
TSVWG Y. Zhuang
Internet-Draft W. Sun
Intended status: Informational L. Yan
Expires: May 6, 2020 Huawei Technologies Co., Ltd.
 November 3, 2019

An Open Congestion Control Architecture for high performance fabrics
draft-zhuang-tsvwg-open-cc-architecture-00

Abstract

 This document describes an open congestion control architecture of
 high performance fabrics for the cloud operators and algorithm
 developers to deploy or develop new congestion control algorithms as
 well as make appropriate configurations for traffics on smart NICs in
 a more efficient and flexible way.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Zhuang, et al. Expires May 6, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft open congestion control November 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions . 3
3. Abbreviations . 3
4. Observations in storage network 4
5. Requirements of the open congestion control architecture . . 5
6. Open Congestion Control (OpenCC) Architecture Overview . . . 5
6.1. Congestion Control Platform and its user interfaces . . . 6
6.2. Congestion Control Engine (CCE) and its interfaces . . . 7

7. Interoperability Consideration 7
7.1. Negotiate the congestion control algorithm 7
7.2. Negotiate the congestion control parameters 8

8. Security Considerations 8
9. Manageability Consideration 8
10. IANA Considerations . 8
11. References . 8
11.1. Normative References 8
11.2. Informative References 8

Appendix A. Experiments . 9
 Authors' Addresses . 12

1. Introduction

 The datacenter networks (DCNs) nowadays is not only providing traffic
 transmission for tenants using TCP/IP network protocol stack, but
 also is required to provide RDMA traffic for High Performance
 Computing (HPC) and distributed storage accessing applications which
 requires low latency and high throughput.

 Thus, for datacenter application nowadays, the requirements of
 latency and throughput are more critical than the normal internet
 traffics, while network congestion and queuing caused by incast is
 the point that increases the traffic latency and affect the network
 throughput. With this, congestion control algorithms aimed for low
 latency and high bandwidth are proposed such as DCTCP[RFC8257], [BBR]
 for TCP, [DCQCN] for [RoCEv2].

 Besides, the CPU utilization on NICs is another point to improve the
 efficiency of traffic transmission for low latency applications. By
 offloading some protocol processing into smart NICs and bypassing
 CPU, applications can directly write to hardware which reduces the
 latency of traffic transmission. RDMA and RoCEv2 is currently a good
 example to show the benefit of bypassing kernel/CPU while TCP
 offloading is also under discussion in [NVMe-oF].

Zhuang, et al. Expires May 6, 2020 [Page 2]

Internet-Draft open congestion control November 2019

 In general, one hand, the cloud operators or application developers
 are working on new congestion control algorithms to fit requirements
 of applications like HPC, AI, storage in high performance fabrics;
 while on the other hand, smart NIC vendors are working on offloading
 functions of data plane and control plane onto hardware so as to
 reduce the process latency and improve the performance. In this
 case, it comes up with the question that how smart NICs can be
 optimized by offloading some functions onto the hardware while still
 being able to provide flexibility to customers to develop or change
 their congestion control algorithms and run their experiments more
 easily.

 That said, it might be good to have an open and modular-based design
 for congestion control on smart NICs to be able to develop and deploy
 new algorithms while take the advantage of hardware offloading in a
 generic way.

 This document is to describes an open congestion control architecture
 of high performance fabrics on smart NICs for the cloud operators and
 application developers to install or develop new congestion control
 algorithms as well as select appropriate controls in a more efficient
 and flexible way.

 It only focus on the basic functionality and discuss some common
 interfaces to network environments and also administrators and
 application developers while the detailed implementations should be
 vendors' specific designs and are out of scope.

 Discussions of new congestion control algorithms and improved active
 queue management (AQM) are also out of scope for this document.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Abbreviations

 IB - InfinitBand

 HPC - High Performance Computing

 ECN - Explicit Congestion Notification

 AI/HPC - Artificial Intelligence/High-Performance computing

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Zhuang, et al. Expires May 6, 2020 [Page 3]

Internet-Draft open congestion control November 2019

 RDMA - Remote Direct Memory Access

 NIC - Network Interface Card

 AQM - Active Queue Management

4. Observations in storage network

 Besides the benefits of easing the development of new congestion
 control algorithms by developers while taking advantage of hardware
 offloading improvement by NIC vendors, we notice that there are also
 benefits to choose proper algorithms for specific traffic patterns.

 As stated, there are several congestion control algorithms for low
 latency high throughput datacenter applications and the industry is
 still working on enhanced algorithms for requirements of new
 applications in the high performance area. Then, a question might be
 asked, how to select a proper congestion algorithm for the network,
 or whether a selected algorithm is efficient and sufficient to all
 traffics in the network.

 With this question, we use a simplified storage network as a use case
 for study. In this typical network, it mainly includes two traffic
 types: query and backup. Query is latency sensitive traffic while
 backup is high throughput traffic. We select several well-known
 congestion control algorithms (including Reno[RFC5681],
 Cubic[RFC8312], DCTCP[RFC8257], and BBR[BBR]) of TCP for this study.

 Two set of experiments were run to see the performance of these
 algorithms for different traffic types (i.e. traffic patterns). The
 first set is to study the performance when one algorithm is used for
 both traffic types; the second set is to run the two traffics with
 combinations of congestion algorithms. The detailed experiments and
 testing results can be found in appendix A.

 According to the result in first experiment set, BBR performs better
 than others when applied for both traffics; while in the second
 experiment set, some algorithm combinations show better performance
 than the same one for both, even compared with BBR.

 As such, we think there are benefits for different traffic patterns
 to select their own algorithm in the same network to achieve better
 performance. This can also be a reason from cloud operation
 perspective to have an open congestion control on the NIC to select
 proper algorithms for different traffic patterns.

Zhuang, et al. Expires May 6, 2020 [Page 4]

Internet-Draft open congestion control November 2019

5. Requirements of the open congestion control architecture

 According to the observation, the architecture design is suggested to
 follow some principles:

 o Can support developers to write their congestion control
 algorithms onto NICs while keep the benefit of congestion control
 offloading provided by NIC vendors.

 o Can support vendors to optimize the NIC performance by hardware
 offloading while allow users to deploy and select new congestion
 control algorithms.

 o Can support settings of congestion controls by administrators
 according to traffic patterns.

 o Can support settings from applications to provide some QoS
 requirements.

 o Be transport protocol independent, for example can support both
 TCP and RoCE.

6. Open Congestion Control (OpenCC) Architecture Overview

 The architecture shown in Figure 1 only states the congestion control
 related components while components for other functions are omitted.
 The OpenCC architecture includes three layers.

 The bottom layer is called the congestion control engine which
 provides common function blocks independent of transport protocols
 which can be implemented in hardware, while the middle layer is the
 congestion control platform in which different congestion control
 algorithms will be deployed here. These algorithms can be installed
 by NIC vendors or can be developed by algorithm developers. At last,
 the top layer provides all interfaces (i.e. APIs) to users, while
 the users can be administrators that can select proper algorithms and
 set proper parameters for their networks, applications that can
 indicate their QoS requirements which can be further mapped to some
 runtime settings of congestion control parameters, and the algorithm
 developers that can write their own algorithms.

Zhuang, et al. Expires May 6, 2020 [Page 5]

Internet-Draft open congestion control November 2019

 +------------+ +-----------------+ +---------------+
 User | Parameters | | Application(run | | CC developers |
 interfaces | | | time settings) | | |
 +-----+------+ +-------+---------+ +------+--------+
 | | |
 | | |
 | | |
 +-----------------------+---------+ |
 | Congestion control Algorithms | |
 | +-----------------+ <----------+
 CC platform | +-----------------+| |
 | +-----------------+|+ |
 | | CC algorithm#1 |+ |
 | +-----------------+ |
 +--+--------+---------+---------+-+
 | | | |
 | | | |
 +--+--+ +---+---+ +---+----+ +--+---+
 | | | | | | | | / NIC signals
 CC Engine |Token| |Packet | |Schedule| |CC | /--------------
 |mgr | |Process| | | |signal| \--------------
 +-----+ +-------+ +--------+ +------+ \ Network signals

 Figure 1. The architecture of open congestion control

6.1. Congestion Control Platform and its user interfaces

 The congestion control platform is a software environment to deploy
 and configure various congestion control algorithms. It contains
 three types of interfaces to the user layer for different usage.

 One is for administrators, which is to select proper congestion
 control algorithms for their network traffics and configure
 corresponding parameters of the selected algorithms.

 The second one can be an interface defined by NIC vendors or
 developers that provide some APIs for application developers to
 define their QoS requirements which will be further mapped to some
 runtime configuration of the controls.

 The last one is for algorithm developers to write their own algorithm
 in the system. It is suggested to have a defined common language to
 write algorithms which can be further compiled by vendor specific
 environments (in which some toolkits or library can be provided) to
 generate the platform dependent codes.

Zhuang, et al. Expires May 6, 2020 [Page 6]

Internet-Draft open congestion control November 2019

6.2. Congestion Control Engine (CCE) and its interfaces

 Components in the congestion control engine can be offloaded to the
 hardware to improve the performance. As such, it is suggested to
 provide some common and basic functions while the upper platform can
 provide more extensibility and more flexibility for more functions.

 The CCE includes basic modules of packet transmission and
 corresponding control. Several function blocks are illustrated here
 while the detailed implementation is out of scope for this document
 and left for NIC vendors. A token manager is used to distribute
 tokens to traffics while the schedule block is to schedule the
 transmission time for these traffics. The packet process block is to
 edit or process the packet before transmission. The congestion
 control signal block is to collect or monitor signals from both
 network and other NICs which will be fed to congestion control
 algorithms.

 As such, an interface to get congestion control signal in the
 congestion control should be defined to receive signals from both
 other NICs and networks for existing congestion control algorithms
 and new extensions. These information will be used as inputs of
 control algorithms to adjust the sending rate and operate the loss
 recovery et.al.

7. Interoperability Consideration

7.1. Negotiate the congestion control algorithm

 Since there will be several congestion control algorithms, the host
 might negotiate their supported congestion control capability during
 the session setup phase. However, it should use the existing way of
 congestion control as default to provide compatibility with legacy
 devices.

 Also, the network devices on the path should be capable to indicate
 their capability of any specific signals that the congestion control
 algorithm needs. The capability negotiation between NICs and
 Switches can be considered either some in-band ECN-like negotiations
 or out-of-band individual message negotiations.

 Alternatively, the system can also use a centralized administration
 platform to configure the algorithms on NICs and network devices.

Zhuang, et al. Expires May 6, 2020 [Page 7]

Internet-Draft open congestion control November 2019

7.2. Negotiate the congestion control parameters

 The parameters might be set by administrators to meet their traffic
 patterns and network environments or be set by mappings from
 application requirements. Hence, these parameters might be changed
 after the session is set up. As such, hosts should be able to
 negotiate their parameters when changed or be configured to keep
 consistent.

8. Security Considerations

 TBD

9. Manageability Consideration

 TBD

10. IANA Considerations

 No IANA action

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [BBR] Cardwell, N., Cheng, Y., and S. Yeganeh, "BBR Congestion
 Control", <https://tools.ietf.org/html/draft-cardwell-

iccrg-bbr-congestion-control-00>.

 [DCQCN] "Congestion Control for Large-Scale RDMA Deployments.",
 <https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/

p523.pdf>.

 [NVMe-oF] "NVMe over Fabrics", <https://nvmexpress.org/wp-
content/uploads/NVMe_Over_Fabrics.pdf>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p523.pdf
https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p523.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Over_Fabrics.pdf

Zhuang, et al. Expires May 6, 2020 [Page 8]

Internet-Draft open congestion control November 2019

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [RFC8312] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

RFC 8312, DOI 10.17487/RFC8312, February 2018,
 <https://www.rfc-editor.org/info/rfc8312>.

 [RoCEv2] "Infiniband Trade Association. InfiniBandTM Architecture
 Specification Volume 1 and Volume 2.",
 <https://cw.infinibandta.org/document/dl/7781>.

Appendix A. Experiments

 This section includes two sets of experiments to study the
 performance of congestion control algorithms in a simplified storage
 network. The first set is to study one algorithm applied for both
 query and backup traffics while the second set is to study the
 performance when different algorithms are used for query traffic and
 backup traffic. The metrics include throughput of backup traffic,
 average completion time of query traffic and 95% percentile query
 completion time.

 +----------+ +----------+
 | Database | | Database |
 | S3 S4 |
 +---+------+ . . +------+---+
 | . . |
 | .query. |
 | . . |
 backup | . . | backup
 | |
 | |
 | . . |
 +---V---V--+ +--V---V---+
 | Database <-----------> Database |
 | S1 | backup | S2 |
 +----------+ +----------+
 Figure 2. Simplified storage network topology

https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://datatracker.ietf.org/doc/html/rfc8312
https://www.rfc-editor.org/info/rfc8312
https://cw.infinibandta.org/document/dl/7781

Zhuang, et al. Expires May 6, 2020 [Page 9]

Internet-Draft open congestion control November 2019

 All experiments are a full implementation of congestion control
 algorithms on NICs, including Reno, Cubic, DCTCP and BBR. Our
 experiments includes 4 servers connecting to one switch. Each server
 with a 10Gbps NIC connected to a 10Gbps port on the switch. However,
 we limit all ports to 1Gbps to make congestion points. In the
 experiments, the database server S1 receives backup traffics from
 both S3 and S2 and one query traffic from S4. The server S2 gets
 back traffics from S1 and S4 and one query traffic from S3.In the
 experiments, three traffic flows are transmitted to S1 from one
 egress port on the switch, which might cause congestion.

 In the first experiment set, we test one algorithm for both traffics.
 The result is shown below in table 1.

 +----------------+-----------+-----------+-----------+-----------+
 | | reno | cubic | bbr | dctcp |
 +----------------+-----------+-----------+-----------+-----------+
 | Throughput MB/s| 64.92 | 65.97 | 75.25 | 70.06 |
 +----------------+-----------+-----------+-----------+-----------+
 | Avg. comp ms | 821.61 | 858.05 | 85.68 | 99.90 |
 +----------------+-----------+-----------+-----------+-----------+
 | 95% comp ms | 894.65 | 911.23 | 231.75 | 273.92 |
 +----------------+-----------+-----------+-----------+-----------+
 Table 1. Performance when use one cc for both query and backup traffics

 As we can see, the average completion time of BBR and DCTCP is 10
 times better than that of reno and cubic. BBR is the best to keep
 high throughput.

 In the second set, we test all the combinations of algorithms for the
 two traffics.

 1. Reno for query traffic

 reno@query
 +----------------+-----------+-----------+-----------+-----------+
 | @backup | cubic | bbr | dctcp | reno |
 +----------------+-----------+-----------+-----------+-----------+
 | Throughput MB/s| 66.00 | 76.19 | 64.00 | 64.92 |
 +----------------+-----------+-----------+-----------+-----------+
 | Avg. comp ms | 859.61 | 81.87 | 18.38 | 821.61 |
 +----------------+-----------+-----------+-----------+-----------+
 | 95% comp ms | 917.80 | 149.88 | 20.38 | 894.65 |
 +----------------+-----------+-----------+-----------+-----------+

 Table 2. reno @ query and cubic, bbr, dctcp @ backup

Zhuang, et al. Expires May 6, 2020 [Page 10]

Internet-Draft open congestion control November 2019

 It shows that given reno used for query traffic, bbr for backup
 traffic gets better throughput compared with other candidates.
 However, dctcp for backup traffic gets much better average completion
 time and 95% completion time, almost 6 times better than those of bbr
 even its throughput is less than bbr. The reason for this might be
 bbr does not consider lost packets and congestion levels which might
 cause much retransmission. In this test set, dctcp for backup
 traffic gets better performance.

 2. Cubic for query traffic

 cubic@query
 +----------------+-----------+-----------+-----------+-----------+
 | @backup | reno | bbr | dctcp | cubic |
 +----------------+-----------+-----------+-----------+-----------+
 | Throughput MB/s| 64.92 | 75.02 | 65.29 | 65.97 |
 +----------------+-----------+-----------+-----------+-----------+
 | Avg. comp ms | 819.23 | 83.50 | 18.42 | 858.05 |
 +----------------+-----------+-----------+-----------+-----------+
 | 95% comp ms | 902.66 | 170.96 | 20.99 | 911.23 |
 +----------------+-----------+-----------+-----------+-----------+
 Table 3. cubic @ query and reno, bbr, dctcp @ backup

 The results of cubic for query traffic are similar to those of reno.
 Even with less throughput, dctcp has almost 6 times better than bbr
 in average completion time and 95% completion time, and nearly 10
 times better than those of reno and cubic.

 3. Bbr for query traffic

 bbr@query
 +----------------+-----------+-----------+-----------+-----------+
 | @backup | reno | cubic | dctcp | bbr |
 +----------------+-----------+-----------+-----------+-----------+
 | Throughput MB/s| 64.28 | 66.61 | 65.29 | 75.25 |
 +----------------+-----------+-----------+-----------+-----------+
 | Avg. comp ms | 866.05 | 895.12 | 18.49 | 85.68 |
 +----------------+-----------+-----------+-----------+-----------+
 | 95% comp ms | 925.06 | 967.67 | 20.86 | 231.75 |
 +----------------+-----------+-----------+-----------+-----------+
 Table 4. bbr @ query and reno, cubi, dctcp @ backup

 The results still match those we get from reno and cubic. In the
 last two columns, dctcp for backup shows better performance even when
 we compared with bbr used for backup. It indicates that bbr @ query
 and dctcp @ backup is better than bbr @ query and backup.

 4. Dctcp for query traffic

Zhuang, et al. Expires May 6, 2020 [Page 11]

Internet-Draft open congestion control November 2019

 dctcp@query
 +----------------+-----------+-----------+-----------+-----------+
 | @backup | reno | cubic | bbr | dctcp |
 +----------------+-----------+-----------+-----------+-----------+
 | Throughput MB/s| 60.93 | 64.49 | 76.15 | 70.06 |
 +----------------+-----------+-----------+-----------+-----------+
 | Avg. comp ms | 2817,53 | 3077.20 | 816.45 | 99.90 |
 +----------------+-----------+-----------+-----------+-----------+
 | 95% comp ms | 3448.53 | 3639.94 | 2362.72 | 273.92 |
 +----------------+-----------+-----------+-----------+-----------+
 Table 5. dctcp @ query and reno, cubi, bbr @ backup

 The results for dctcp@query look worse than others in completion
 time, since we don't introduce L4S in the experiments which means
 dctcp will back off most of the time when congestion happens which
 makes the query traffic bares long latency. The best performance in
 this test set happens at dctcp@backup. In this setting, both
 traffics have use the same mechanism to back off their traffics.
 However, the number is still worse than when other algorithms are
 used for query and dctcp used for backup.

Authors' Addresses

 Yan Zhuang
 Huawei Technologies Co., Ltd.
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: zhuangyan.zhuang@huawei.com

 Wenhao Sun
 Huawei Technologies Co., Ltd.
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: sam.sunwenhao@huawei.com

 Long Yan
 Huawei Technologies Co., Ltd.
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: yanlong20@huawei.com

Zhuang, et al. Expires May 6, 2020 [Page 12]

