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Abstract

   This document defines ZRTP, a protocol for media path Diffie-Hellman
   exchange to agree on a session key and parameters for establishing
   Secure Real-time Transport Protocol (SRTP) sessions.  The ZRTP
   protocol is media path keying because it is multiplexed on the same
   port as RTP and does not require support in the signaling protocol.
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   ZRTP does not assume a Public Key Infrastructure (PKI) infrastructure
   or require the complexity of certificates in end devices.  For the
   media session, ZRTP provides confidentiality, protection against Man
   in the Middle (MITM) attacks, and, in cases where a secret is
   available from the signaling protocol, authentication.  ZRTP can
   utilize two Session Description Protocol (SDP) attributes to provide
   discovery and authentication through the signaling channel.  To
   provide best effort SRTP, ZRTP utilizes normal RTP/AVP profiles.
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1.  Introduction

   ZRTP is a key agreement protocol which performs Diffie-Hellman key
   exchange during call setup in the media path, and is transported over
   the same port as the Real-time Transport Protocol (RTP) [2] media
   stream which has been established using a signaling protocol such as
   Session Initiation Protocol (SIP) [17].  This generates a shared
   secret which is then used to generate keys and salt for a Secure RTP
   (SRTP) [3] session.  ZRTP borrows ideas from PGPfone [13].  A
   reference implementation of ZRTP is available as Zfone [14].

   The ZRTP protocol has some nice cryptographic features lacking in
   many other approaches to media session encryption.  Although it uses
   a public key algorithm, it does not rely on a public key
   infrastructure (PKI).  In fact, it does not use persistent public
   keys at all.  It uses ephemeral Diffie-Hellman (DH) with hash
   commitment, and allows the detection of Man in the Middle (MITM)
   attacks by displaying a short authentication string for the users to
   read and compare over the phone.  It has perfect forward secrecy,
   meaning the keys are destroyed at the end of the call, which
   precludes retroactively compromising the call by future disclosures
   of key material.  But even if the users are too lazy to bother with
   short authentication strings, we still get reasonable authentication
   against a MITM attack, based on a form of key continuity.  It does
   this by caching some key material to use in the next call, to be
   mixed in with the next call's DH shared secret, giving it key
   continuity properties analogous to SSH.  All this is done without
   reliance on a PKI, key certification, trust models, certificate
   authorities, or key management complexity that bedevils the email
   encryption world.  It also does not rely on SIP signaling for the key
   management, and in fact does not rely on any servers at all.  It
   performs its key agreements and key management in a purely peer-to-
   peer manner over the RTP packet stream.

   If the endpoints have a mechanism for knowing or retrieving the other
   endpoint's signature key, the short authentication string can be
   authenticated by exchanging a signature over the short authentication
   string.

   ZRTP can be used and discovered without being declared or indicated
   in the signaling path.  This provides the a best effort SRTP
   capability.  Also, this reduces the complexity of implementations and
   minimizes interdependency between the signaling and media layers.
   When ZRTP is indicated in the signaling and the SDP attribute
   extensions are used, ZRTP has additional useful properties.  When the
   signaling path has end-to-end integrity protection, the short
   authentication string can be compared automatically by the ZRTP
   endpoints.  By sending a unique ZRTP Identifier (ZID) in the
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   signaling, ZRTP provides a useful binding between the signaling and
   media paths.

   The following sections provide an overview of the ZRTP protocol,
   describe the key agreement algorithm and RTP message formats.

2.  Terminology

   In this document, the key words "MUST", "MUST NOT", "REQUIRED",
   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
   and "OPTIONAL" are to be interpreted as described in RFC 2119 and
   indicate requirement levels for compliant implementations [1].

3.  Media Security Requirements

   This section discuses how ZRTP meets all ten RTP security
   requirements discussed in Section 4 of [12].

   Since ZRTP is a media path key agreement approach, it meets the
   following requirements:

   R1: Forking and retargeting MUST work with all end-points being SRTP.

   R2: Forking and retargeting MUST allow establishing SRTP or RTP with
   a mixture of SRTP- and RTP-capable targets.

   R3: With forking, only the entity to which the call is finally
   established, MUST get hold of the media encryption keys.

   Note: R4 is not present in [12].

   R5: A solution SHOULD avoid clipping media before SDP answer without
   additional signalling.

   ZRTP's use of Diffie-Hellman key agreement allows it to meet these
   requirements:

   R6: A solution MUST provide protection against passive attacks.

   R7: A solution MUST be able to support Perfect Forward Secrecy.

   ZRTPs meet the following requirements with its handling of algorithm
   lists:

   R8: A solution MUST support algorithm negotiation without incurring
   per-algorithm computational expense.

https://datatracker.ietf.org/doc/html/rfc2119
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   R9: A solution MUST support multiple cipher suites without additional
   computational expense.

   The use of the a=zrtp-zid allows ZRTP to meet this requirement:

   R10: Endpoint identification when forking.

   The use of the optional signature block in the Confirm1 and Confirm2
   messages allows ZRTP to meet this requirement:

   R11: A solution MUST NOT require 3rd-party certs.  If two parties
   share an auth infrastructure they should be able to use it.

4.  Overview

   This section provides a description of how ZRTP works.  This
   description is non-normative in nature but is included to build
   understanding of the protocol.

   ZRTP is negotiated the same way a conventional RTP session is
   negotiated in an offer/answer exchange using the standard AVP/RTP
   profile.  The ZRTP protocol begins after two endpoints have utilized
   a signaling protocol such as SIP and are ready to send.  If ICE [24]
   is being used, ZRTP begins after ICE has completed its connectivity
   checks.

   ZRTP is multiplexed on the same ports as RTP.  It uses a unique
   header that makes it clearly differentiable from RTP or STUN.

   In environments in which sending ZRTP packets to non-ZRTP endpoints
   might cause problems and signaling path discovery is not an option,
   ZRTP endpoints can include the RTP header extension flag in normal
   RTP packets sent at the start of a session as a probe to discover if
   the other endpoint supports ZRTP.  If the flag is received from the
   other endpoint, ZRTP messages can then be exchanged.

   A ZRTP endpoint initiates the exchange by sending a ZRTP Hello
   message to the other endpoint.  The purpose of the Hello message is
   to confirm the endpoint supports the protocol and to see what
   algorithms the two ZRTP endpoints have in common.

   The Hello message contains the SRTP configuration options, and the
   ZID.  Each instance of ZRTP has a unique 96-bit random ZRTP ID or ZID
   that is generated once at installation time.  ZIDs are discovered
   during the Hello message exchange.  The received ZID is used to look
   up retained shared secrets from previous ZRTP sessions with the
   endpoint.
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   A response to a ZRTP Hello message is a ZRTP HelloACK message.  The
   HelloACK message simply acknowledges receipt of the Hello.  Since RTP
   commonly uses best effort UDP transport, ZRTP has retransmission
   timers in case of lost datagrams.  There are two timers, both with
   exponential backoff mechanisms.  One timer is used for
   retransmissions of Hello messages and the other is used for
   retransmissions of all other messages after receipt of a HelloACK.

4.1.  Key Agreement Modes

   After both endpoints exchange Hello and HelloACK messages, the key
   agreement exchange can begin with the ZRTP Commit message.  ZRTP
   supports a number of key agreement modes including both Diffie-
   Hellman and non-Diffie-Hellman modes as described in the following
   sections.

4.1.1.  Diffie-Hellman Mode

   An example ZRTP call flow is shown in Figure 1 below.  Note that the
   order of the Hello/HelloACK exchanges in F1/F2 and F3/F4 may be
   reversed.  That is, either Alice or Bob might send the first Hello
   message.  Also, an endpoint that receives a Hello message and wishes
   to immediately begin the ZRTP key agreement can omit the HelloACK and
   send the Commit instead.  In Figure 1, this would result in messages
   F2, F3, and F4 being omitted.  Note that the endpoint which sends the
   Commit message is considered the initiator of the ZRTP session and
   drives the key agreement exchange.  The Diffie-Hellman public values
   are exchanged in the DHPart1 and DHPart2 messages.  SRTP keys and
   salts are then calculated.



Zimmermann, et al.      Expires September 5, 2007               [Page 7]



Internet-Draft                    ZRTP                        March 2007

   Alice                                      Bob
     |                                         |
     | Alice and Bob establish a media session.|
     |    They initiate ZRTP on media ports    |
     |                                         |
     | Hello (version, options, Alice's ZID) F1|
     |---------------------------------------->|
     |                             HelloACK F2 |
     |<----------------------------------------|
     | Hello (version, options, Bob's ZID) F3  |
     |<----------------------------------------|
     | HelloACK F4                             |
     |---------------------------------------->|
     |                                         |
     |        Bob acts as the initiator        |
     |                                         |
     | Commit (Bob's ZID, options, hvi or nonce) F5
     |<----------------------------------------|
     | DHPart1 (pvr or nonce, shared secret hashes) F6
     |---------------------------------------->|
     | DHPart2 (pvi, shared secret hashes) F7  |
     |<----------------------------------------|
     |                                         |
     | Alice and Bob generate SRTP session key.|
     |                                         |
     |               SRTP begins               |
     |<=======================================>|
     |                                         |
     | Confirm1 (HMAC, CFB IV, D,S,V flags, sig) F8
     |---------------------------------------->|
     | Confirm2 (HMAC, CFB IV, D,S,V flags, sig) F9
     |<----------------------------------------|
     | Confirm2AK F10                          |
     |---------------------------------------->|

   Figure 1. Establishment of an SRTP session using ZRTP

   ZRTP authentication uses a Short Authentication String (SAS) which is
   ideally displayed for the human user.  Alternatively, the SAS can be
   transported over the signaling channel in the SDP and compared
   automatically, provided the signaling has end-to-end integrity
   protection.  Or, the SAS can be authenticated by exchanging a digital
   signature (sig) over the short authentication string in the Confirm1
   or Confirm2 messages.

   The ZRTP Confirm1 and Confirm2 messages are sent for a number of
   reasons.  First, they confirm that all the key agreement calculations
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   were successful and thus the encryption will work, and they enable
   automatic detection of a DH MITM attack from a reckless attacker who
   does not know the retained shared secret.  Digital signatures over
   the SAS can be exchanged to authenticate the exchange.  And, they
   enable ZRTP to transmit some parameters under cover of CFB
   encryption, such as the Disclosure flag (D), the Allow Clear flag
   (A), and most importantly the SAS Verified flag (V SAS Verified flag
   (V), shielding it from a passive observer who would like to know if
   the human users are in the habit of diligently verifying the SAS.

4.1.2.  Preshared Mode

   In the Preshared Mode, endpoints can skip the DH calculation if they
   have a shared secret from a previous ZRTP session.  Preshared mode is
   indicated in the Commit message and results in the same call flow as
   Figure 1.  The DHPart1 and DHPart2 messages are exchanged so that the
   set of shared secrets can be determined, but the pvr and pvi are
   omitted and no DH calculation is performed.  Instead nonces from the
   Commit and DHPart1 are exchanged and used along with the retained
   secrets to derive the key material.  This mode could be useful for
   slow processor endpoints so that a DH calculation does not need to be
   performed every session.  Or, this mode could be used to rapidly re-
   establish an earlier session that was recently torn down or
   interrupted without the need to perform another DH calculation.
   Since the cache is not affected during this mode, multiple Preshared
   mode exchanges can be processed at a time between two endpoints.

5.  Protocol Description

   ZRTP MUST be multiplexed on the same ports as the RTP media packets.

   To support best effort encryption [12], ZRTP uses normal RTP/AVP
   profile (AVP) media lines in the initial offer/answer exchange.  The
   ZRTP SDP attribute flag a=zrtp-id defined in Appendix A SHOULD be
   used in all offers and answers to indicate support for the ZRTP
   protocol.  In subsequent offer/answer exchanges after a successful
   ZRTP exchange has resulted in an SRTP session, the Secure RTP/AVP
   (SAVP) profile MAY be used.

5.1.  Discovery

   During the ZRTP discovery phase, a ZRTP endpoint discovers if the
   other endpoint supports ZRTP and the supported algorithms and
   options.  This information is transported in a Hello message.

   ZRTP endpoints SHOULD include the SDP attribute a=zrtp-zid in offers
   and answers, as defined in Appendix A.  ZRTP MAY use an RTP [2]
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   extension field as a flag to indicate support for the ZRTP protocol
   in RTP packets as described in Appendix D.

   The Hello message includes the ZRTP version, hash, cipher,
   authentication method and tag length, key agreement type, and Short
   Authentication String (SAS) algorithms that are supported.  In
   addition, each endpoint sends and discovers ZIDs.  The received ZID
   is used to retrieve previous retained shared secrets, rs1 and rs2.
   If the endpoint has other secrets, then they are also collected.
   Details on how to derive the signaling secret, sigs, and SRTP secret,
   srtps, are in Appendix A.

   Additional shared secrets can be defined and used as other_secret.
   If no secret of a given type is available, a random value is
   generated and used for that secret to ensure a mismatch in the hash
   comparisons in the DHPart1 and DHPart2 messages.  This prevents an
   eavesdropper from knowing how many shared secrets are available
   between the endpoints.

   A Hello message can be sent at any time, but is usually sent at the
   start of an RTP session to determine if the other endpoint supports
   ZRTP, and also if the SRTP implementations are compatible.  A Hello
   message is retransmitted using timer T1 and an exponential backoff
   mechanism detailed in Section 7 until the receipt of a HelloACK
   message or a Commit message.

5.2.  Commit Contention Resolution

   After receiving a Hello message from the other endpoint, a Commit
   message can be sent to begin the ZRTP key exchange.  The endpoint
   that sends the Commit is known as the initiator, while the receiver
   of the Commit is known as the responder.

   If both sides send Commit messages initiating a secure session at the
   same time, the Commit message with the lowest hvi value is discarded
   and the other side is the initiator.  This breaks the tie, allowing
   the protocol to proceed from this point with a clear definition of
   who is the initiator and who is the responder.

   Because the DH exchange affects the state of the retained shared
   secret cache, only one in-process ZRTP DH exchange may occur at a
   time between two ZRTP endpoints.  Otherwise, race conditions and
   cache integrity problems will result.  When multiple media streams
   are established in parallel between the same pair of ZRTP endpoints
   (determined by the ZIDs in the Hello Messages), only one can be
   processed.  Once that exchange completes with Confirm2 and Conf2ACK
   messages, another ZRTP DH exchange can begin.  In the event that
   Commit messages are sent by both ZRTP endpoints at the same time, but
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   are received in different media streams, the same resolution rules
   apply - the Commit message with the lowest hvi value is discarded and
   the other side is the initiator.  The media stream in which the
   Commit was sent will proceed through the ZRTP exchange while the
   media stream with the discarded Commit must wait for the completion
   of the other ZRTP exchange.

5.3.  Shared Secret Determination

   The following sections describe how ZRTP endpoints generate the set
   of shared secrets s1, s2, s3, s4, and s5 through the exchange of the
   DHPart1 and DHPart2 messages.

5.3.1.  Responder Behavior

   The responder calculates an HMAC keyed hash using the first retained
   shared secret, rs1, as the key on the string "Responder" which
   generates a retained secret ID, rs1IDr, which is truncated to 64
   bits.  HMACs are calculated in a similar way for additional shared
   secrets:

   rs1IDr = HMAC(rs1, "Responder")

   rs2IDr = HMAC(rs2, "Responder")

   sigsIDr = HMAC(sigs, "Responder")

   srtpsIDr = HMAC(srtps, "Responder")

   other_secretIDr = HMAC(other_secret, "Responder")

   The set of keyed hashes (HMACs) are included by the responder in the
   DHPart1 message.

   The HMACs of the possible shared secrets received in the DHPart2 can
   be compared against the HMACs of the local set of possible shared
   secrets.

   The expected HMAC values of the shared secrets are calculated (using
   the string "Initiator" instead of "Responder") as in Section 5.2.2
   and compared to the HMACs received in the DHPart2 message.  The
   secrets corresponding to matching HMACs are kept while the secrets
   corresponding to the non-matching ones are replaced with a null,
   which is assumed to have a zero length for the purposes of hashing
   them later.  The set of up to five actual shared secrets are then s1,
   s2, s3, s4, and s5 - the order is that chosen by the initiator.
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5.3.2.  Initiator Behavior

   The initiator calculates an HMAC keyed hash using the first retained
   shared secret, rs1, as the key on the string "Initiator" which
   generates a retained secret ID, rs1IDi, which is truncated to 64
   bits.  HMACs are calculated in a similar way for additional shared
   secrets:

   rs1IDi = HMAC(rs1, "Initiator")

   rs2IDi = HMAC(rs2, "Initiator")

   sigsIDi = HMAC(sigs, "Initiator")

   srtpsIDi = HMAC(srtps, "Initiator")

   other_secretIDi = HMAC(other_secret, "Initiator")

   These HMACs are included by the initiator in the DHPart2 message.

   The initiator then calculates the set of secret IDs that are expected
   to be received from the responder in the DHPart1 message by
   substituting the string "Responder" instead of "Initiator" as in

Section 5.3.1.

   The HMACs of the possible shared secrets received are compared
   against the HMACs of the local set of possible shared secrets.

   The secrets corresponding to matching HMACs are kept while the
   secrets corresponding to the non-matching ones are replaced with a
   null, which is assumed to have a zero length for the purposes of
   hashing them later.  The set of up to five actual shared secrets are
   then s1, s2, s3, s4, and s5 - the order is that chosen by the
   initiator.

   For example, consider two ZRTP endpoints who share secrets rs1, rs2,
   and a hash of a secret passphrase other_secret.  During the
   comparison, rs1ID, rs2ID, and other_secretID will match but sigsID
   and srtpsID will not.  As a result, s1 = rs1, s2 = rs2, s5 =
   other_secret, while s3 and s4 will be nulls.

5.4.  Diffie-Hellman Mode

   The purpose of the Diffie-Hellman exchange is for the two ZRTP
   endpoints to generate a new shared secret, s0.  In addition, the
   endpoints discover if they have any shared secrets in common.  If
   they do, this exchange allows them to discover how many and agree on
   an ordering for them: s1, s2, etc.
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5.4.1.  Hash Commitment

   From the intersection of the algorithms in the sent and received
   Hello messages, the initiator chooses a hash, cipher, auth tag, key
   agreement type, and SAS type to be used.

   A Diffie-Hellman mode is selected by setting the Key Agreement Type
   to DH4k or DH3k in the Commit.  In this mode, the key agreement
   begins with the initiator choosing a fresh random Diffie-Hellman (DH)
   secret value (svi) based on the chosen key agreement type value, and
   computing the public value.  (Note that to speed up processing, this
   computation can be done in advance.)  For guidance on generating
   random numbers, see the section on Random Number Generation.  The
   Diffie-Hellman secret value, svi, SHOULD be twice as long as the AES
   key length.  This means, if AES 128 is used, the DH secret value
   SHOULD be 256 bits long.  If AES 256 is used, the secret value SHOULD
   be 512 bits long.

   pvi = g^svi mod p

   where g and p are determined by the key agreement type value.  The
   hash commitment is performed by the initiator of the ZRTP exchange.
   The hash value of the initiator, hvi, includes a hash of the Diffie-
   Hellman public value, pvi, and the responder's Hello message:

   hvi=hash(pvi | responder's Hello message)

   Note that the Hello message includes the fields shown in Figure 3.

   The information from the responder's Hello message is included in the
   hash calculation to prevent a bid-down attack by modification of the
   responder's Hello message.

   The initiator sends hvi in the Commit message.

5.4.2.  Responder Behavior

   Upon receipt of the Commit message, the responder generates its own
   fresh random DH secret value, svr, and computes the public value.
   (Note that to speed up processing, this computation can be done in
   advance.)  For guidance on random number generation, see the section
   on Random Number Generation.  The Diffie-Hellman secret value, svr,
   SHOULD be twice as long as the AES key length.  This means, if AES
   128 is used, the DH secret value SHOULD be 256 bits long.  If AES 256
   is used, the secret value SHOULD be 512 bits long.

   pvr = g^svr mod p
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   Upon receipt of the DHPart2 message, the responder checks that the
   initiator's public DH value is not equal to 1 or p-1.  An attacker
   might inject a false DHPart2 packet with a value of 1 or p-1 for
   g^svi mod p, which would cause a disastrously weak final DH result to
   be computed.  If pvi is 1 or p-1, the user should be alerted of the
   attack and the protocol exchange must be terminated.  Otherwise, the
   responder computes its own value for the hash commitment using the
   public DH value (pvi) received in the DHPart2 packet and its Hello
   packet and compares the result with the hvi received in the Commit
   packet.  If they are different, a MITM attack is taking place and the
   user is alerted and the protocol exchange terminated.

   The responder then calculates the Diffie-Hellman result:

   DHResult = pvi^svr mod p

5.4.3.  Initiator Behavior

   Upon receipt of the DHPart1 message, the initiator checks that the
   responder's public DH value is not equal to 1 or p-1.  An attacker
   might inject a false DHPart1 packet with a value of 1 or p-1 for
   g^svr mod p, which would cause a disastrously weak final DH result to
   be computed.  If pvr is 1 or p-1, the user should be alerted of the
   attack and the protocol exchange must be terminated.

   The initiator then sends a DHPart2 message containing the initiator's
   public DH value and the set of calculated retained secret IDs as
   described in 5.2.2.

   The initiator calculates the same Diffie-Hellman result using:

   DHResult = pvr^svi mod p

5.4.4.  Shared Secret Calculation

   The responder and initiator calculate the Diffie-Hellman shared
   secret:

   DHSS = hash(DHResult)

   A hash of the received and sent ZRTP messages in the current ZRTP
   exchange in the following order is calculated:

   message_hash = hash (Hello of responder | Commit | DHPart1 | DHPart2
   )

   Note that only the ZRTP message (Figures 3, 5, 6, and 7), not the
   entire ZRTP packets are included in the hash.
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   The final shared secret, s0, is calculated by hashing the
   concatenation of the DHSS and the set of non-null shared secrets as
   described in 5.2 and the message hash.  As a result, the null secrets
   have no effect on the concatenation operation:

   s0 = hash(DHSS | s1 | s2 | s3 | s4 | s5 | message_hash)

   A new rs1 is calculated from s0:

   rs1 = HMAC (s0, "retained secret")

   After a successful exchange of Confirm1 and Confirm2 messaged
   described in Section 5.6, both sides now discard the rs2 value and
   store rs1 as rs2.

5.5.  Preshared Mode

   The Preshared key agreement mode can be used to generate SRTP keys
   and salts without a DH calculation, instead relying on one or more
   shared secrets from previous DH calculations between the endpoints.

   This key agreement mode is useful for efficiently adding another
   media stream to an existing secure session, such as adding video to a
   session that already has performed a DH key agreement for the audio
   stream.  It can also be used to rapidly re-establish a secure session
   between two parties who have recently started and ended a secure
   session that has already performed a DH key agreement, without
   performing another lengthy DH calculation, which may be desirable on
   slow processors in resource-limited environments.

5.5.1.  Commit

   This mode is selected by setting the Key Agreement Type to Preshared
   in the Commit message.  From the intersection of the algorithms in
   the sent and received Hello messages, the initiator chooses a hash,
   cipher, auth tag, key agreement type, and SAS type to be used.  In
   place of hvi in the Commit, a random number, nonce, 32 octets long is
   chosen.  Its value MUST be unique for all nonce values chosen for all
   ZRTP sessions between a pair of endpoints since the last DH exchange.
   If a Commit is received with a reused nonce value, the ZRTP exchange
   SHOULD be immediately terminated.  (We would say MUST be terminated,
   but we recognize it may be hard to determine if the nonce was never
   used before.  In practical terms, a random nonce of this length has
   effectively no chance of repeating by accident.)

   Note: Since nonces are used to calculate different SRTP key and salt
   pairs for each media session, a reuse of a nonce may result in the
   same key and salt being generated for multiple streams which would
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   introduce a major security weakness.

   The DHPart1 and DHPart2 messages are exchanged in this mode so that
   the shared secrets can be determined.  If it is determined that the
   endpoints have no shared DH secrets (i.e. either rs1 or rs2) the
   exchange MUST be terminated.  It is RECOMMENDED that Preshared mode
   only be used when the SAS Verified flag is set.

5.5.2.  Responder Behavior

   In in place of pvr in the DHPart1, a random number, noncer, 32 octets
   long is chosen.  Its value MUST be unique for all nonce values chosen
   for all ZRTP sessions between a pair of endpoints since the last DH
   exchange.  If a DHPart1 is received with a reused nonce value, the
   ZRTP exchange SHOULD be immediately terminated.  (We would say MUST
   be terminated, but we recognize it may be hard to determine if the
   nonce was never used before.  In practical terms, a random nonce of
   this length has effectively no chance of repeating by accident.)

5.5.3.  Initiator Behavior

   Since no DH calculation is performed, no pvr is sent in the DHPart2
   messages.

5.5.4.  Shared Secret Calculation

   A hash of the received and sent ZRTP messages in the current ZRTP
   exchange in the following order is calculated:

   message_hash = hash (Hello of responder | Commit | DHPart1 | DHPart2
   )

   Note that only the ZRTP message (Figures 3, 5, 6, and 7), not the
   entire ZRTP packets are included in the hash.

   The final shared secret, s0, is calculated by hashing the
   concatenation of the set of non-null shared secrets as described in
   5.3, and the message_hash.

   s0 = hash(s1 | s2 | s3 | s4 | s5 | message_hash )

   The noncei and noncer are implicitly included in the hash because
   they were included in the message hash.

   No new retained shared secret is derived, and the values of rs1 and
   rs2 are unchanged during this mode.
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5.6.  Key Generation

   The SRTP master key and master salt are then generated using the
   shared secret.  Separate SRTP keys and salts are used in each
   direction for each media stream.  Unless otherwise specified, ZRTP
   uses SRTP with no MKI, 32 bit authentication using HMAC-SHA1, AES-CM
   128 or 256 bit key length, 112 bit session salt key length, 2^48 key
   derivation rate, and SRTP prefix length 0.

   The ZRTP initiator encrypts and the ZRTP responder decrypts packets
   by using srtpkeyi and srtpsalti, which are generated by:

   srtpkeyi = HMAC(s0,"Initiator SRTP master key")

   srtpsalti = HMAC(s0,"Initiator SRTP master salt")

   The key and salt values are truncated to the length determined by the
   chosen SRTP algorithm.  The ZRTP responder encrypts and the ZRTP
   initiator decrypts packets by using srtpkeyr and srtpsaltr, which are
   generated by:

   srtpkeyr = HMAC(s0,"Responder SRTP master key")

   srtpsaltr = HMAC(s0,"Responder SRTP master salt")

   The HMAC keys are generated by:

   hmackeyi = HMAC(s0,"Initiator HMAC key")

   hmackeyr = HMAC(s0,"Responder HMAC key")

   Note that these HMAC keys are used only by ZRTP and not by SRTP.

   Note: Different HMAC keys are needed for the initiator and the
   responder to ensure that GoClear messages in each direction are
   unique and can not be cached by an attacker and reflected back to the
   endpoint.

   ZRTP keys are generated for the initiator and responder to use to
   encrypt the Confirm1 and Confirm2 messages.

   zrtpkeyi = HMAC(s0,"Initiator ZRTP key")

   srtpkeyr = HMAC(s0,"Responder ZRTP key")

   The Short Authentication String (SAS) value is calculated as the hash
   of the ZRTP messages exchanged during the session: Hello from the
   responder, Commit, DHPart1, and DHPart2:
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   sasvalue = last 64 bits of message_hash

   Note: The SAS calculated this way provides both protection against a
   bid down attack (modification of the Hello messages) or an active
   MiTM attack.  Either attack will result in each endpoint calculating
   different sasvalues.

5.7.  Confirmation

   The Confirm1 and Confirm2 messages contain the cache expiration
   interval for the newly generated retained shared secret.  The
   flagoctet is an 8 bit unsigned integer made up of the Disclosure flag
   (D), Allow clear flag (A), SAS Verified flag (V):

   flagoctet = V * 2^2 + A * 2^1 + D * 2^0

   Part of the Confirm1 and Confirm2 messages are encrypted using full-
   block Cipher Feedback Mode, and contain a 128-bit random CFB
   Initialization Vector (IV).  The Confirm1 and Confirm2 messages also
   contain an HMAC covering the encrypted part of the Confirm1 or
   Confirm2 message which includes a string of zeros, the signature
   length, flag octet, cache expiration interval, signature type block
   (if present) and signature block (if present).  For the responder

   hmac = HMAC(hmackeyr, encrypted part of Confirm1)

   For the initiator:

   hmac = HMAC(hmackeyi, encrypted part of Confirm2 message)

   The Conf2ACK message sent by the responder completes the exchange.

5.8.  Random Number Generation

   The ZRTP protocol uses random numbers for cryptographic key material,
   notably for the DH secret exponents and nonces, which must be freshly
   generated with each session.  Whenever a random number is needed, all
   of the following criteria must be satisfied:

   It MUST be derived from a physical entropy source, such as RF noise,
   acoustic noise, thermal noise, high resolution timings of
   environmental events, or other unpredictable physical sources of
   entropy.  Chapter 10 of [7] gives a detailed explanation of
   cryptographic grade random numbers and provides guidance for
   collecting suitable entropy.  The raw entropy must be distilled and
   processed through a deterministic random bit generator (DRBG).
   Examples of DRBGs may be found in NIST SP 800-90 [8], and in [7].



Zimmermann, et al.      Expires September 5, 2007              [Page 18]



Internet-Draft                    ZRTP                        March 2007

   It MUST be freshly generated, meaning that it must not have been used
   in a previous calculation.

   It MUST be greater than or equal to two, and less than or equal to
   2^L - 1, where L is the number of random bits required.

   It MUST be chosen with equal probability from the entire available
   number space, e.g., [2, 2^L - 1].

5.9.  ZID and Cache Operation

   Each instance of ZRTP has a unique 96-bit random ZRTP ID or ZID that
   is generated once at installation time.  It is used to look up
   retained shared secrets in a local cache.  A single global ZID for a
   single installation is the simplest way to implement ZIDs.  However,
   it is specifically not precluded for an implementation to use
   multiple ZIDs, up to the limit of a separate one per callee.  This
   then turns it into a long-lived "association ID" that does not apply
   to any other associations between a different pair of parties.  It is
   a goal of this protocol to permit both options to interoperate
   freely.

   Each time a new s0 is calculated, a new retained shared secret rs1 is
   generated and stored in the cache, indexed by the ZID of the other
   endpoint.  The previous retained shared secret is then renamed rs2
   and also stored in the cache.  For the new retained shared secret,
   each endpoint chooses a cache expiration value which is an unsigned
   32 bit integer of the number of seconds that this secret should be
   retained in the cache.  The time interval is relative to when the
   Confirm1 message is sent or received.

   The cache intervals are exchanged in the Confirm1 and Confirm2
   messages.  The actual cache interval used by both endpoints is the
   minimum of the values from the Confirm1 and Confirm2 messages.  A
   value of 0 seconds means the secret should not be cached and the
   current values of rs1 and rs2 MUST be maintained.  A value of
   0xFFFFFFFF means the secret should be cached indefinitely and is the
   recommended value.  If the ZRTP exchange results in no new shared
   secret generation (i.e.  Preshared Mode), the field in the Confirm1
   and Confirm2 is set to 0xFFFFFFFF and ignored, and the cache is not
   updated.

   The expiration interval need not be used to force the deletion of a
   shared secret from the cache when the interval has expired.  It just
   means the shared secret MAY be deleted from that cache at any point
   after the interval has expired without causing the other party to
   note it as an unexpected security event when the next key negotiation
   occurs between the same two parties.  This means there need not be



Zimmermann, et al.      Expires September 5, 2007              [Page 19]



Internet-Draft                    ZRTP                        March 2007

   perfectly synchronized deletion of expired secrets from the two
   caches, and makes it easy to avoid a race condition that might
   otherwise be caused by clock skew.

5.10.  Terminating an SRTP Session or ZRTP Exchange

   The GoClear message is used to switch from SRTP to RTP or to
   terminate an in-progress ZRTP exchange.  The GoClear message contains
   a reason string for human purposes and a clear_hmac field.

   When used to switch from SRTP to RTP, ZRTP uses an HMAC of the exact
   4 octet Reason String sent in the GoGlear Message computed with the
   hmackey derived from the shared secret.  When sent by the initiator:

   clear_hmac = HMAC(hmackeyi, Reason String)

   When sent by the responder:

   clear_hmac = HMAC(hmackeyr, Reason String)

   A GoClear message which does not receive a ClearACK response
   indicates that the GoClear has failed authentication (the clear_hmac
   does not validate) and that the session must stay in secure mode.

   When terminating an in-progress ZRTP exchange, no secret hmackey is
   available, so the clear_hmac field is set to all zeros and ignored.
   The reason string SHOULD indicate the reason for the failure (e.g.
   "No Session Key", "Nonce Reuse", "Invalid DH Value").  The
   termination of a ZRTP key agreement exchange results in no updates to
   the cached shared secrets and deletion of all crypto context.

   A ZRTP endpoint that receives a GoClear authenticates the message by
   checking the clear_hmac.  If the message authenticates, the endpoint
   stops sending SRTP packets, generates a ClearACK in response, and
   deletes the crypto context for the SRTP session.  Until confirmation
   from the user is received (e.g. clicking a button, pressing a DTMF
   key, etc.), the ZRTP endpoint MUST NOT resume sending RTP packets.
   The endpoint then renders the Reason String (after making sure only
   valid ASCII characters are present) and an indication that the media
   session has switched to clear mode to the user and waits for
   confirmation from the user.  To prevent pinholes from closing or NAT
   bindings from expiring, the ClearACK message MAY be resent at regular
   intervals (e.g. every 5 seconds) while waiting for confirmation from
   the user.  After confirmation of the notification is received from
   the user, the sending of RTP packets may begin.

   After sending a GoClear message, the ZRTP endpoint stops sending SRTP
   packets.  When a ClearACK is received, the ZRTP endpoint deletes the
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   crypto context for the SRTP session and may then resume sending RTP
   packets.  However, the ZRTP Session key is not deleted unless the
   signaling session is terminated as well.

   A ZRTP endpoint MAY choose to accept GoClear messages after the
   session has switched to SRTP, allowing the session to revert to RTP.
   This is indicated in the Confirm1 or Confirm2 messages by setting the
   Allow Clear flag (A).  If the other endpoint set the Allow Clear (A)
   flag in their confirm message, GoClear messages MAY be sent after the
   session has gone secure.

   Note: GoClear messages can always be sent prior to session going
   secure if the ZRTP exchange is terminated.

6.  ZRTP Messages

   All ZRTP messages use the message format defined in Figure 2.  All
   word lengths referenced in this specification are 32 bits or 4
   octets.  All integer fields are carried in network byte order, that
   is, most significant byte (octet) first, commonly known as big-
   endian.

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |0 0 0 1|Not Used (set to zero) |         Sequence Number       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  ZRTP Magic Cookie (0x5a525450)               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Source Identifier                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |           ZRTP Message (length depends on Message Type)       |
      |                            . . .                              |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          CRC (1 word)                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 2. ZRTP Packet Format

   The Sequence Number is a count that is incremented for each ZRTP
   packet sent.  The count is initialized to a random value.  This is
   useful in estimating ZRTP packet loss and also detecting when ZRTP
   packets arrive out of sequence.
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   The ZRTP Magic Cookie is a 32 bit string that uniquely identifies a
   ZRTP packet, and has the value 0x5a525450.

   Source Identifier is the SSRC number of the RTP stream that this ZRTP
   packet relates to.  For cases of forking or forwarding, RTP and hence
   ZRTP may arrive at the same port from several different sources -
   each of these sources will have a different SSRC and may initiate an
   independent ZRTP protocol session.

   This format is clearly identifiable as non-RTP due to the first two
   bits being zero which looks like RTP version 0, which is not a valid
   RTP version number.  It is clearly distinguishable from STUN since
   the magic cookies are different.  The 12 not used bits are set to
   zero and MUST be ignored when received.

   The ZRTP Messages are defined in Figures 3 to 11 and are of variable
   length.

   The ZRTP protocol uses a 32 bit CRC checksum in each ZRTP packet as
   defined in RFC 3309 [6] to detect transmission errors.  ZRTP packets
   are typically transported by UDP, which carries its own built-in 16-
   bit checksum for integrity, but ZRTP does not rely on it.  This is
   because of the effect of an undetected transmission error in a ZRTP
   message.  For example, an undetected error in the DH exchange could
   appear to be an active man-in-the-middle attack.  The psychological
   effects of a false announcement of this by ZTRP clients can not be
   overstated.  The probability of such a false alarm hinges on a mere
   16-bit checksum that usually protects UDP packets, so more error
   detection is needed.  For these reasons, this belt-and-suspenders
   approach is used to minimize the chance of a transmission error
   affecting the ZRTP key agreement.

   The CRC is calculated across the entire ZRTP packet shown in Figure
   2, including the ZRTP Header and the ZRTP Message, but not including
   the CRC field.  If a ZRTP message fails the CRC check, it is silently
   discarded.

6.1.  ZRTP Message Formats

   ZRTP messages are designed to simplify endpoint parsing requirements
   and to reduce the opportunities for buffer overflow attacks (a good
   goal of any security extension should be to not introduce new attack
   vectors...)

   ZRTP uses 8 octets (2 words) blocks to encode Message Type. 4 octets
   (1 word) blocks are used to encode Hash Type, Cipher Type, and Key
   Agreement Type, and Authentication Tag. The values in the blocks are
   ASCII strings which are extended with spaces (0x20) to make them the

https://datatracker.ietf.org/doc/html/rfc3309
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   desired length.  Currently defined block values are listed in Tables
   1-6 below.

   Additional block values may be defined and used.

   ZRTP uses this ASCII encoding to simplify debugging and make it
   "ethereal friendly".

6.1.1.  Message Type Block

   Currently ten Message Type Blocks are defined - they represent the
   set of ZRTP message primitives.  ZRTP endpoints MUST support the
   Hello, HelloACK, Commit, DHPart1, DHPart2, Confirm1, Confirm2,
   Conf2ACK, GoClear and ClearACK block types.

    Message Type Block   |  Meaning
    ---------------------------------------------------
    "Hello   "           |  Hello Message
                         |  defined in Section 6.2
    ---------------------------------------------------
    "HelloACK"           |  HelloACK Message
                         |  defined in Section 6.3
    ---------------------------------------------------
    "Commit  "           |  Commit Message
                         |  defined in Section 6.4
    ---------------------------------------------------
    "DHPart1 "           |  DHPart1 Message
                         |  defined in Section 6.5
    ---------------------------------------------------
    "DHPart2 "           |  DHPart2 Message
                         |  defined in Section 6.6
    ---------------------------------------------------
    "Confirm1"           |  Confirm1 Message
                         |  defined in Section 6.7
    ---------------------------------------------------
    "Confirm2"           |  Confirm2 Message
                         |  defined in Section 6.8
    ---------------------------------------------------
    "Conf2ACK"           |  Conf2ACK Message
                         |  defined in Section 6.9
    ---------------------------------------------------
    "GoClear "           |  GoClear Message
                         |  defined in Section 6.10
    ---------------------------------------------------
    "ClearACK"           |  ClearACK Message
                         |  defined in Section 6.11
    ---------------------------------------------------
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    Table 1. Message Block Type Values

6.1.2.  Hash Type Block

   Only one Hash Type is currently defined, SHA256, and all ZRTP
   endpoints MUST support this hash.  Additional Hash Types can be
   registered and used.

    Hash Type Block      |  Meaning
    ---------------------------------------------------
    "S256"               |  SHA-256 Hash defined in [SHA-256]
    ---------------------------------------------------

    Table 2. Hash Block Type Values

6.1.3.  Cipher Type Block

   All ZRTP endpoints MUST support AES128 and MAY support AES256 [4]. or
   other Cipher Types.  Also, if AES 128 is used, DH3k should be used.
   If AES 256 is used, DH4k should be used.

   Note: DH4k may be deprecated in the future in favor of elliptic curve
   algorithms.

     Cipher Type Block    |  Meaning
    ---------------------------------------------------
    "AES1"                |  AES-CM with 128 bit keys
                          |  as defined in RFC 3711
    ---------------------------------------------------
    "AES2"                |  AES-CM with 256 bit keys
                          |  as defined in RFC 3711
    ---------------------------------------------------

    Table 3. Cipher Block Type Values

6.1.4.  Auth Tag Block

   All ZRTP endpoints MUST support HMAC-SHA1 authentication, 32 bit and
   80 bit length tags as defined in RFC 3711.

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
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    Auth Tag Block        |  Meaning
    ---------------------------------------------------
    "HS32"                |  HMAC-SHA1 32 bit authentication
                          |  tag as defined in RFC 3711
    ---------------------------------------------------
    "HS80"                |  HMAC-SHA1 80 bit authentication
                          |  tag as defined in RFC 3711
    ---------------------------------------------------

    Table 4. Auth Tag Values

6.1.5.  Key Agreement Type Block

   All ZRTP endpoints MUST support DH3k and MAY support DH4k.  ZRTP
   endpoints MUST use the DH generator function g=2.  The choice of AES
   key length is coupled to the choice of key agreement type.  If AES
   128 is chosen, DH3k SHOULD be used.  If AES 256 is chosen, DH4k
   SHOULD be used.  ZRTP also defines a non-DH mode, Preshared, which
   SHOULD be supported.  In Preshared mode, the SRTP key is derived from
   the set of shared secrets and a pair of nonces.

   Note: DH4k may be deprecated in the future in favor of elliptic curve
   algorithms.

     Key Agreement Type Block | Meaning
    ---------------------------------------------------
    "DH3k"                    |  DH mode with p=3072 bit prime
                              |  as defined in RFC 3526
    ---------------------------------------------------
    "DH4k"                    |  DH mode with p=4096 bit prime
                              |  as defined in RFC 3526
    ---------------------------------------------------
    "Prsh"                    |  Preshared Non-DH mode
                              |  uses shared secrets.
    ---------------------------------------------------

    Table 5. Key Agreement Block Type Values

6.1.6.  SAS Type Block

   All ZRTP endpoints MUST support the base32 and MAY support base256
   Short Authentication String scheme, and other SAS rendering schemes.
   The ZRTP SAS is described in Section 7.

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3526
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     SAS Type Block       |  Meaning
    ---------------------------------------------------
    "B32 "                |  Short Authentication String using
                          |  base32 encoding defined in Section 8.
    ---------------------------------------------------
    "B256"                |  Short Authentication String using
                          |  base256 encoding defined in Section 8.
    ---------------------------------------------------

    Table 6. SAS Block Type Values

   The SAS Type determines how the SAS is rendered to the user so that
   the user may compare it with his partner over the voice channel.
   This allows detection of a man-in-the-middle (MITM) attack.

6.1.7.  Signature Block

   The signature type block is a 4 octet (1 word) block used to
   represent the signature algorithm.  Suggested signature algorithms
   and key lengths are a future subject of standardization.

6.2.  Hello message

   The Hello message has the format shown in Figure 3.  The Hello ZRTP
   message begins with the preamble value 0x505a then a 16 bit length in
   32 bit words.  This length includes only the ZRTP message (including
   the preamble and the length) but not the ZRTP header or CRC.  Next is
   the Message Type Block and a 4 character string containing the
   version (ver) of ZRTP, currently "0.05".  Next is the Client
   Identifier string (cid) which is 3 words long and identifies the
   vendor and release of the ZRTP software.  The next parameter is the
   ZID, the 96 bit long unique identifier for the ZRTP endpoint.  The
   next four bits contains flag bits.  The only defined flag is the
   Passive bit (P), a Boolean normally set to False.  A ZRTP endpoint
   which is configured to never initiate secure sessions is regarded as
   passive, and would set the P bit to True.  The next 8 bits are
   unused.  They should be set to zero when sent and ignored on receipt.
   Next is a list of supported Hash Types, Cipher Types, Auth Tag, Key
   Agreement Types, and SAS Type.  The number of listed algorithms are
   listed for each type: hc=hash count, cc=cipher count, ac=auth tag
   count, kc=key agreement count, and sc=sas count.  The values for
   these algorithms are defined in Tables 2, 3, 4, 5, and 6.  A count of
   zero means that only the mandatory to implement algorithms are
   supported.  Mandatory algorithms MAY be included in the list.  The
   order of the list indicates the preferences of the endpoint.  If a
   mandatory algorithm is not included in the list, it is added to the
   end of the list for preference.
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   Note: Implementers are encouraged to keep these algorithm lists small
   - the list does not need to include every cipher and hash supported,
   just the ones the endpoint would prefer to use for this ZRTP
   exchange.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Message Type Block="Hello   " (2 words)            |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        version (1 word)                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                Client Identifier (3 words)                    |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                         ZID  (3 words)                        |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |0 0 0|P| unused (zeros)|  hc   |  cc   |  ac   |  kc   |  sc   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     hash (0 to 7 values)                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     cipher (0 to 7 values)                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       at (0 to 7 values)                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       keya (0 to 7 values)                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        sas (0 to 7 values)                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 3. Hello message format

6.3.  HelloACK message

   The HelloACK message is used to stop retransmissions of a Hello
   message.  A HelloACK is sent regardless if the version number in the
   Hello is supported or the algorithm list supported.  The receipt of a
   HelloACK stops retransmission of the Hello message.  The format is
   shown in Figure 4 below.  Note that a Commit message can be sent in
   place of a HelloACK by an initiator.
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        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|         length=3 words        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              Message Type Block="HelloACK" (2 words)          |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 4. HelloACK message format

6.4.  Commit message

   The Commit message is sent to initiate the key agreement process
   after receiving a Hello message.  The Commit message contains the
   initiator's ZID and a list of selected algorithms (hash, cipher, atl,
   keya, sas), the ZRTP mode, and hvi, a hash of the public DH value of
   the initiator and the algorithm list from the responder's Hello
   message.  If a non-DH mode is used, hvi is replaced by a random
   number, noncei.  The Commit Message format is shown in Figure 5.
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        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|        length=19 words        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              Message Type Block="Commit  " (2 words)          |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |                         ZID  (3 words)                        |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                           hash                                |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                          cipher                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                           at                                  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                          keya                                 |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         SAS Type                              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |                       hvi or noncei (8 words)                 |
       |                               . . .                           |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 5. Commit message format

6.5.  DHPart1 message

   The DHPart1 message begins the DH exchange.  The format is shown in
   Figure 5 below.  The DHPart1 message is sent if a valid Commit
   message is received.  The length of the pvr value depends on the Key
   Agreement Type chosen.  If DH4k is used, the pvr will be 128 words
   (512 octets) and the length of this message will be 141 words.  If
   DH3k is used, it is 96 words (384 octets) and the length of this
   message will be 109 words.  If the Key Agreement Type is Preshared,
   then pvr is replaced by an 8 word noncer from the responder and the
   length of this message will be 21 words.

   The next five parameters are HMACs of potential shared secrets used
   in generating the ZRTP secret.  The first two, rs1IDr and rs2IDr, are
   the HMACs of the responder's two retained shared secrets, truncated
   to 64 bits.  Next is sigsIDr, the HMAC of the responder's signaling
   secret, truncated to 64 bits.  Next is srtpsIDr, the HMAC of the
   responder's SRTP secret, truncated to 64 bits.  The last parameter is
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   the HMAC of an additional shared secret.  For example, if multiple
   SRTP secrets are available or some other secret is used, it can be
   used as the other_secret.  The Message format for the DHPart1 message
   is shown in Figure 6.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|   length=depends on KA Type   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              Message Type Block="DHPart1 " (2 words)          |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |       pvr (length depends on KA Type) or noncer (8 words)     |
       |                               . . .                           |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        rs1IDr (2 words)                       |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        rs2IDr (2 words)                       |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        sigsIDr (2 words)                      |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       srtpsIDr (2 words)                      |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    other_secretIDr (2 words)                  |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 6. DHPart1 message format

6.6.  DHPart2 message

   The DHPart2 message completes the DH exchange.  A DHPart2 message is
   sent if a valid DHPart1 message is received.  The length of the pvi
   value depends on the Key Agreement Type chosen.  If DH4k is used, the
   pvi will be 128 words (512 octets) and the length of this message
   will be 141 words.  If DH3k is used, it is 96 words (384 octets) and
   the length of this message will be 109 words.  If the Key Agreement
   Type is Preshared, then pvi is omitted (0 octets) and the length of
   this message will be 13 words.
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   The next five parameters are HMACs of potential shared secrets used
   in generating the ZRTP secret.  The first two, rs1IDi and rs2IDi, are
   the HMACs of the initiator's two retained shared secrets, truncated
   to 64 bits.  Next is sigsIDi, the HMAC of the initiator's signaling
   secret, truncated to 64 bits.  Next is srtpsIDi, the HMAC of the
   initiator's SRTP secret, truncated to 64 bits.  The last parameter is
   the HMAC of an additional shared secret.  For example, if multiple
   SRTP secrets are available or some other secret is used, it can be
   included.  The message format for the DHPart2 message is shown in
   Figure 7.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|   length=depends on KA Type   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              Message Type Block="DHPart2 " (2 words)          |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |                   pvi (length depends on KA Type)             |
       |                               . . .                           |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        rs1IDi (2 words)                       |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        rs2IDi (2 words)                       |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        sigsIDi (2 words)                      |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       srtpsIDi (2 words)                      |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    other_secretIDi (2 words)                  |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 7. DHPart2 message format

6.7.  Confirm1 and Confirm2 messages

   The Confirm1 message is sent in response to a valid DHPart2 message
   after the SRTP session key and parameters have been negotiated.  The
   Confirm2 message is sent in response to a Confirm1 message.  The
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   format is shown in Figure 8 below.  The message contains the Message
   Type Block "Confirm1" or "Confirm2".  Next is the HMAC, a keyed hash
   over encrypted part of the message (shown enclosed by "===" in Figure
   8.)  The next 16 octets contain the CFB Initialization Vector.  The
   rest of the message is encrypted using CFB and protected by the HMAC.

   The next 16 bits are not used.  They SHOULD be set to zero and MUST
   be ignored in received Confirm1 messages.

   The next 8 bits contain the signature length.  If no SAS signature
   (described in Section 8.3) is present, all bits are set to zero.  The
   signature length is in words and includes the signature type block.
   If the calculated signature octet count is not a multiple of 4, zeros
   are added to pad it out to a word boundary.  If no signature block is
   present, the overall length of the Confirm1 or Confirm2 Message will
   be set to 11 words.

   The next 8 bits are used for flags.  Undefined flags are set to zero
   and ignored.  Three flags are currently defined.  The Disclosure Flag
   (D) is a Boolean bit defined in Appendix B.  The Allow Clear flag (A)
   is a Boolean bit defined in Section 5.6.  The SAS Verified flag (V)
   is a Boolean bit defined in Section 8.  The cache expiration interval
   is an unsigned 32 bit integer of the number of seconds that the newly
   generated cached shared secret, rs1, should be stored.

   If the signature length (in words) is non-zero, a signature type
   block will be present along with a signature block.  Next is the
   signature block.

   CFB [11] mode is applied with a feedback length of 128-bits, a full
   cipher block, and the final block is truncated to match the exact
   length of the encrypted data.  The CFB Initialization Vector is a 128
   bit random nonce.  The block cipher algorithm and the key size is the
   same as what was negotiated for the media encryption.  CFB is used to
   encrypt the part of the Confirm1 message beginning after the CFB IV
   to the end of the message (the encrypted region is enclosed by
   "======" in Figure 8).

   The responder uses the zrtpkeyr to encrypt the Confirm1 message.  The
   initiator uses the zrtpkeyi to encrypt the Confirm2 message.
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        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|         length=variable       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |      Message Type Block="Confirm1" or "Confirm2" (2 words)    |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         hmac (2 words)                        |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |                CFB Initialization Vector (4 words)            |
       |                                                               |
       |                                                               |
       +===============================================================+
       | Unused (Set to zero, ignored) |  sig length   |0 0 0 0 0|V|A|D|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              cache expiration interval (1 word)               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |      optional signature type block (1 word if present)        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |           optional signature block (variable length)          |
       |                            . . .                              |
       |                                                               |
       |                                                               |
       +===============================================================+

     Figure 8. Confirm1 and Confirm2 message format

6.8.  Conf2ACK message

   The Conf2ACK message is sent in response to a valid Confirm2 message.
   The message format for the Conf2ACK is shown in Figure 9.  The
   receipt of a Conf2ACK stops retransmission of the Confirm2 message.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|         length=3 words        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              Message Type Block="Conf2ACK" (2 words)          |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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     Figure 9. Conf2ACK message format

6.9.  GoClear message

   The GoClear message is sent to terminate an in-process ZRTP key
   agreement exchange or optionally to switch from SRTP to RTP.  The
   format is shown in Figure 10 below.  The Reason String is a 16
   character string which contains the reason for the switch to clear.
   If the GoClear is sent due to a protocol error, the reason phrase is
   generated to describe the reason.  The Reason String can be logged or
   rendered for human consumption.  If the GoClear is sent due to a user
   interface selection, the reason is "User Request".

   If the GoClear is sent to switch from SRTP back to RTP, the The
   clear_hmac is used to authenticate the GoClear message so that bogus
   GoClear messages introduced by an attacker can be detected and
   discarded.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|        length=15 words        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              Message Type Block="GoClear " (2 words)          |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |                      Reason String  (4 words)                 |
       |                                                               |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |                       clear_hmac (8 words)                    |
       |                             . . .                             |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 10. GoClear message format

6.10.  ClearACK message

   The ClearACK message is sent to acknowledge receipt of a GoClear.  A
   ClearACK is only sent if the clear_hmac from the GoClear message is
   authenticated.  Otherwise, no response is returned.  The format is
   shown in Figure 11.
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        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|        length=3 words         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |              Message Type Block="ClearACK" (2 words)          |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 11. ClearACK message format

7.  Retransmissions

   ZRTP uses two retransmission timers T1 and T2.  T1 is used for
   retransmission of Hello messages, when the support of ZRTP by the
   other endpoint may not be known.  T2 is used in retransmissions of
   all the other ZRTP messages with the exception of GoClear.

   All message retransmissions MUST be identical to the initial message
   including nonces, public values, etc; otherwise, hashes of the
   message sequences may not agree.

   Practical experience has shown that RTP packet loss at the start of
   an RTP session can be extremely high.  Since the entire ZRTP message
   exchange occurs during this period, the defined retransmission scheme
   is defined to be aggressive.  Since ZRTP packets with the exception
   of the DHPart1 and DHPart2 messages are small, this should have
   minimal effect on overall bandwidth utilization of the media session.

   Hello ZRTP requests are retransmitted at an interval that starts at
   T1 seconds and doubles after every retransmission, capping at 200ms.
   A Hello message is retransmitted 20 times before giving up.  T1 has a
   recommended value of 50 ms.  Retransmission of a Hello ends upon
   receipt of a HelloACK or Commit message.

   Non-Hello ZRTP requests are retransmitted only by the initiator -
   that is, only Commit, DHPart2, and Confirm2 are retransmitted if the
   corresponding message from the responder, DHPart1, Confirm1, and
   Conf2ACK, are not received.  Non-Hello ZRTP messages are
   retransmitted at an interval that starts at T2 seconds and doubles
   after every retransmission, capping at 600ms.  Only the ZRTP
   initiator performs retransmissions.  Each message is retransmitted 10
   times before giving up and resuming a normal RTP session.  T2 has a
   default value of 150ms.  Each message has a response message that
   stops retransmissions, as shown in Table 7.  The high value of T2
   means that retransmissions will likely only occur with packet loss.
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   A GoClear message is retransmitted at 500ms intervals until a
   ClearACK message is received.

       Message      Acknowledgement Message
       -------      -----------------------
       Hello        HelloACK or Commit
       Commit       DHPart1 or Confirm1
       DHPart2      Confirm1
       Confirm1     Confirm2
       Confirm2     Conf2ACK
       GoClear      ClearACK

      Table 7. Retransmitted ZRTP Messages and Responses

8.  Short Authentication String

   This section will discuss the implementation of the Short
   Authentication String, or SAS in ZRTP.  The SAS can be verified by
   the human users reading the string aloud, exchanging and comparing
   over an integrity-protected signaling channel using the a=zrtp-sas
   attribute, or validating a digital signature exchanged in the
   Confirm1 or Confirm2 messages.

   The rendering of the SAS value to the user depends on the SAS Type
   agreed upon in the Commit message.  For the SAS Type of base32, the
   last 20 bits of the sasvalue are rendered as a form of base32
   encoding known as libbase32 [9].  The purpose of base32 is to
   represent arbitrary sequences of octets in a form that is as
   convenient as possible for human users to manipulate.  As a result,
   the choice of characters is slightly different from base32 as defined
   in RFC 3548.  The last 20 bits of the sasvalue results in four base32
   characters which are rendered to both ZRTP endpoints.  Other SAS
   Types may be defined to render the SAS value in other ways.

   The SAS SHOULD be rendered to the user for authentication.  In
   addition, the SAS SHOULD be sent in a subsequent offer/answer
   exchange (a re-INVITE in SIP) after the completion of ZRTP exchange
   using the ZRTP SAS SDP attributes defined in Appendix A.

   The SAS is not a secret value, but it must be compared to see if it
   matches at both ends of the communications channel.  The two users
   read it aloud to their partners to see if it matches.  This allows
   detection of a man-in-the-middle (MITM) attack.

https://datatracker.ietf.org/doc/html/rfc3548
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8.1.  SAS Verified Flag

   The SAS Verified flag (V) is set based on the user indicating that
   SAS comparison has been successfully performed.  The SAS Verified
   flag is exchanged securely in the Confirm1 and Confirm2 messages of
   the next session.  In other words, each party sends the SAS Verified
   flag from the previous session in the Confirm message of the current
   session.  It is perfectly reasonable to have a ZRTP endpoint that
   never sets the SAS Verified flag, because it would require adding
   complexity to the user interface to allow the user to set it.  The
   SAS Verified flag is not required to be set, but if it is available
   to the client software, it allows for the possibility that the client
   software could render to the user that the SAS verify procedure was
   carried out in a previous session.

   Regardless of whether there is a user interface element to allow the
   user to set the SAS Verified flag, it is worth caching a shared
   secret, because doing so reduces opportunities for an attacker in the
   next call.

   If at any time the users carry out the SAS comparison procedure, and
   it actually fails to match, then this means there is a very
   resourceful man in the middle.  If this is the first call, the MITM
   was there on the first call, which is impressive enough.  If it
   happens in a later call, it also means the MITM must also know the
   cached shared secret, because you could not have carried out any
   voice traffic at all unless the session key was correctly computed
   and is also known to the attacker.  This implies the MITM must have
   been present in all the previous sessions, since the initial
   establishment of the first shared secret.  This is indeed a
   resourceful attacker.  It also means that if at any time he ceases
   his participation as a MITM on one of your calls, the protocol will
   detect that the cached shared secret is no longer valid -- because it
   was really two different shared secrets all along, one of them
   between Alice and the attacker, and the other between the attacker
   and Bob. The continuity of the cached shared secrets make it possible
   for us to detect the MITM when he inserts himself into the ongoing
   relationship, as well as when he leaves.  Also, if the attacker tries
   to stay with a long lineage of calls, but fails to execute a DH MITM
   attack for even one missed call, he is permanently excluded.  He can
   no longer resynchronize with the chain of cached shared secrets.

   Some sort of user interface element (maybe a checkbox) is needed to
   allow the user to tell the software the SAS verify was successful,
   causing the software to set the SAS Verified flag (V), which
   (together with our cached shared secret) obviates the need to perform
   the SAS procedure in the next call.  An additional user interface
   element can be provided to let the user tell the software he detected
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   an actual SAS mismatch, which indicates a MITM attack.  The software
   can then take appropriate action, clearing the SAS Verified flag, and
   erase the cached shared secret from this session.  It is up to the
   implementer to decide if this added user interface complexity is
   warranted.

   If the SAS matches, it means there is no MITM, which also implies it
   is now safe to trust a cached shared secret for later calls.  If
   inattentive users don't bother to check the SAS, it means we don't
   know whether there is or is not a MITM, so even if we do establish a
   new cached shared secret, there is a risk that our potential attacker
   may have a subsequent opportunity to continue inserting himself in
   the call, until we finally get around to checking the SAS.  If the
   SAS matches, it means no attacker was present for any previous
   session since we started propagating cached shared secrets, because
   this session and all the previous sessions were also authenticated
   with a continuous lineage of shared secrets.

8.2.  Signing the SAS

   The SAS MAY be signed and the signature sent using the Confirm1 or
   Confirm2 messages.  The signature algorithm is also sent in the
   Confirm1 or Confirm2 message, along with the length of the signature.
   The key types and signature algorithms are for future study.  The
   signature is calculated over the 64 bit sasvalue.  The signatures
   exchanged in the encrypted Confirm1 or Confirm2 messages MAY be used
   to authenticate the ZRTP exchange.

9.  IANA Considerations

   This specification defines two new SDP [10] attributes in Appendix A.
   The IANA registration of ZRTP SDP attribute:

   Contact name:          Phil Zimmermann <prz@mit.edu>

   Attribute name:        "zrtp-zid".

   Type of attribute:     Session level or Media level.

   Subject to charset:    Not.

   Purpose of attribute:  The 'zrtp-zid' indicates that a UA supports the
                          ZRTP protocol and provides the ZID of the UA.

   Allowed attribute values:  Hex.

   IANA registration of the ZRTP SAS SDP attribute:
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   Contact name:          Phil Zimmermann <prz@mit.edu>

   Attribute name:        "zrtp-sas".

   Type of attribute:     Media level.

   Subject to charset:    Yes.

   Purpose of attribute:  The 'zrtp-sas' is used to convey the ZRTP SAS
                          string and value.  The string is identical to that
                          rendered to the users.  The value is the 64 bit SAS
                          encoded as hex.

   Allowed attribute values:  String and Hex.

10.  Security Considerations

   This document is all about securely keying SRTP sessions.  As such,
   security is discussed in every section.

   Most secure phones rely on a Diffie-Hellman exchange to agree on a
   common session key.  But since DH is susceptible to a man-in-the-
   middle (MITM) attack, it is common practice to provide a way to
   authenticate the DH exchange.  In some military systems, this is done
   by depending on digital signatures backed by a centrally-managed PKI.
   A decade of industry experience has shown that deploying centrally
   managed PKIs can be a painful and often futile experience.  PKIs are
   just too messy, and require too much activation energy to get them
   started.  Setting up a PKI requires somebody to run it, which is not
   practical for an equipment provider.  A service provider like a
   carrier might venture down this path, but even then you have to deal
   with cross-carrier authentication, certificate revocation lists, and
   other complexities.  It is much simpler to avoid PKIs altogether,
   especially when developing secure commercial products.  It is
   therefore more common for commercial secure phones in the PSTN world
   to augment the DH exchange with a Short Authentication String (SAS)
   combined with a hash commitment at the start of the key exchange, to
   shorten the length of SAS material that must be read aloud.  No PKI
   is required for this approach to authenticating the DH exchange.  The
   AT&T TSD 3600, Eric Blossom's COMSEC secure phones [15], PGPfone
   [13], and CryptoPhone [16] are all examples of products that took
   this simpler lightweight approach.

   The main problem with this approach is inattentive users who may not
   execute the voice authentication procedure, or unattended secure
   phone calls to answering machines that cannot execute it.
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   Additionally, some people worry about voice spoofing.  But it is a
   mistake to think this is simply an exercise in voice impersonation
   (perhaps this could be called the "Rich Little" attack).  Although
   there are digital signal processing techniques for changing a
   person's voice, that does not mean a man-in-the-middle attacker can
   safely break into a phone conversation and inject his own short
   authentication string (SAS) at just the right moment.  He doesn't
   know exactly when or in what manner the users will choose to read
   aloud the SAS, or in what context they will bring it up or say it, or
   even which of the two speakers will say it, or if indeed they both
   will say it.  In addition, some methods of rendering the SAS involve
   using a list of words such as the PGP word list, in a manner
   analogous to how pilots use the NATO phonetic alphabet to convey
   information.  This can make it even more complicated for the
   attacker, because these words can be worked into the conversation in
   unpredictable ways.  Remember that the attacker places a very high
   value on not being detected, and if he makes a mistake, he doesn't
   get to do it over.  Some people have raised the question that even if
   the attacker lacks voice impersonation capabilities, it may be unsafe
   for people who don't know each other's voices to depend on the SAS
   procedure.  This is not as much of a problem as it seems, because it
   isn't necessary that they recognize each other by their voice, it's
   only necessary that they detect that the voice used for the SAS
   procedure matches the voice in the rest of the phone conversation.

   A popular and field-proven approach is used by SSH (Secure Shell)
   [18], which Peter Gutmann likes to call the "baby duck" security
   model.  SSH establishes a relationship by exchanging public keys in
   the initial session, when we assume no attacker is present, and this
   makes it possible to authenticate all subsequent sessions.  A
   successful MITM attacker has to have been present in all sessions all
   the way back to the first one, which is assumed to be difficult for
   the attacker.  All this is accomplished without resorting to a
   centrally-managed PKI.

   We use an analogous baby duck security model to authenticate the DH
   exchange in ZRTP.  We don't need to exchange persistent public keys,
   we can simply cache a shared secret and re-use it to authenticate a
   long series of DH exchanges for secure phone calls over a long period
   of time.  If we read aloud just one SAS, and then cache a shared
   secret for later calls to use for authentication, no new voice
   authentication rituals need to be executed.  We just have to remember
   we did one already.

   If we ever lose this cached shared secret, it is no longer available
   for authentication of DH exchanges, so we would have to do a new SAS
   procedure and start over with a new cached shared secret.  Then we
   could go back to omitting the voice authentication on later calls.
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   A particularly compelling reason why this approach is attractive is
   that SAS is easiest to implement when a GUI or some sort of display
   is available, which raises the question of what to do when no display
   is available.  We envision some products that implement secure VoIP
   via a local network proxy, which lacks a display in many cases.  If
   we take an approach that greatly reduces the need for a SAS in each
   and every call, we can operate in GUI-less products with greater
   ease.

   It's a good idea to force your opponent to have to solve multiple
   problems in order to mount a successful attack.  Some examples of
   widely differing problems we might like to present him with are:
   Stealing a shared secret from one of the parties, being present on
   the very first session and every subsequent session to carry out an
   active MITM attack, and solving the discrete log problem.  We want to
   force the opponent to solve more than one of these problems to
   succeed.

   ZRTP can use different kinds of shared secrets.  Each type of shared
   secret is determined by a different method.  All of the shared
   secrets are hashed together to form a session key to encrypt the
   call.  An attacker must defeat all of the methods in order to
   determine the session key.

   First, there is the shared secret determined entirely by a Diffie-
   Hellman key agreement.  It changes with every call, based on random
   numbers.  An attacker may attempt a classic DH MITM attack on this
   secret, but we can protect against this by displaying and reading
   aloud a SAS, combined with adding a hash commitment at the beginning
   of the DH exchange.

   Second, there is an evolving shared secret, or ongoing shared secret
   that is automatically changed and refreshed and cached with every new
   session.  We will call this the cached shared secret, or sometimes
   the retained shared secret.  Each new image of this ongoing secret is
   a non-invertable function of its previous value and the new secret
   derived by the new DH agreement.  It's possible that no cached shared
   secret is available, because there were no previous sessions to
   inherit this value from, or because one side loses its cache.

   There are other approaches for key agreement for SRTP that compute a
   shared secret using information in the signaling.  For example, [20]
   describes how to carry a MIKEY (Multimedia Internet KEYing) [21]
   payload in SDP [10].  Or [19] describes directly carrying SRTP keying
   and configuration information in SDP.  ZRTP does not rely on the
   signaling to compute a shared secret, but If a client does produce a
   shared secret via the signaling, and makes it available to the ZRTP
   protocol, ZRTP can make use of this shared secret to augment the list
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   of shared secrets that will be hashed together to form a session key.
   This way, any security weaknesses that might compromise the shared
   secret contributed by the signaling will not harm the final resulting
   session key.

   There may also be a static shared secret that the two parties agree
   on out-of-band in advance.  A hashed passphrase would suffice.

   The shared secret provided by the signaling (if available), the
   shared secret computed by DH, and the cached shared secret are all
   hashed together to compute the session key for a call.  If the cached
   shared secret is not available, it is omitted from the hash
   computation.  If the signaling provides no shared secret, it is also
   omitted from the hash computation.

   No DH MITM attack can succeed if the ongoing shared secret is
   available to the two parties, but not to the attacker.  This is
   because the attacker cannot compute a common session key with either
   party without knowing the cached secret component, even if he
   correctly executes a classic DH MITM attack.  Mixing in the cached
   shared secret for the session key calculation allows it to act as an
   implicit authenticator to protect the DH exchange, without requiring
   additional explicit HMACs to be computed on the DH parameters.  If
   the cached shared secret is available, a MITM attack would be
   instantly detected by the failure to achieve a shared session key,
   resulting in undecryptable packets.  The protocol can easily detect
   this.  It would be more accurate to say that the MITM attack is not
   merely detected, but thwarted.

   When adding the complexity of additional shared secrets beyond the
   familiar DH key agreement, we must make sure the lack of availability
   of the cached shared secret cannot prevent a call from going through,
   and we must also prevent false alarms that claim an attack was
   detected.

   An small added benefit of using these cached shared secrets to mix in
   with the session keys is that it augments the entropy of the session
   key.  Even if limits on the size of the DH exchange produces a
   session key with less than 256 bits of real work factor, the added
   entropy from the cached shared secret can bring up all the subsequent
   session keys to the full 256-bit AES key strength, assuming no
   attacker was present in the first call.

   We could have authenticated the DH exchange the same way SSH does it,
   with digital signatures, caching public keys instead of shared
   secrets.  But this approach with caching shared secrets seemed a bit
   simpler, requiring less CPU time for low-powered mobile platforms
   because it avoids an added digital signature step.
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   The ZRTP SDP attributes convey information through the signaling that
   is already available in clear text through the media path.  For
   example, the ZRTP flag is equivalent to sending a ZRTP Hello message.
   The SAS is calculated from a hash of material from ZRTP messages sent
   over the media path.  As a result, none of the ZRTP SDP attributes
   require confidentiality from the signaling.

   The ZRTP SAS attributes can use the signaling channel as an out-of-
   band authentication mechanism.  This authentication is only useful if
   the signaling channel has end-to-end integrity protection.  Note that
   the SIP Identity header field [23] provides middle-to-end integrity
   protection across SDP message bodies which provides useful protection
   for ZRTP SAS attributes.
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12.  Appendix A - Signaling Interactions

   This section discusses how ZRTP, SIP, and SDP work together.

   The signaling secret (sigs) can be derived from SIP signaling and
   passed from the signaling protocol used to establish the RTP session
   to ZRTP.  Its the dialog identifier of a Secure SIP (sips) session: a
   string composed of Call-ID and the local and remote tags.  It can be
   considered a secret because it is always transported using TLS and is
   randomly generated for each SIP call.  The local and remote tags are
   sorted in ascending order in the hash.  From the definitions in RFC

3261 [17]:

   sigs = hash(call-id | tag1 | tag2)

   Note: the dialog identifier of a non-secure SIP session should not be
   considered a signaling secret as it has no confidentiality
   protection.

   Note: The signaling secret secret may not be regarded as having
   adequate entropy for cryptographic protection without augmentation by
   key material from other sources.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
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   For the SRTP secret (srtps), it is the SRTP master key and salt.
   This information may have been passed in the signaling using [20] or
   [19], for example:

   srtps = hash(SRTP master key | SRTP master salt)

   Note that ZRTP may be implemented without coupling with the SIP
   signaling.  For example, ZRTP can be implemented as a "bump in the
   wire" or as a "bump in the stack" in which RTP sent by the SIP UA is
   converted to ZRTP.  In these cases, the SIP UA will have no knowledge
   of ZRTP.  As a result, the signaling path discovery mechanisms
   introduced in this section should not be definitive - they are a
   hint.  Despite the absence of an indication of ZRTP support in an
   offer or answer, a ZRTP endpoint SHOULD still send Hello messages.

   ZRTP endpoints which have control over the signaling path include a
   ZRTP SDP attributes in their SDP offers and answers.  The ZRTP
   attribute, a=zrtp-id is a flag to indicate support for ZRTP.  There
   are a number of potential uses for this attribute.  It is useful when
   signaling elements would like to know when ZRTP may be utilized by
   endpoints.  It is also useful if endpoints support multiple methods
   of SRTP key management.  The ZRTP attribute can be used to ensure
   that these key management approaches work together instead of against
   each other.  For example, if only one endpoint supports ZRTP but both
   support another method to key SRTP, then the other method will be
   used instead.  When used in parallel, an SRTP secret carried in an
   a=keymgt [20] or a=crypto [19] attribute can be used as a shared
   secret for the srtp_secret.  The ZRTP attribute is also used to
   signal to an intermediary ZRTP device not to act as a ZRTP endpoint,
   as discussed in Appendix C.

   The a=zrtp-zid attribute can be included at a media level or at the
   session level.  It indicates support of ZRTP and provides the ZID
   encoded in hex of the endpoint.  When used at the media level, it
   indicates that ZRTP is supported on this media stream.  When used at
   the session level, it indicates that ZRTP is supported in all media
   streams in the session described by the offer or answer and that the
   same ZID will be used for both streams.

   In some scenarios, it is desirable for a signaling intermediary to be
   able to validate the SAS on behalf of the user.  This could be due to
   an endpoint which has a user interface unable to render the SAS.  Or,
   this could be a protection by an organization against lazy users who
   never check the SAS.  Using either the ZRTP SAS or ZRTP SASvalue
   attribute, the SAS check can be performed without requiring the human
   users to speak the SAS.  Note that this check can only be relied on
   if the signaling path has end-to-end integrity protection.
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   The ZRTP SAS attribute a=zrtp-sas is a Media level SDP attribute that
   can be used to carry the SAS string and value.  The string is
   identical to that rendered to the user while contents of the string
   passed depends on the negotiated SAS Type.  The value is the 64 bit
   SAS value encoded as hex.  Since the SAS is not known at the start of
   a session, the a=zrtp-sas attribute will never be present in the
   initial offer/answer exchange.  After the ZRTP exchange has
   completed, the SAS is known and can be exchanged over the signaling
   using a second offer/answer exchange (a re-INVITE in SIP terms).
   Note that the SAS is not a secret and as such does not need
   confidentiality protection when sent over the signaling path.

   The ABNF for the ZRTP attribute is as follows:

        zrtp-attribute        = "a=zrtp-zid:" zid-value

        zid-value             = 1*(HEXDIG)

   The ABNF for the ZRTP SAS attribute is as follows:

        zrtp-sas-attribute    = "a=zrtp-sas:" sas-string sas-value

        sas-string            = non-ws-string

        non-ws-string         = 1*(VCHAR/%x80-FF)
                               ;string of visible characters

        sas-value             = 1*(HEXDIG)

   Example of the ZRTP attribute in an initial SDP offer or answer used
   at the session level:

      v=0
      o=bob 2890844527 2890844527 IN IP4 client.biloxi.example.com
      s=
      c=IN IP4 client.biloxi.example.com
      a=zrtp-zid:4cc3ffe30efd02423cb054e5
      t=0 0
      m=audio 3456 RTP/AVP 97 33
      a=rtpmap:97 iLBC/8000
      a=rtpmap:33 no-op/8000

   Example of the ZRTP SAS and SASvalue attribute in a subsequent SDP
   offer or answer used at the media level.  Note that the a=zrtp-id
   attribute doesn't provide any additional information when used with
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   the SAS and SASvalue attributes but does not do any harm:

      v=0
      o=bob 2890844527 2890844528 IN IP4 client.biloxi.example.com
      s=
      c=IN IP4 client.biloxi.example.com
      a=zrtp-zid:4cc3ffe30efd02423cb054e5
      t=0 0
      m=audio 3456 RTP/AVP 97 33
      a=rtpmap:97 iLBC/8000
      a=rtpmap:33 no-op/8000
      a=zrtp-sas: opzf 5e017f3a6563876a

   Another example showing a second media stream being added to the
   session.  A second DH exchange is performed (instead of using the
   Preshared mode) resulting in a second set of ZRTP SAS and SASvalue
   attributes.

      v=0
      o=bob 2890844527 2890844528 IN IP4 client.biloxi.example.com
      s=
      c=IN IP4 client.biloxi.example.com
      a=zrtp-zid:4cc3ffe30efd02423cb054e5
      t=0 0
      m=audio 3456 RTP/AVP 97 33
      a=rtpmap:97 iLBC/8000
      a=rtpmap:33 no-op/8000
      a=zrtp-sas: opzf 5e017f3a6563876a
      m=video 51372 RTP/AVP 31 33
      a=rtpmap:31 H261/90000
      a=rtpmap:33 no-op/8000
      a=zrtp-sas: gwif e1027fa9f865221c

13.  Appendix B - The ZRTP Disclosure flag

   There are no back doors defined in the ZRTP protocol specification.
   The designers of ZRTP would like to discourage back doors in ZRTP-
   enabled products.  However, despite the lack of back doors in the
   actual ZRTP protocol, it must be recognized that a ZRTP implementer
   might still deliberately create a rogue ZRTP-enabled product that
   implements a back door outside the scope of the ZRTP protocol.  For
   example, they could create a product that discloses the SRTP session
   key generated using ZRTP out-of-band to a third party.  They may even
   have a legitimate business reason to do this for some customers.

   For example, some environments have a need to monitor or record
   calls, such as stock brokerage houses who want to discourage insider
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   trading, or special high security environments with special needs to
   monitor their own phone calls.  We've all experienced automated
   messages telling us that "This call may be monitored for quality
   assurance".  A ZRTP endpoint in such an environment might
   unilaterally disclose the session key to someone monitoring the call.
   ZRTP-enabled products that perform such out-of-band disclosures of
   the session key can undermine public confidence in the ZRTP protocol,
   unless we do everything we can in the protocol to alert the other
   user that this is happening.

   If one of the parties is using a product that is designed to disclose
   their session key, ZRTP requires them to confess this fact to the
   other party through a protocol message to the other party's ZRTP
   client, which can properly alert that user, perhaps by rendering it
   in a GUI.  The disclosing party does this by sending a Disclosure
   flag (D) in Confirm1 and Confirm2 messages as described in Sections
   6.7 and 6.8.

   Note that the intention here is to have the Disclosure flag identify
   products that are designed to disclose their session keys, not to
   identify which particular calls are compromised on a call-by-call
   basis.  This is an important legal distinction, because most
   government sanctioned wiretap regulations require a VoIP service
   provider to not reveal which particular calls are wiretapped.  But
   there is nothing illegal about revealing that a product is designed
   to be wiretap-friendly.  The ZRTP protocol mandates that such a
   product "out" itself.

   You might be using a ZRTP-enabled product with no back doors, but if
   your own GUI tells you the call is (mostly) secure, except that the
   other party is using a product that is designed in such a way that it
   may have disclosed the session key for monitoring purposes, you might
   ask him what brand of secure telephone he is using, and make a mental
   note not to purchase that brand yourself.  If we create a protocol
   environment that requires such back-doored phones to confess their
   nature, word will spread quickly, and the "unseen hand" of the free
   market will act.  The free market has effectively dealt with this in
   the past.

   Of course, a ZRTP implementer can lie about his product having a back
   door, but the ZRTP standard mandates that ZRTP-compliant products
   MUST adhere to the requirement that a back door be confessed by
   sending the Disclosure flag to the other party.

   There will be inevitable comparisons to Steve Bellovin's 2003 April
   fool's joke, when he submitted RFC 3514 [22] which defined the "Evil
   bit" in the IPV4 header, for packets with "evil intent".  But we
   submit that a similar idea can actually have some merit for securing

https://datatracker.ietf.org/doc/html/rfc3514
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   VoIP.  Sure, one can always imagine that some implementer will not be
   fazed by the rules and will lie, but they would have lied anyway even
   without the Disclosure flag.  There are good reasons to believe that
   it will improve the overall percentage of implementations that at
   least tell us if they put a back door in their products, and may even
   get some of them to decide not to put in a back door at all.  From a
   civic hygiene perspective, we are better off with having the
   Disclosure flag in the protocol.

   If an endpoint stores or logs SRTP keys or information that can be
   used to reconstruct or recover SRTP keys after they are no longer in
   use (i.e. the session is active), or otherwise discloses or passes
   SRTP keys or information that can be used to reconstruct or recover
   SRTP keys to another application or device, the Disclosure flag D
   MUST be set in the Confirm1 or Confirm2 message.

14.  Appendix C - Intermediary ZRTP Devices

   This section discusses the operation of a ZRTP endpoint which is
   actually an intermediary.  For example, consider a device which
   proxies both signaling and media between endpoints.  There are three
   possible ways in which such a device could support ZRTP.

   An intermediary device can act transparently to the ZRTP protocol.
   To do this, a device MUST pass RTP header extensions and payloads (to
   allow the ZRTP Flag) and non-RTP protocols multiplexed on the same
   port as RTP (to allow ZRTP and STUN).  This is the RECOMMENDED
   behavior for intermediaries as ZRTP and SRTP are best when done end-
   to-end.

   An intermediary device could implement the ZRTP protocol and act as a
   ZRTP endpoint on behalf of non-ZRTP endpoints behind the intermediary
   device.  The intermediary could determine on a call-by-call basis
   whether the endpoint behind it supports ZRTP based on the presence or
   absence of the ZRTP SDP attribute flag (a=zrtp-id).  For non-ZRTP
   endpoints, the intermediary device could act as the ZRTP endpoint
   using its own ZID and cache.  This approach MUST only be used when
   there is some other security method protecting the confidentiality of
   the media between the intermediary and the inside endpoint, such as
   IPSec or physical security.

   The third mode, which is NOT RECOMMENDED, is for the intermediary
   device to attempt to back-to-back the ZRTP protocol.  In this mode,
   the intermediary would attempt to act as a ZRTP endpoint towards both
   endpoints of the media session.  This approach MUST NOT be used as it
   will always result in a detected Man-in-the-Middle attack and will
   generate alarms on both endpoints and likely result in the immediate
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   termination of the session.  It cannot be stated strongly enough that
   there are no usable back-to-back uses for the ZRTP protocol.

   In cases where centralized media mixing is taking place, the SAS will
   not match when compared by the humans.  However, this situation is
   known in the SIP signaling by the presence of the isfocus feature tag
   [25].  As a result, when the isfocus feature tag is present, the SAS
   can only be verified by comparison in the signaling or by validating
   signatures in the Confirm.  For example, consider a audio conference
   call with three participants Alice, Bob, and Carol hosted on a
   conference bridge in Dallas.  There will be three ZRTP encrypted
   media streams between each participant and Dallas.  Each will have a
   different SAS.  Each participant will be able to validates their SAS
   with the conference bridge using a=zrtp-sas or Confirm messages
   containing signatures.

   SIP feature tags can also be used to detect if a session is
   established with an automaton such as an IVR, voicemail system, or
   speech recognition system.  The display of SAS strings to users
   should be disabled in these cases.

   It is possible that an intermediary device acting as a ZRTP endpoint
   might still receive ZRTP Hello and other messages from the inside
   endpoint.  This could occur if there is another inline ZRTP device
   which does not include the ZRTP SDP attribute flag.  If this occurs,
   the intermediary MUST NOT pass these ZRTP messages if it is acting as
   the ZRTP endpoint.

15.  Appendix D - RTP Header Extension Flag for ZRTP

   This specification defines a new RTP header extension used only for
   discovery of support for ZRTP.  No ZRTP data is transported in the
   extension.  When used, the X bit is set in the RTP header to indicate
   the presence of the RTP header extension.

Section 5.3.1 in RFC 3550 defines the format of an RTP Header
   extension.  The Header extension is appended to the RTP header.  The
   first 16 bits are an identifier for the header extension, and the
   following 16 bits are length of the extension header in 32 bit words.
   The ZRTP flag RTP header extension has the value of 0x505A and a
   length of 0.  The format of the header extension is as shown in
   Figure 12.

https://datatracker.ietf.org/doc/html/rfc3550#section-5.3.1
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        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 12. RTP Extension header format for ZRTP Flag

   ZRTP endpoints SHOULD include the ZRTP Flag in RTP packets sent at
   the start of a session.  For example, including the flag in the first
   1 second of RTP packets sent.  The inclusion of the flag MAY be ended
   if a ZRTP message (such as Hello) is received.
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