOEX January 2011

 This ensures that VERIFY messages are generated to make NEGOEX safe
 from downgrade attacks.

10. Acknowledgements

 TBD.

11. IANA Considerations

 There is no action required for IANA.

12. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

 [RFC4178] Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
 Simple and Protected Generic Security Service Application
 Program Interface (GSS-API) Negotiation Mechanism",

RFC 4178, October 2005.

Appendix A. Protocol Data Structures and Constant Values

 This section compiles all the protocol data structures and constant
 values.

 #define MESSAGE_SIGNATURE 0x535458454f47454ei64
 // "NEGOEXTS"

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4178

Short, et al. Expires July 7, 2011 [Page 20]

Internet-Draft NEGOEX January 2011

 struct
 {
 ULONG ByteArrayOffset; // each element contains a byte
 ULONG ByteArrayLength;
 } BYTE_VECTOR;

 struct
 {
 ULONG AuthSchemeArrayOffset;
 // each element contains an AUTH_SCHEME
 USHORT AuthSchemeCount;
 } AUTH_SCHEME_VECTOR;

 struct
 {
 ULONG ExtensionArrayOffset;
 // each element contains an EXTENSION
 USHORT ExtensionCount;
 } EXTENSION_VECTOR;

 struct
 {
 ULONG ExtensionType; // negative extensions are critical
 BYTE_VECTOR ExtensionValue;
 } EXTENSION;

 //
 // schemes defined for the checksum in the VERIFY message
 //

 #define CHECKSUM_SCHEME_RFC3961 1

 struct
 {
 ULONG cbHeaderLength;
 ULONG ChecksumScheme;
 ULONG ChecksumType; // in the case of RFC3961 scheme, this is
 // the RFC3961 checksum type
 BYTE_VECTOR ChecksumValue;
 } CHECKSUM;

 typedef GUID AUTH_SCHEME;
 typedef GUID CONVERSATION_ID;

 enum
 {
 MESSAGE_TYPE_INITIATOR_NEGO = 0,
 MESSAGE_TYPE_ACCEPTOR_NEGO,

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Short, et al. Expires July 7, 2011 [Page 21]

Internet-Draft NEGOEX January 2011

 MESSAGE_TYPE_INITIATOR_META_DATA,
 MESSAGE_TYPE_ACCEPTOR_META_DATA,
 MESSAGE_TYPE_CHALLENGE,
 // an exchange message from the acceptor
 MESSAGE_TYPE_AP_REQUEST,
 // an exchange message from the initiator
 MESSAGE_TYPE_VERIFY,
 MESSAGE_TYPE_ALERT,
 } MESSAGE_TYPE;

 struct
 {
 ULONG64 Signature; // contains MESSAGE_SIGNATURE
 MESSAGE_TYPE MessageType;
 ULONG SequenceNum; // the message sequence number of this,
 // conversation, starting with 0 and sequentially
 // incremented
 ULONG cbHeaderLength; // the header length of this message,
 // including the message specific header, excluding the
 // payload
 ULONG cbMessageLength; // the length of this message
 CONVERSATION_ID ConversationId;
 } MESSAGE_HEADER;

 struct
 {
 MESSAGE_HEADER Header;
 // MESSAGE_TYPE_INITIATOR_NEGO for the initiator,
 // MESSAGE_TYPE_ACCEPTOR_NEGO for the acceptor
 UCHAR Random[32];
 ULONG64 ProtocolVersion;
 // version of the protocol, this contains 0
 AUTH_SCHEME_VECTOR AuthSchemes;
 EXTENSION_VECTOR Extensions;
 } NEGO_MESSAGE;

 struct
 {
 MESSAGE_HEADER Header;
 // MESSAGE_TYPE_CHALLENGE for the acceptor,
 // or MESSAGE_TYPE_AP_REQUEST for the initiator
 // MESSAGE_TYPE_INITiATOR_META_DATA for
 // the initiator metadata
 // MESSAGE_TYPE_ACCEPTOR_META_DATA for
 // the acceptor metadata
 AUTH_SCHEME AuthScheme;
 BYTE_VECTOR Exchange;
 // contains the opaque handshake message for the

Short, et al. Expires July 7, 2011 [Page 22]

Internet-Draft NEGOEX January 2011

 // authentication scheme
 } EXCHANGE_MESSAGE;

 struct
 {
 MESSAGE_HEADER Header; // MESSAGE_TYPE_VERIFY
 AUTH_SCHEME AuthScheme;
 CHECKSUM Checksum;
 // contains the checksum of all the previously
 // exchanged messages in the order they were sent.
 } VERIFY_MESSAGE;

 struct
 {
 ULONG AlertType;
 BYTE_VECTOR AlertValue;
 } ALERT;

 //
 // alert types
 //

 #define ALERT_TYPE_PULSE 1

 //
 // reason codes for the heartbeat message
 //

 #define ALERT_VERIFY_NO_KEY 1

 struct
 {
 ULONG cbHeaderLength;
 ULONG Reason;
 } ALERT_PULSE;

 struct
 {
 ULONG AlertArrayOffset; // the element is an ALERT
 USHORT AlertCount; // contains the number of alerts
 } ALERT_VECTOR;

 struct
 {
 MESSAGE_HEADER Header;
 AUTH_SCHEME AuthScheme;
 ULONG ErrorCode; // an NTSTATUS code
 ALERT_VECTOR Alerts;

Short, et al. Expires July 7, 2011 [Page 23]

Internet-Draft NEGOEX January 2011

 } ALERT_MESSAGE;

Authors' Addresses

 Michiko Short
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: michikos@microsoft.com

 Larry Zhu
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: lzhu@microsoft.com

 Kevin Damour
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: kdamour@microsoft.com

 Dave McPherson
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: davemm@microsoft.com

Short, et al. Expires July 7, 2011 [Page 24]

