
RTPSEC P. Zimmermann
Internet-Draft Zfone Project
Intended status: Standards Track A. Johnston, Ed.
Expires: September 5, 2007 Avaya
 J. Callas
 PGP Corporation
 March 4, 2007

ZRTP: Media Path Key Agreement for Secure RTP
draft-zimmermann-avt-zrtp-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 5, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document defines ZRTP, a protocol for media path Diffie-Hellman
 exchange to agree on a session key and parameters for establishing
 Secure Real-time Transport Protocol (SRTP) sessions. The ZRTP
 protocol is media path keying because it is multiplexed on the same
 port as RTP and does not require support in the signaling protocol.

Zimmermann, et al. Expires September 5, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft ZRTP March 2007

 ZRTP does not assume a Public Key Infrastructure (PKI) infrastructure
 or require the complexity of certificates in end devices. For the
 media session, ZRTP provides confidentiality, protection against Man
 in the Middle (MITM) attacks, and, in cases where a secret is
 available from the signaling protocol, authentication. ZRTP can
 utilize two Session Description Protocol (SDP) attributes to provide
 discovery and authentication through the signaling channel. To
 provide best effort SRTP, ZRTP utilizes normal RTP/AVP profiles.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Media Security Requirements 5
4. Overview . 6
4.1. Key Agreement Modes 7
4.1.1. Diffie-Hellman Mode 7
4.1.2. Preshared Mode . 9

5. Protocol Description . 9
5.1. Discovery . 9
5.2. Commit Contention Resolution 10
5.3. Shared Secret Determination 11
5.3.1. Responder Behavior 11
5.3.2. Initiator Behavior 12

5.4. Diffie-Hellman Mode 12
5.4.1. Hash Commitment 13
5.4.2. Responder Behavior 13
5.4.3. Initiator Behavior 14
5.4.4. Shared Secret Calculation 14

5.5. Preshared Mode . 15
5.5.1. Commit . 15
5.5.2. Responder Behavior 16
5.5.3. Initiator Behavior 16
5.5.4. Shared Secret Calculation 16

5.6. Key Generation . 17
5.7. Confirmation . 18
5.8. Random Number Generation 18
5.9. ZID and Cache Operation 19
5.10. Terminating an SRTP Session or ZRTP Exchange 20

6. ZRTP Messages . 21
6.1. ZRTP Message Formats 22
6.1.1. Message Type Block 23
6.1.2. Hash Type Block 24
6.1.3. Cipher Type Block 24
6.1.4. Auth Tag Block . 24
6.1.5. Key Agreement Type Block 25
6.1.6. SAS Type Block . 25

Zimmermann, et al. Expires September 5, 2007 [Page 2]

Internet-Draft ZRTP March 2007

6.1.7. Signature Block 26
6.2. Hello message . 26
6.3. HelloACK message . 27
6.4. Commit message . 28
6.5. DHPart1 message . 29
6.6. DHPart2 message . 30
6.7. Confirm1 and Confirm2 messages 31
6.8. Conf2ACK message . 33
6.9. GoClear message . 34
6.10. ClearACK message . 34

7. Retransmissions . 35
8. Short Authentication String 36
8.1. SAS Verified Flag . 37
8.2. Signing the SAS . 38

9. IANA Considerations . 38
10. Security Considerations 39
11. Acknowledgments . 43
12. Appendix A - Signaling Interactions 43
13. Appendix B - The ZRTP Disclosure flag 46
14. Appendix C - Intermediary ZRTP Devices 48
15. Appendix D - RTP Header Extension Flag for ZRTP 49
16. References . 50
16.1. Normative References 50
16.2. Informative References 51

 Authors' Addresses . 52
 Intellectual Property and Copyright Statements 53

Zimmermann, et al. Expires September 5, 2007 [Page 3]

Internet-Draft ZRTP March 2007

1. Introduction

 ZRTP is a key agreement protocol which performs Diffie-Hellman key
 exchange during call setup in the media path, and is transported over
 the same port as the Real-time Transport Protocol (RTP) [2] media
 stream which has been established using a signaling protocol such as
 Session Initiation Protocol (SIP) [17]. This generates a shared
 secret which is then used to generate keys and salt for a Secure RTP
 (SRTP) [3] session. ZRTP borrows ideas from PGPfone [13]. A
 reference implementation of ZRTP is available as Zfone [14].

 The ZRTP protocol has some nice cryptographic features lacking in
 many other approaches to media session encryption. Although it uses
 a public key algorithm, it does not rely on a public key
 infrastructure (PKI). In fact, it does not use persistent public
 keys at all. It uses ephemeral Diffie-Hellman (DH) with hash
 commitment, and allows the detection of Man in the Middle (MITM)
 attacks by displaying a short authentication string for the users to
 read and compare over the phone. It has perfect forward secrecy,
 meaning the keys are destroyed at the end of the call, which
 precludes retroactively compromising the call by future disclosures
 of key material. But even if the users are too lazy to bother with
 short authentication strings, we still get reasonable authentication
 against a MITM attack, based on a form of key continuity. It does
 this by caching some key material to use in the next call, to be
 mixed in with the next call's DH shared secret, giving it key
 continuity properties analogous to SSH. All this is done without
 reliance on a PKI, key certification, trust models, certificate
 authorities, or key management complexity that bedevils the email
 encryption world. It also does not rely on SIP signaling for the key
 management, and in fact does not rely on any servers at all. It
 performs its key agreements and key management in a purely peer-to-
 peer manner over the RTP packet stream.

 If the endpoints have a mechanism for knowing or retrieving the other
 endpoint's signature key, the short authentication string can be
 authenticated by exchanging a signature over the short authentication
 string.

 ZRTP can be used and discovered without being declared or indicated
 in the signaling path. This provides the a best effort SRTP
 capability. Also, this reduces the complexity of implementations and
 minimizes interdependency between the signaling and media layers.
 When ZRTP is indicated in the signaling and the SDP attribute
 extensions are used, ZRTP has additional useful properties. When the
 signaling path has end-to-end integrity protection, the short
 authentication string can be compared automatically by the ZRTP
 endpoints. By sending a unique ZRTP Identifier (ZID) in the

Zimmermann, et al. Expires September 5, 2007 [Page 4]

Internet-Draft ZRTP March 2007

 signaling, ZRTP provides a useful binding between the signaling and
 media paths.

 The following sections provide an overview of the ZRTP protocol,
 describe the key agreement algorithm and RTP message formats.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 and
 indicate requirement levels for compliant implementations [1].

3. Media Security Requirements

 This section discuses how ZRTP meets all ten RTP security
 requirements discussed in Section 4 of [12].

 Since ZRTP is a media path key agreement approach, it meets the
 following requirements:

 R1: Forking and retargeting MUST work with all end-points being SRTP.

 R2: Forking and retargeting MUST allow establishing SRTP or RTP with
 a mixture of SRTP- and RTP-capable targets.

 R3: With forking, only the entity to which the call is finally
 established, MUST get hold of the media encryption keys.

 Note: R4 is not present in [12].

 R5: A solution SHOULD avoid clipping media before SDP answer without
 additional signalling.

 ZRTP's use of Diffie-Hellman key agreement allows it to meet these
 requirements:

 R6: A solution MUST provide protection against passive attacks.

 R7: A solution MUST be able to support Perfect Forward Secrecy.

 ZRTPs meet the following requirements with its handling of algorithm
 lists:

 R8: A solution MUST support algorithm negotiation without incurring
 per-algorithm computational expense.

https://datatracker.ietf.org/doc/html/rfc2119

Zimmermann, et al. Expires September 5, 2007 [Page 5]

Internet-Draft ZRTP March 2007

 R9: A solution MUST support multiple cipher suites without additional
 computational expense.

 The use of the a=zrtp-zid allows ZRTP to meet this requirement:

 R10: Endpoint identification when forking.

 The use of the optional signature block in the Confirm1 and Confirm2
 messages allows ZRTP to meet this requirement:

 R11: A solution MUST NOT require 3rd-party certs. If two parties
 share an auth infrastructure they should be able to use it.

4. Overview

 This section provides a description of how ZRTP works. This
 description is non-normative in nature but is included to build
 understanding of the protocol.

 ZRTP is negotiated the same way a conventional RTP session is
 negotiated in an offer/answer exchange using the standard AVP/RTP
 profile. The ZRTP protocol begins after two endpoints have utilized
 a signaling protocol such as SIP and are ready to send. If ICE [24]
 is being used, ZRTP begins after ICE has completed its connectivity
 checks.

 ZRTP is multiplexed on the same ports as RTP. It uses a unique
 header that makes it clearly differentiable from RTP or STUN.

 In environments in which sending ZRTP packets to non-ZRTP endpoints
 might cause problems and signaling path discovery is not an option,
 ZRTP endpoints can include the RTP header extension flag in normal
 RTP packets sent at the start of a session as a probe to discover if
 the other endpoint supports ZRTP. If the flag is received from the
 other endpoint, ZRTP messages can then be exchanged.

 A ZRTP endpoint initiates the exchange by sending a ZRTP Hello
 message to the other endpoint. The purpose of the Hello message is
 to confirm the endpoint supports the protocol and to see what
 algorithms the two ZRTP endpoints have in common.

 The Hello message contains the SRTP configuration options, and the
 ZID. Each instance of ZRTP has a unique 96-bit random ZRTP ID or ZID
 that is generated once at installation time. ZIDs are discovered
 during the Hello message exchange. The received ZID is used to look
 up retained shared secrets from previous ZRTP sessions with the
 endpoint.

Zimmermann, et al. Expires September 5, 2007 [Page 6]

Internet-Draft ZRTP March 2007

 A response to a ZRTP Hello message is a ZRTP HelloACK message. The
 HelloACK message simply acknowledges receipt of the Hello. Since RTP
 commonly uses best effort UDP transport, ZRTP has retransmission
 timers in case of lost datagrams. There are two timers, both with
 exponential backoff mechanisms. One timer is used for
 retransmissions of Hello messages and the other is used for
 retransmissions of all other messages after receipt of a HelloACK.

4.1. Key Agreement Modes

 After both endpoints exchange Hello and HelloACK messages, the key
 agreement exchange can begin with the ZRTP Commit message. ZRTP
 supports a number of key agreement modes including both Diffie-
 Hellman and non-Diffie-Hellman modes as described in the following
 sections.

4.1.1. Diffie-Hellman Mode

 An example ZRTP call flow is shown in Figure 1 below. Note that the
 order of the Hello/HelloACK exchanges in F1/F2 and F3/F4 may be
 reversed. That is, either Alice or Bob might send the first Hello
 message. Also, an endpoint that receives a Hello message and wishes
 to immediately begin the ZRTP key agreement can omit the HelloACK and
 send the Commit instead. In Figure 1, this would result in messages
 F2, F3, and F4 being omitted. Note that the endpoint which sends the
 Commit message is considered the initiator of the ZRTP session and
 drives the key agreement exchange. The Diffie-Hellman public values
 are exchanged in the DHPart1 and DHPart2 messages. SRTP keys and
 salts are then calculated.

Zimmermann, et al. Expires September 5, 2007 [Page 7]

Internet-Draft ZRTP March 2007

 Alice Bob
 | |
 | Alice and Bob establish a media session.|
 | They initiate ZRTP on media ports |
 | |
 | Hello (version, options, Alice's ZID) F1|
 |-->|
 | HelloACK F2 |
 |<--|
 | Hello (version, options, Bob's ZID) F3 |
 |<--|
 | HelloACK F4 |
 |-->|
 | |
 | Bob acts as the initiator |
 | |
 | Commit (Bob's ZID, options, hvi or nonce) F5
 |<--|
 | DHPart1 (pvr or nonce, shared secret hashes) F6
 |-->|
 | DHPart2 (pvi, shared secret hashes) F7 |
 |<--|
 | |
 | Alice and Bob generate SRTP session key.|
 | |
 | SRTP begins |
 |<=======================================>|
 | |
 | Confirm1 (HMAC, CFB IV, D,S,V flags, sig) F8
 |-->|
 | Confirm2 (HMAC, CFB IV, D,S,V flags, sig) F9
 |<--|
 | Confirm2AK F10 |
 |-->|

 Figure 1. Establishment of an SRTP session using ZRTP

 ZRTP authentication uses a Short Authentication String (SAS) which is
 ideally displayed for the human user. Alternatively, the SAS can be
 transported over the signaling channel in the SDP and compared
 automatically, provided the signaling has end-to-end integrity
 protection. Or, the SAS can be authenticated by exchanging a digital
 signature (sig) over the short authentication string in the Confirm1
 or Confirm2 messages.

 The ZRTP Confirm1 and Confirm2 messages are sent for a number of
 reasons. First, they confirm that all the key agreement calculations

Zimmermann, et al. Expires September 5, 2007 [Page 8]

Internet-Draft ZRTP March 2007

 were successful and thus the encryption will work, and they enable
 automatic detection of a DH MITM attack from a reckless attacker who
 does not know the retained shared secret. Digital signatures over
 the SAS can be exchanged to authenticate the exchange. And, they
 enable ZRTP to transmit some parameters under cover of CFB
 encryption, such as the Disclosure flag (D), the Allow Clear flag
 (A), and most importantly the SAS Verified flag (V SAS Verified flag
 (V), shielding it from a passive observer who would like to know if
 the human users are in the habit of diligently verifying the SAS.

4.1.2. Preshared Mode

 In the Preshared Mode, endpoints can skip the DH calculation if they
 have a shared secret from a previous ZRTP session. Preshared mode is
 indicated in the Commit message and results in the same call flow as
 Figure 1. The DHPart1 and DHPart2 messages are exchanged so that the
 set of shared secrets can be determined, but the pvr and pvi are
 omitted and no DH calculation is performed. Instead nonces from the
 Commit and DHPart1 are exchanged and used along with the retained
 secrets to derive the key material. This mode could be useful for
 slow processor endpoints so that a DH calculation does not need to be
 performed every session. Or, this mode could be used to rapidly re-
 establish an earlier session that was recently torn down or
 interrupted without the need to perform another DH calculation.
 Since the cache is not affected during this mode, multiple Preshared
 mode exchanges can be processed at a time between two endpoints.

5. Protocol Description

 ZRTP MUST be multiplexed on the same ports as the RTP media packets.

 To support best effort encryption [12], ZRTP uses normal RTP/AVP
 profile (AVP) media lines in the initial offer/answer exchange. The
 ZRTP SDP attribute flag a=zrtp-id defined in Appendix A SHOULD be
 used in all offers and answers to indicate support for the ZRTP
 protocol. In subsequent offer/answer exchanges after a successful
 ZRTP exchange has resulted in an SRTP session, the Secure RTP/AVP
 (SAVP) profile MAY be used.

5.1. Discovery

 During the ZRTP discovery phase, a ZRTP endpoint discovers if the
 other endpoint supports ZRTP and the supported algorithms and
 options. This information is transported in a Hello message.

 ZRTP endpoints SHOULD include the SDP attribute a=zrtp-zid in offers
 and answers, as defined in Appendix A. ZRTP MAY use an RTP [2]

Zimmermann, et al. Expires September 5, 2007 [Page 9]

Internet-Draft ZRTP March 2007

 extension field as a flag to indicate support for the ZRTP protocol
 in RTP packets as described in Appendix D.

 The Hello message includes the ZRTP version, hash, cipher,
 authentication method and tag length, key agreement type, and Short
 Authentication String (SAS) algorithms that are supported. In
 addition, each endpoint sends and discovers ZIDs. The received ZID
 is used to retrieve previous retained shared secrets, rs1 and rs2.
 If the endpoint has other secrets, then they are also collected.
 Details on how to derive the signaling secret, sigs, and SRTP secret,
 srtps, are in Appendix A.

 Additional shared secrets can be defined and used as other_secret.
 If no secret of a given type is available, a random value is
 generated and used for that secret to ensure a mismatch in the hash
 comparisons in the DHPart1 and DHPart2 messages. This prevents an
 eavesdropper from knowing how many shared secrets are available
 between the endpoints.

 A Hello message can be sent at any time, but is usually sent at the
 start of an RTP session to determine if the other endpoint supports
 ZRTP, and also if the SRTP implementations are compatible. A Hello
 message is retransmitted using timer T1 and an exponential backoff
 mechanism detailed in Section 7 until the receipt of a HelloACK
 message or a Commit message.

5.2. Commit Contention Resolution

 After receiving a Hello message from the other endpoint, a Commit
 message can be sent to begin the ZRTP key exchange. The endpoint
 that sends the Commit is known as the initiator, while the receiver
 of the Commit is known as the responder.

 If both sides send Commit messages initiating a secure session at the
 same time, the Commit message with the lowest hvi value is discarded
 and the other side is the initiator. This breaks the tie, allowing
 the protocol to proceed from this point with a clear definition of
 who is the initiator and who is the responder.

 Because the DH exchange affects the state of the retained shared
 secret cache, only one in-process ZRTP DH exchange may occur at a
 time between two ZRTP endpoints. Otherwise, race conditions and
 cache integrity problems will result. When multiple media streams
 are established in parallel between the same pair of ZRTP endpoints
 (determined by the ZIDs in the Hello Messages), only one can be
 processed. Once that exchange completes with Confirm2 and Conf2ACK
 messages, another ZRTP DH exchange can begin. In the event that
 Commit messages are sent by both ZRTP endpoints at the same time, but

Zimmermann, et al. Expires September 5, 2007 [Page 10]

Internet-Draft ZRTP March 2007

 are received in different media streams, the same resolution rules
 apply - the Commit message with the lowest hvi value is discarded and
 the other side is the initiator. The media stream in which the
 Commit was sent will proceed through the ZRTP exchange while the
 media stream with the discarded Commit must wait for the completion
 of the other ZRTP exchange.

5.3. Shared Secret Determination

 The following sections describe how ZRTP endpoints generate the set
 of shared secrets s1, s2, s3, s4, and s5 through the exchange of the
 DHPart1 and DHPart2 messages.

5.3.1. Responder Behavior

 The responder calculates an HMAC keyed hash using the first retained
 shared secret, rs1, as the key on the string "Responder" which
 generates a retained secret ID, rs1IDr, which is truncated to 64
 bits. HMACs are calculated in a similar way for additional shared
 secrets:

 rs1IDr = HMAC(rs1, "Responder")

 rs2IDr = HMAC(rs2, "Responder")

 sigsIDr = HMAC(sigs, "Responder")

 srtpsIDr = HMAC(srtps, "Responder")

 other_secretIDr = HMAC(other_secret, "Responder")

 The set of keyed hashes (HMACs) are included by the responder in the
 DHPart1 message.

 The HMACs of the possible shared secrets received in the DHPart2 can
 be compared against the HMACs of the local set of possible shared
 secrets.

 The expected HMAC values of the shared secrets are calculated (using
 the string "Initiator" instead of "Responder") as in Section 5.2.2
 and compared to the HMACs received in the DHPart2 message. The
 secrets corresponding to matching HMACs are kept while the secrets
 corresponding to the non-matching ones are replaced with a null,
 which is assumed to have a zero length for the purposes of hashing
 them later. The set of up to five actual shared secrets are then s1,
 s2, s3, s4, and s5 - the order is that chosen by the initiator.

Zimmermann, et al. Expires September 5, 2007 [Page 11]

Internet-Draft ZRTP March 2007

5.3.2. Initiator Behavior

 The initiator calculates an HMAC keyed hash using the first retained
 shared secret, rs1, as the key on the string "Initiator" which
 generates a retained secret ID, rs1IDi, which is truncated to 64
 bits. HMACs are calculated in a similar way for additional shared
 secrets:

 rs1IDi = HMAC(rs1, "Initiator")

 rs2IDi = HMAC(rs2, "Initiator")

 sigsIDi = HMAC(sigs, "Initiator")

 srtpsIDi = HMAC(srtps, "Initiator")

 other_secretIDi = HMAC(other_secret, "Initiator")

 These HMACs are included by the initiator in the DHPart2 message.

 The initiator then calculates the set of secret IDs that are expected
 to be received from the responder in the DHPart1 message by
 substituting the string "Responder" instead of "Initiator" as in

Section 5.3.1.

 The HMACs of the possible shared secrets received are compared
 against the HMACs of the local set of possible shared secrets.

 The secrets corresponding to matching HMACs are kept while the
 secrets corresponding to the non-matching ones are replaced with a
 null, which is assumed to have a zero length for the purposes of
 hashing them later. The set of up to five actual shared secrets are
 then s1, s2, s3, s4, and s5 - the order is that chosen by the
 initiator.

 For example, consider two ZRTP endpoints who share secrets rs1, rs2,
 and a hash of a secret passphrase other_secret. During the
 comparison, rs1ID, rs2ID, and other_secretID will match but sigsID
 and srtpsID will not. As a result, s1 = rs1, s2 = rs2, s5 =
 other_secret, while s3 and s4 will be nulls.

5.4. Diffie-Hellman Mode

 The purpose of the Diffie-Hellman exchange is for the two ZRTP
 endpoints to generate a new shared secret, s0. In addition, the
 endpoints discover if they have any shared secrets in common. If
 they do, this exchange allows them to discover how many and agree on
 an ordering for them: s1, s2, etc.

Zimmermann, et al. Expires September 5, 2007 [Page 12]

Internet-Draft ZRTP March 2007

5.4.1. Hash Commitment

 From the intersection of the algorithms in the sent and received
 Hello messages, the initiator chooses a hash, cipher, auth tag, key
 agreement type, and SAS type to be used.

 A Diffie-Hellman mode is selected by setting the Key Agreement Type
 to DH4k or DH3k in the Commit. In this mode, the key agreement
 begins with the initiator choosing a fresh random Diffie-Hellman (DH)
 secret value (svi) based on the chosen key agreement type value, and
 computing the public value. (Note that to speed up processing, this
 computation can be done in advance.) For guidance on generating
 random numbers, see the section on Random Number Generation. The
 Diffie-Hellman secret value, svi, SHOULD be twice as long as the AES
 key length. This means, if AES 128 is used, the DH secret value
 SHOULD be 256 bits long. If AES 256 is used, the secret value SHOULD
 be 512 bits long.

 pvi = g^svi mod p

 where g and p are determined by the key agreement type value. The
 hash commitment is performed by the initiator of the ZRTP exchange.
 The hash value of the initiator, hvi, includes a hash of the Diffie-
 Hellman public value, pvi, and the responder's Hello message:

 hvi=hash(pvi | responder's Hello message)

 Note that the Hello message includes the fields shown in Figure 3.

 The information from the responder's Hello message is included in the
 hash calculation to prevent a bid-down attack by modification of the
 responder's Hello message.

 The initiator sends hvi in the Commit message.

5.4.2. Responder Behavior

 Upon receipt of the Commit message, the responder generates its own
 fresh random DH secret value, svr, and computes the public value.
 (Note that to speed up processing, this computation can be done in
 advance.) For guidance on random number generation, see the section
 on Random Number Generation. The Diffie-Hellman secret value, svr,
 SHOULD be twice as long as the AES key length. This means, if AES
 128 is used, the DH secret value SHOULD be 256 bits long. If AES 256
 is used, the secret value SHOULD be 512 bits long.

 pvr = g^svr mod p

Zimmermann, et al. Expires September 5, 2007 [Page 13]

Internet-Draft ZRTP March 2007

 Upon receipt of the DHPart2 message, the responder checks that the
 initiator's public DH value is not equal to 1 or p-1. An attacker
 might inject a false DHPart2 packet with a value of 1 or p-1 for
 g^svi mod p, which would cause a disastrously weak final DH result to
 be computed. If pvi is 1 or p-1, the user should be alerted of the
 attack and the protocol exchange must be terminated. Otherwise, the
 responder computes its own value for the hash commitment using the
 public DH value (pvi) received in the DHPart2 packet and its Hello
 packet and compares the result with the hvi received in the Commit
 packet. If they are different, a MITM attack is taking place and the
 user is alerted and the protocol exchange terminated.

 The responder then calculates the Diffie-Hellman result:

 DHResult = pvi^svr mod p

5.4.3. Initiator Behavior

 Upon receipt of the DHPart1 message, the initiator checks that the
 responder's public DH value is not equal to 1 or p-1. An attacker
 might inject a false DHPart1 packet with a value of 1 or p-1 for
 g^svr mod p, which would cause a disastrously weak final DH result to
 be computed. If pvr is 1 or p-1, the user should be alerted of the
 attack and the protocol exchange must be terminated.

 The initiator then sends a DHPart2 message containing the initiator's
 public DH value and the set of calculated retained secret IDs as
 described in 5.2.2.

 The initiator calculates the same Diffie-Hellman result using:

 DHResult = pvr^svi mod p

5.4.4. Shared Secret Calculation

 The responder and initiator calculate the Diffie-Hellman shared
 secret:

 DHSS = hash(DHResult)

 A hash of the received and sent ZRTP messages in the current ZRTP
 exchange in the following order is calculated:

 message_hash = hash (Hello of responder | Commit | DHPart1 | DHPart2
)

 Note that only the ZRTP message (Figures 3, 5, 6, and 7), not the
 entire ZRTP packets are included in the hash.

Zimmermann, et al. Expires September 5, 2007 [Page 14]

Internet-Draft ZRTP March 2007

 The final shared secret, s0, is calculated by hashing the
 concatenation of the DHSS and the set of non-null shared secrets as
 described in 5.2 and the message hash. As a result, the null secrets
 have no effect on the concatenation operation:

 s0 = hash(DHSS | s1 | s2 | s3 | s4 | s5 | message_hash)

 A new rs1 is calculated from s0:

 rs1 = HMAC (s0, "retained secret")

 After a successful exchange of Confirm1 and Confirm2 messaged
 described in Section 5.6, both sides now discard the rs2 value and
 store rs1 as rs2.

5.5. Preshared Mode

 The Preshared key agreement mode can be used to generate SRTP keys
 and salts without a DH calculation, instead relying on one or more
 shared secrets from previous DH calculations between the endpoints.

 This key agreement mode is useful for efficiently adding another
 media stream to an existing secure session, such as adding video to a
 session that already has performed a DH key agreement for the audio
 stream. It can also be used to rapidly re-establish a secure session
 between two parties who have recently started and ended a secure
 session that has already performed a DH key agreement, without
 performing another lengthy DH calculation, which may be desirable on
 slow processors in resource-limited environments.

5.5.1. Commit

 This mode is selected by setting the Key Agreement Type to Preshared
 in the Commit message. From the intersection of the algorithms in
 the sent and received Hello messages, the initiator chooses a hash,
 cipher, auth tag, key agreement type, and SAS type to be used. In
 place of hvi in the Commit, a random number, nonce, 32 octets long is
 chosen. Its value MUST be unique for all nonce values chosen for all
 ZRTP sessions between a pair of endpoints since the last DH exchange.
 If a Commit is received with a reused nonce value, the ZRTP exchange
 SHOULD be immediately terminated. (We would say MUST be terminated,
 but we recognize it may be hard to determine if the nonce was never
 used before. In practical terms, a random nonce of this length has
 effectively no chance of repeating by accident.)

 Note: Since nonces are used to calculate different SRTP key and salt
 pairs for each media session, a reuse of a nonce may result in the
 same key and salt being generated for multiple streams which would

Zimmermann, et al. Expires September 5, 2007 [Page 15]

Internet-Draft ZRTP March 2007

 introduce a major security weakness.

 The DHPart1 and DHPart2 messages are exchanged in this mode so that
 the shared secrets can be determined. If it is determined that the
 endpoints have no shared DH secrets (i.e. either rs1 or rs2) the
 exchange MUST be terminated. It is RECOMMENDED that Preshared mode
 only be used when the SAS Verified flag is set.

5.5.2. Responder Behavior

 In in place of pvr in the DHPart1, a random number, noncer, 32 octets
 long is chosen. Its value MUST be unique for all nonce values chosen
 for all ZRTP sessions between a pair of endpoints since the last DH
 exchange. If a DHPart1 is received with a reused nonce value, the
 ZRTP exchange SHOULD be immediately terminated. (We would say MUST
 be terminated, but we recognize it may be hard to determine if the
 nonce was never used before. In practical terms, a random nonce of
 this length has effectively no chance of repeating by accident.)

5.5.3. Initiator Behavior

 Since no DH calculation is performed, no pvr is sent in the DHPart2
 messages.

5.5.4. Shared Secret Calculation

 A hash of the received and sent ZRTP messages in the current ZRTP
 exchange in the following order is calculated:

 message_hash = hash (Hello of responder | Commit | DHPart1 | DHPart2
)

 Note that only the ZRTP message (Figures 3, 5, 6, and 7), not the
 entire ZRTP packets are included in the hash.

 The final shared secret, s0, is calculated by hashing the
 concatenation of the set of non-null shared secrets as described in
 5.3, and the message_hash.

 s0 = hash(s1 | s2 | s3 | s4 | s5 | message_hash)

 The noncei and noncer are implicitly included in the hash because
 they were included in the message hash.

 No new retained shared secret is derived, and the values of rs1 and
 rs2 are unchanged during this mode.

Zimmermann, et al. Expires September 5, 2007 [Page 16]

Internet-Draft ZRTP March 2007

5.6. Key Generation

 The SRTP master key and master salt are then generated using the
 shared secret. Separate SRTP keys and salts are used in each
 direction for each media stream. Unless otherwise specified, ZRTP
 uses SRTP with no MKI, 32 bit authentication using HMAC-SHA1, AES-CM
 128 or 256 bit key length, 112 bit session salt key length, 2^48 key
 derivation rate, and SRTP prefix length 0.

 The ZRTP initiator encrypts and the ZRTP responder decrypts packets
 by using srtpkeyi and srtpsalti, which are generated by:

 srtpkeyi = HMAC(s0,"Initiator SRTP master key")

 srtpsalti = HMAC(s0,"Initiator SRTP master salt")

 The key and salt values are truncated to the length determined by the
 chosen SRTP algorithm. The ZRTP responder encrypts and the ZRTP
 initiator decrypts packets by using srtpkeyr and srtpsaltr, which are
 generated by:

 srtpkeyr = HMAC(s0,"Responder SRTP master key")

 srtpsaltr = HMAC(s0,"Responder SRTP master salt")

 The HMAC keys are generated by:

 hmackeyi = HMAC(s0,"Initiator HMAC key")

 hmackeyr = HMAC(s0,"Responder HMAC key")

 Note that these HMAC keys are used only by ZRTP and not by SRTP.

 Note: Different HMAC keys are needed for the initiator and the
 responder to ensure that GoClear messages in each direction are
 unique and can not be cached by an attacker and reflected back to the
 endpoint.

 ZRTP keys are generated for the initiator and responder to use to
 encrypt the Confirm1 and Confirm2 messages.

 zrtpkeyi = HMAC(s0,"Initiator ZRTP key")

 srtpkeyr = HMAC(s0,"Responder ZRTP key")

 The Short Authentication String (SAS) value is calculated as the hash
 of the ZRTP messages exchanged during the session: Hello from the
 responder, Commit, DHPart1, and DHPart2:

Zimmermann, et al. Expires September 5, 2007 [Page 17]

Internet-Draft ZRTP March 2007

 sasvalue = last 64 bits of message_hash

 Note: The SAS calculated this way provides both protection against a
 bid down attack (modification of the Hello messages) or an active
 MiTM attack. Either attack will result in each endpoint calculating
 different sasvalues.

5.7. Confirmation

 The Confirm1 and Confirm2 messages contain the cache expiration
 interval for the newly generated retained shared secret. The
 flagoctet is an 8 bit unsigned integer made up of the Disclosure flag
 (D), Allow clear flag (A), SAS Verified flag (V):

 flagoctet = V * 2^2 + A * 2^1 + D * 2^0

 Part of the Confirm1 and Confirm2 messages are encrypted using full-
 block Cipher Feedback Mode, and contain a 128-bit random CFB
 Initialization Vector (IV). The Confirm1 and Confirm2 messages also
 contain an HMAC covering the encrypted part of the Confirm1 or
 Confirm2 message which includes a string of zeros, the signature
 length, flag octet, cache expiration interval, signature type block
 (if present) and signature block (if present). For the responder

 hmac = HMAC(hmackeyr, encrypted part of Confirm1)

 For the initiator:

 hmac = HMAC(hmackeyi, encrypted part of Confirm2 message)

 The Conf2ACK message sent by the responder completes the exchange.

5.8. Random Number Generation

 The ZRTP protocol uses random numbers for cryptographic key material,
 notably for the DH secret exponents and nonces, which must be freshly
 generated with each session. Whenever a random number is needed, all
 of the following criteria must be satisfied:

 It MUST be derived from a physical entropy source, such as RF noise,
 acoustic noise, thermal noise, high resolution timings of
 environmental events, or other unpredictable physical sources of
 entropy. Chapter 10 of [7] gives a detailed explanation of
 cryptographic grade random numbers and provides guidance for
 collecting suitable entropy. The raw entropy must be distilled and
 processed through a deterministic random bit generator (DRBG).
 Examples of DRBGs may be found in NIST SP 800-90 [8], and in [7].

Zimmermann, et al. Expires September 5, 2007 [Page 18]

Internet-Draft ZRTP March 2007

 It MUST be freshly generated, meaning that it must not have been used
 in a previous calculation.

 It MUST be greater than or equal to two, and less than or equal to
 2^L - 1, where L is the number of random bits required.

 It MUST be chosen with equal probability from the entire available
 number space, e.g., [2, 2^L - 1].

5.9. ZID and Cache Operation

 Each instance of ZRTP has a unique 96-bit random ZRTP ID or ZID that
 is generated once at installation time. It is used to look up
 retained shared secrets in a local cache. A single global ZID for a
 single installation is the simplest way to implement ZIDs. However,
 it is specifically not precluded for an implementation to use
 multiple ZIDs, up to the limit of a separate one per callee. This
 then turns it into a long-lived "association ID" that does not apply
 to any other associations between a different pair of parties. It is
 a goal of this protocol to permit both options to interoperate
 freely.

 Each time a new s0 is calculated, a new retained shared secret rs1 is
 generated and stored in the cache, indexed by the ZID of the other
 endpoint. The previous retained shared secret is then renamed rs2
 and also stored in the cache. For the new retained shared secret,
 each endpoint chooses a cache expiration value which is an unsigned
 32 bit integer of the number of seconds that this secret should be
 retained in the cache. The time interval is relative to when the
 Confirm1 message is sent or received.

 The cache intervals are exchanged in the Confirm1 and Confirm2
 messages. The actual cache interval used by both endpoints is the
 minimum of the values from the Confirm1 and Confirm2 messages. A
 value of 0 seconds means the secret should not be cached and the
 current values of rs1 and rs2 MUST be maintained. A value of
 0xFFFFFFFF means the secret should be cached indefinitely and is the
 recommended value. If the ZRTP exchange results in no new shared
 secret generation (i.e. Preshared Mode), the field in the Confirm1
 and Confirm2 is set to 0xFFFFFFFF and ignored, and the cache is not
 updated.

 The expiration interval need not be used to force the deletion of a
 shared secret from the cache when the interval has expired. It just
 means the shared secret MAY be deleted from that cache at any point
 after the interval has expired without causing the other party to
 note it as an unexpected security event when the next key negotiation
 occurs between the same two parties. This means there need not be

Zimmermann, et al. Expires September 5, 2007 [Page 19]

Internet-Draft ZRTP March 2007

 perfectly synchronized deletion of expired secrets from the two
 caches, and makes it easy to avoid a race condition that might
 otherwise be caused by clock skew.

5.10. Terminating an SRTP Session or ZRTP Exchange

 The GoClear message is used to switch from SRTP to RTP or to
 terminate an in-progress ZRTP exchange. The GoClear message contains
 a reason string for human purposes and a clear_hmac field.

 When used to switch from SRTP to RTP, ZRTP uses an HMAC of the exact
 4 octet Reason String sent in the GoGlear Message computed with the
 hmackey derived from the shared secret. When sent by the initiator:

 clear_hmac = HMAC(hmackeyi, Reason String)

 When sent by the responder:

 clear_hmac = HMAC(hmackeyr, Reason String)

 A GoClear message which does not receive a ClearACK response
 indicates that the GoClear has failed authentication (the clear_hmac
 does not validate) and that the session must stay in secure mode.

 When terminating an in-progress ZRTP exchange, no secret hmackey is
 available, so the clear_hmac field is set to all zeros and ignored.
 The reason string SHOULD indicate the reason for the failure (e.g.
 "No Session Key", "Nonce Reuse", "Invalid DH Value"). The
 termination of a ZRTP key agreement exchange results in no updates to
 the cached shared secrets and deletion of all crypto context.

 A ZRTP endpoint that receives a GoClear authenticates the message by
 checking the clear_hmac. If the message authenticates, the endpoint
 stops sending SRTP packets, generates a ClearACK in response, and
 deletes the crypto context for the SRTP session. Until confirmation
 from the user is received (e.g. clicking a button, pressing a DTMF
 key, etc.), the ZRTP endpoint MUST NOT resume sending RTP packets.
 The endpoint then renders the Reason String (after making sure only
 valid ASCII characters are present) and an indication that the media
 session has switched to clear mode to the user and waits for
 confirmation from the user. To prevent pinholes from closing or NAT
 bindings from expiring, the ClearACK message MAY be resent at regular
 intervals (e.g. every 5 seconds) while waiting for confirmation from
 the user. After confirmation of the notification is received from
 the user, the sending of RTP packets may begin.

 After sending a GoClear message, the ZRTP endpoint stops sending SRTP
 packets. When a ClearACK is received, the ZRTP endpoint deletes the

Zimmermann, et al. Expires September 5, 2007 [Page 20]

Internet-Draft ZRTP March 2007

 crypto context for the SRTP session and may then resume sending RTP
 packets. However, the ZRTP Session key is not deleted unless the
 signaling session is terminated as well.

 A ZRTP endpoint MAY choose to accept GoClear messages after the
 session has switched to SRTP, allowing the session to revert to RTP.
 This is indicated in the Confirm1 or Confirm2 messages by setting the
 Allow Clear flag (A). If the other endpoint set the Allow Clear (A)
 flag in their confirm message, GoClear messages MAY be sent after the
 session has gone secure.

 Note: GoClear messages can always be sent prior to session going
 secure if the ZRTP exchange is terminated.

6. ZRTP Messages

 All ZRTP messages use the message format defined in Figure 2. All
 word lengths referenced in this specification are 32 bits or 4
 octets. All integer fields are carried in network byte order, that
 is, most significant byte (octet) first, commonly known as big-
 endian.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 1|Not Used (set to zero) | Sequence Number |
 +-+
 | ZRTP Magic Cookie (0x5a525450) |
 +-+
 | Source Identifier |
 +-+
 | |
 | ZRTP Message (length depends on Message Type) |
 | . . . |
 | |
 +-+
 | CRC (1 word) |
 +-+

 Figure 2. ZRTP Packet Format

 The Sequence Number is a count that is incremented for each ZRTP
 packet sent. The count is initialized to a random value. This is
 useful in estimating ZRTP packet loss and also detecting when ZRTP
 packets arrive out of sequence.

Zimmermann, et al. Expires September 5, 2007 [Page 21]

Internet-Draft ZRTP March 2007

 The ZRTP Magic Cookie is a 32 bit string that uniquely identifies a
 ZRTP packet, and has the value 0x5a525450.

 Source Identifier is the SSRC number of the RTP stream that this ZRTP
 packet relates to. For cases of forking or forwarding, RTP and hence
 ZRTP may arrive at the same port from several different sources -
 each of these sources will have a different SSRC and may initiate an
 independent ZRTP protocol session.

 This format is clearly identifiable as non-RTP due to the first two
 bits being zero which looks like RTP version 0, which is not a valid
 RTP version number. It is clearly distinguishable from STUN since
 the magic cookies are different. The 12 not used bits are set to
 zero and MUST be ignored when received.

 The ZRTP Messages are defined in Figures 3 to 11 and are of variable
 length.

 The ZRTP protocol uses a 32 bit CRC checksum in each ZRTP packet as
 defined in RFC 3309 [6] to detect transmission errors. ZRTP packets
 are typically transported by UDP, which carries its own built-in 16-
 bit checksum for integrity, but ZRTP does not rely on it. This is
 because of the effect of an undetected transmission error in a ZRTP
 message. For example, an undetected error in the DH exchange could
 appear to be an active man-in-the-middle attack. The psychological
 effects of a false announcement of this by ZTRP clients can not be
 overstated. The probability of such a false alarm hinges on a mere
 16-bit checksum that usually protects UDP packets, so more error
 detection is needed. For these reasons, this belt-and-suspenders
 approach is used to minimize the chance of a transmission error
 affecting the ZRTP key agreement.

 The CRC is calculated across the entire ZRTP packet shown in Figure
 2, including the ZRTP Header and the ZRTP Message, but not including
 the CRC field. If a ZRTP message fails the CRC check, it is silently
 discarded.

6.1. ZRTP Message Formats

 ZRTP messages are designed to simplify endpoint parsing requirements
 and to reduce the opportunities for buffer overflow attacks (a good
 goal of any security extension should be to not introduce new attack
 vectors...)

 ZRTP uses 8 octets (2 words) blocks to encode Message Type. 4 octets
 (1 word) blocks are used to encode Hash Type, Cipher Type, and Key
 Agreement Type, and Authentication Tag. The values in the blocks are
 ASCII strings which are extended with spaces (0x20) to make them the

https://datatracker.ietf.org/doc/html/rfc3309

Zimmermann, et al. Expires September 5, 2007 [Page 22]

Internet-Draft ZRTP March 2007

 desired length. Currently defined block values are listed in Tables
 1-6 below.

 Additional block values may be defined and used.

 ZRTP uses this ASCII encoding to simplify debugging and make it
 "ethereal friendly".

6.1.1. Message Type Block

 Currently ten Message Type Blocks are defined - they represent the
 set of ZRTP message primitives. ZRTP endpoints MUST support the
 Hello, HelloACK, Commit, DHPart1, DHPart2, Confirm1, Confirm2,
 Conf2ACK, GoClear and ClearACK block types.

 Message Type Block | Meaning

 "Hello " | Hello Message
 | defined in Section 6.2

 "HelloACK" | HelloACK Message
 | defined in Section 6.3

 "Commit " | Commit Message
 | defined in Section 6.4

 "DHPart1 " | DHPart1 Message
 | defined in Section 6.5

 "DHPart2 " | DHPart2 Message
 | defined in Section 6.6

 "Confirm1" | Confirm1 Message
 | defined in Section 6.7

 "Confirm2" | Confirm2 Message
 | defined in Section 6.8

 "Conf2ACK" | Conf2ACK Message
 | defined in Section 6.9

 "GoClear " | GoClear Message
 | defined in Section 6.10

 "ClearACK" | ClearACK Message
 | defined in Section 6.11

Zimmermann, et al. Expires September 5, 2007 [Page 23]

Internet-Draft ZRTP March 2007

 Table 1. Message Block Type Values

6.1.2. Hash Type Block

 Only one Hash Type is currently defined, SHA256, and all ZRTP
 endpoints MUST support this hash. Additional Hash Types can be
 registered and used.

 Hash Type Block | Meaning

 "S256" | SHA-256 Hash defined in [SHA-256]

 Table 2. Hash Block Type Values

6.1.3. Cipher Type Block

 All ZRTP endpoints MUST support AES128 and MAY support AES256 [4]. or
 other Cipher Types. Also, if AES 128 is used, DH3k should be used.
 If AES 256 is used, DH4k should be used.

 Note: DH4k may be deprecated in the future in favor of elliptic curve
 algorithms.

 Cipher Type Block | Meaning

 "AES1" | AES-CM with 128 bit keys
 | as defined in RFC 3711

 "AES2" | AES-CM with 256 bit keys
 | as defined in RFC 3711

 Table 3. Cipher Block Type Values

6.1.4. Auth Tag Block

 All ZRTP endpoints MUST support HMAC-SHA1 authentication, 32 bit and
 80 bit length tags as defined in RFC 3711.

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711

Zimmermann, et al. Expires September 5, 2007 [Page 24]

Internet-Draft ZRTP March 2007

 Auth Tag Block | Meaning

 "HS32" | HMAC-SHA1 32 bit authentication
 | tag as defined in RFC 3711

 "HS80" | HMAC-SHA1 80 bit authentication
 | tag as defined in RFC 3711

 Table 4. Auth Tag Values

6.1.5. Key Agreement Type Block

 All ZRTP endpoints MUST support DH3k and MAY support DH4k. ZRTP
 endpoints MUST use the DH generator function g=2. The choice of AES
 key length is coupled to the choice of key agreement type. If AES
 128 is chosen, DH3k SHOULD be used. If AES 256 is chosen, DH4k
 SHOULD be used. ZRTP also defines a non-DH mode, Preshared, which
 SHOULD be supported. In Preshared mode, the SRTP key is derived from
 the set of shared secrets and a pair of nonces.

 Note: DH4k may be deprecated in the future in favor of elliptic curve
 algorithms.

 Key Agreement Type Block | Meaning

 "DH3k" | DH mode with p=3072 bit prime
 | as defined in RFC 3526

 "DH4k" | DH mode with p=4096 bit prime
 | as defined in RFC 3526

 "Prsh" | Preshared Non-DH mode
 | uses shared secrets.

 Table 5. Key Agreement Block Type Values

6.1.6. SAS Type Block

 All ZRTP endpoints MUST support the base32 and MAY support base256
 Short Authentication String scheme, and other SAS rendering schemes.
 The ZRTP SAS is described in Section 7.

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3526

Zimmermann, et al. Expires September 5, 2007 [Page 25]

Internet-Draft ZRTP March 2007

 SAS Type Block | Meaning

 "B32 " | Short Authentication String using
 | base32 encoding defined in Section 8.

 "B256" | Short Authentication String using
 | base256 encoding defined in Section 8.

 Table 6. SAS Block Type Values

 The SAS Type determines how the SAS is rendered to the user so that
 the user may compare it with his partner over the voice channel.
 This allows detection of a man-in-the-middle (MITM) attack.

6.1.7. Signature Block

 The signature type block is a 4 octet (1 word) block used to
 represent the signature algorithm. Suggested signature algorithms
 and key lengths are a future subject of standardization.

6.2. Hello message

 The Hello message has the format shown in Figure 3. The Hello ZRTP
 message begins with the preamble value 0x505a then a 16 bit length in
 32 bit words. This length includes only the ZRTP message (including
 the preamble and the length) but not the ZRTP header or CRC. Next is
 the Message Type Block and a 4 character string containing the
 version (ver) of ZRTP, currently "0.05". Next is the Client
 Identifier string (cid) which is 3 words long and identifies the
 vendor and release of the ZRTP software. The next parameter is the
 ZID, the 96 bit long unique identifier for the ZRTP endpoint. The
 next four bits contains flag bits. The only defined flag is the
 Passive bit (P), a Boolean normally set to False. A ZRTP endpoint
 which is configured to never initiate secure sessions is regarded as
 passive, and would set the P bit to True. The next 8 bits are
 unused. They should be set to zero when sent and ignored on receipt.
 Next is a list of supported Hash Types, Cipher Types, Auth Tag, Key
 Agreement Types, and SAS Type. The number of listed algorithms are
 listed for each type: hc=hash count, cc=cipher count, ac=auth tag
 count, kc=key agreement count, and sc=sas count. The values for
 these algorithms are defined in Tables 2, 3, 4, 5, and 6. A count of
 zero means that only the mandatory to implement algorithms are
 supported. Mandatory algorithms MAY be included in the list. The
 order of the list indicates the preferences of the endpoint. If a
 mandatory algorithm is not included in the list, it is added to the
 end of the list for preference.

Zimmermann, et al. Expires September 5, 2007 [Page 26]

Internet-Draft ZRTP March 2007

 Note: Implementers are encouraged to keep these algorithm lists small
 - the list does not need to include every cipher and hash supported,
 just the ones the endpoint would prefer to use for this ZRTP
 exchange.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length |
 +-+
 | Message Type Block="Hello " (2 words) |
 | |
 +-+
 | version (1 word) |
 +-+
 | |
 | Client Identifier (3 words) |
 | |
 +-+
 | |
 | ZID (3 words) |
 | |
 +-+
 |0 0 0|P| unused (zeros)| hc | cc | ac | kc | sc |
 +-+
 | hash (0 to 7 values) |
 +-+
 | cipher (0 to 7 values) |
 +-+
 | at (0 to 7 values) |
 +-+
 | keya (0 to 7 values) |
 +-+
 | sas (0 to 7 values) |
 +-+

 Figure 3. Hello message format

6.3. HelloACK message

 The HelloACK message is used to stop retransmissions of a Hello
 message. A HelloACK is sent regardless if the version number in the
 Hello is supported or the algorithm list supported. The receipt of a
 HelloACK stops retransmission of the Hello message. The format is
 shown in Figure 4 below. Note that a Commit message can be sent in
 place of a HelloACK by an initiator.

Zimmermann, et al. Expires September 5, 2007 [Page 27]

Internet-Draft ZRTP March 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=3 words |
 +-+
 | Message Type Block="HelloACK" (2 words) |
 | |
 +-+

 Figure 4. HelloACK message format

6.4. Commit message

 The Commit message is sent to initiate the key agreement process
 after receiving a Hello message. The Commit message contains the
 initiator's ZID and a list of selected algorithms (hash, cipher, atl,
 keya, sas), the ZRTP mode, and hvi, a hash of the public DH value of
 the initiator and the algorithm list from the responder's Hello
 message. If a non-DH mode is used, hvi is replaced by a random
 number, noncei. The Commit Message format is shown in Figure 5.

Zimmermann, et al. Expires September 5, 2007 [Page 28]

Internet-Draft ZRTP March 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=19 words |
 +-+
 | Message Type Block="Commit " (2 words) |
 | |
 +-+
 | |
 | ZID (3 words) |
 | |
 +-+
 | hash |
 +-+
 | cipher |
 +-+
 | at |
 +-+
 | keya |
 +-+
 | SAS Type |
 +-+
 | |
 | hvi or noncei (8 words) |
 | . . . |
 | |
 +-+

 Figure 5. Commit message format

6.5. DHPart1 message

 The DHPart1 message begins the DH exchange. The format is shown in
 Figure 5 below. The DHPart1 message is sent if a valid Commit
 message is received. The length of the pvr value depends on the Key
 Agreement Type chosen. If DH4k is used, the pvr will be 128 words
 (512 octets) and the length of this message will be 141 words. If
 DH3k is used, it is 96 words (384 octets) and the length of this
 message will be 109 words. If the Key Agreement Type is Preshared,
 then pvr is replaced by an 8 word noncer from the responder and the
 length of this message will be 21 words.

 The next five parameters are HMACs of potential shared secrets used
 in generating the ZRTP secret. The first two, rs1IDr and rs2IDr, are
 the HMACs of the responder's two retained shared secrets, truncated
 to 64 bits. Next is sigsIDr, the HMAC of the responder's signaling
 secret, truncated to 64 bits. Next is srtpsIDr, the HMAC of the
 responder's SRTP secret, truncated to 64 bits. The last parameter is

Zimmermann, et al. Expires September 5, 2007 [Page 29]

Internet-Draft ZRTP March 2007

 the HMAC of an additional shared secret. For example, if multiple
 SRTP secrets are available or some other secret is used, it can be
 used as the other_secret. The Message format for the DHPart1 message
 is shown in Figure 6.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=depends on KA Type |
 +-+
 | Message Type Block="DHPart1 " (2 words) |
 | |
 +-+
 | |
 | pvr (length depends on KA Type) or noncer (8 words) |
 | . . . |
 | |
 +-+
 | rs1IDr (2 words) |
 | |
 +-+
 | rs2IDr (2 words) |
 | |
 +-+
 | sigsIDr (2 words) |
 | |
 +-+
 | srtpsIDr (2 words) |
 | |
 +-+
 | other_secretIDr (2 words) |
 | |
 +-+

 Figure 6. DHPart1 message format

6.6. DHPart2 message

 The DHPart2 message completes the DH exchange. A DHPart2 message is
 sent if a valid DHPart1 message is received. The length of the pvi
 value depends on the Key Agreement Type chosen. If DH4k is used, the
 pvi will be 128 words (512 octets) and the length of this message
 will be 141 words. If DH3k is used, it is 96 words (384 octets) and
 the length of this message will be 109 words. If the Key Agreement
 Type is Preshared, then pvi is omitted (0 octets) and the length of
 this message will be 13 words.

Zimmermann, et al. Expires September 5, 2007 [Page 30]

Internet-Draft ZRTP March 2007

 The next five parameters are HMACs of potential shared secrets used
 in generating the ZRTP secret. The first two, rs1IDi and rs2IDi, are
 the HMACs of the initiator's two retained shared secrets, truncated
 to 64 bits. Next is sigsIDi, the HMAC of the initiator's signaling
 secret, truncated to 64 bits. Next is srtpsIDi, the HMAC of the
 initiator's SRTP secret, truncated to 64 bits. The last parameter is
 the HMAC of an additional shared secret. For example, if multiple
 SRTP secrets are available or some other secret is used, it can be
 included. The message format for the DHPart2 message is shown in
 Figure 7.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=depends on KA Type |
 +-+
 | Message Type Block="DHPart2 " (2 words) |
 | |
 +-+
 | |
 | pvi (length depends on KA Type) |
 | . . . |
 | |
 +-+
 | rs1IDi (2 words) |
 | |
 +-+
 | rs2IDi (2 words) |
 | |
 +-+
 | sigsIDi (2 words) |
 | |
 +-+
 | srtpsIDi (2 words) |
 | |
 +-+
 | other_secretIDi (2 words) |
 | |
 +-+

 Figure 7. DHPart2 message format

6.7. Confirm1 and Confirm2 messages

 The Confirm1 message is sent in response to a valid DHPart2 message
 after the SRTP session key and parameters have been negotiated. The
 Confirm2 message is sent in response to a Confirm1 message. The

Zimmermann, et al. Expires September 5, 2007 [Page 31]

Internet-Draft ZRTP March 2007

 format is shown in Figure 8 below. The message contains the Message
 Type Block "Confirm1" or "Confirm2". Next is the HMAC, a keyed hash
 over encrypted part of the message (shown enclosed by "===" in Figure
 8.) The next 16 octets contain the CFB Initialization Vector. The
 rest of the message is encrypted using CFB and protected by the HMAC.

 The next 16 bits are not used. They SHOULD be set to zero and MUST
 be ignored in received Confirm1 messages.

 The next 8 bits contain the signature length. If no SAS signature
 (described in Section 8.3) is present, all bits are set to zero. The
 signature length is in words and includes the signature type block.
 If the calculated signature octet count is not a multiple of 4, zeros
 are added to pad it out to a word boundary. If no signature block is
 present, the overall length of the Confirm1 or Confirm2 Message will
 be set to 11 words.

 The next 8 bits are used for flags. Undefined flags are set to zero
 and ignored. Three flags are currently defined. The Disclosure Flag
 (D) is a Boolean bit defined in Appendix B. The Allow Clear flag (A)
 is a Boolean bit defined in Section 5.6. The SAS Verified flag (V)
 is a Boolean bit defined in Section 8. The cache expiration interval
 is an unsigned 32 bit integer of the number of seconds that the newly
 generated cached shared secret, rs1, should be stored.

 If the signature length (in words) is non-zero, a signature type
 block will be present along with a signature block. Next is the
 signature block.

 CFB [11] mode is applied with a feedback length of 128-bits, a full
 cipher block, and the final block is truncated to match the exact
 length of the encrypted data. The CFB Initialization Vector is a 128
 bit random nonce. The block cipher algorithm and the key size is the
 same as what was negotiated for the media encryption. CFB is used to
 encrypt the part of the Confirm1 message beginning after the CFB IV
 to the end of the message (the encrypted region is enclosed by
 "======" in Figure 8).

 The responder uses the zrtpkeyr to encrypt the Confirm1 message. The
 initiator uses the zrtpkeyi to encrypt the Confirm2 message.

Zimmermann, et al. Expires September 5, 2007 [Page 32]

Internet-Draft ZRTP March 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=variable |
 +-+
 | Message Type Block="Confirm1" or "Confirm2" (2 words) |
 | |
 +-+
 | hmac (2 words) |
 | |
 +-+
 | |
 | CFB Initialization Vector (4 words) |
 | |
 | |
 +===+
 | Unused (Set to zero, ignored) | sig length |0 0 0 0 0|V|A|D|
 +-+
 | cache expiration interval (1 word) |
 +-+
 | optional signature type block (1 word if present) |
 +-+
 | |
 | optional signature block (variable length) |
 | . . . |
 | |
 | |
 +===+

 Figure 8. Confirm1 and Confirm2 message format

6.8. Conf2ACK message

 The Conf2ACK message is sent in response to a valid Confirm2 message.
 The message format for the Conf2ACK is shown in Figure 9. The
 receipt of a Conf2ACK stops retransmission of the Confirm2 message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=3 words |
 +-+
 | Message Type Block="Conf2ACK" (2 words) |
 | |
 +-+

Zimmermann, et al. Expires September 5, 2007 [Page 33]

Internet-Draft ZRTP March 2007

 Figure 9. Conf2ACK message format

6.9. GoClear message

 The GoClear message is sent to terminate an in-process ZRTP key
 agreement exchange or optionally to switch from SRTP to RTP. The
 format is shown in Figure 10 below. The Reason String is a 16
 character string which contains the reason for the switch to clear.
 If the GoClear is sent due to a protocol error, the reason phrase is
 generated to describe the reason. The Reason String can be logged or
 rendered for human consumption. If the GoClear is sent due to a user
 interface selection, the reason is "User Request".

 If the GoClear is sent to switch from SRTP back to RTP, the The
 clear_hmac is used to authenticate the GoClear message so that bogus
 GoClear messages introduced by an attacker can be detected and
 discarded.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=15 words |
 +-+
 | Message Type Block="GoClear " (2 words) |
 | |
 +-+
 | |
 | Reason String (4 words) |
 | |
 | |
 +-+
 | |
 | clear_hmac (8 words) |
 | . . . |
 | |
 +-+

 Figure 10. GoClear message format

6.10. ClearACK message

 The ClearACK message is sent to acknowledge receipt of a GoClear. A
 ClearACK is only sent if the clear_hmac from the GoClear message is
 authenticated. Otherwise, no response is returned. The format is
 shown in Figure 11.

Zimmermann, et al. Expires September 5, 2007 [Page 34]

Internet-Draft ZRTP March 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0| length=3 words |
 +-+
 | Message Type Block="ClearACK" (2 words) |
 | |
 +-+

 Figure 11. ClearACK message format

7. Retransmissions

 ZRTP uses two retransmission timers T1 and T2. T1 is used for
 retransmission of Hello messages, when the support of ZRTP by the
 other endpoint may not be known. T2 is used in retransmissions of
 all the other ZRTP messages with the exception of GoClear.

 All message retransmissions MUST be identical to the initial message
 including nonces, public values, etc; otherwise, hashes of the
 message sequences may not agree.

 Practical experience has shown that RTP packet loss at the start of
 an RTP session can be extremely high. Since the entire ZRTP message
 exchange occurs during this period, the defined retransmission scheme
 is defined to be aggressive. Since ZRTP packets with the exception
 of the DHPart1 and DHPart2 messages are small, this should have
 minimal effect on overall bandwidth utilization of the media session.

 Hello ZRTP requests are retransmitted at an interval that starts at
 T1 seconds and doubles after every retransmission, capping at 200ms.
 A Hello message is retransmitted 20 times before giving up. T1 has a
 recommended value of 50 ms. Retransmission of a Hello ends upon
 receipt of a HelloACK or Commit message.

 Non-Hello ZRTP requests are retransmitted only by the initiator -
 that is, only Commit, DHPart2, and Confirm2 are retransmitted if the
 corresponding message from the responder, DHPart1, Confirm1, and
 Conf2ACK, are not received. Non-Hello ZRTP messages are
 retransmitted at an interval that starts at T2 seconds and doubles
 after every retransmission, capping at 600ms. Only the ZRTP
 initiator performs retransmissions. Each message is retransmitted 10
 times before giving up and resuming a normal RTP session. T2 has a
 default value of 150ms. Each message has a response message that
 stops retransmissions, as shown in Table 7. The high value of T2
 means that retransmissions will likely only occur with packet loss.

Zimmermann, et al. Expires September 5, 2007 [Page 35]

Internet-Draft ZRTP March 2007

 A GoClear message is retransmitted at 500ms intervals until a
 ClearACK message is received.

 Message Acknowledgement Message
 ------- -----------------------
 Hello HelloACK or Commit
 Commit DHPart1 or Confirm1
 DHPart2 Confirm1
 Confirm1 Confirm2
 Confirm2 Conf2ACK
 GoClear ClearACK

 Table 7. Retransmitted ZRTP Messages and Responses

8. Short Authentication String

 This section will discuss the implementation of the Short
 Authentication String, or SAS in ZRTP. The SAS can be verified by
 the human users reading the string aloud, exchanging and comparing
 over an integrity-protected signaling channel using the a=zrtp-sas
 attribute, or validating a digital signature exchanged in the
 Confirm1 or Confirm2 messages.

 The rendering of the SAS value to the user depends on the SAS Type
 agreed upon in the Commit message. For the SAS Type of base32, the
 last 20 bits of the sasvalue are rendered as a form of base32
 encoding known as libbase32 [9]. The purpose of base32 is to
 represent arbitrary sequences of octets in a form that is as
 convenient as possible for human users to manipulate. As a result,
 the choice of characters is slightly different from base32 as defined
 in RFC 3548. The last 20 bits of the sasvalue results in four base32
 characters which are rendered to both ZRTP endpoints. Other SAS
 Types may be defined to render the SAS value in other ways.

 The SAS SHOULD be rendered to the user for authentication. In
 addition, the SAS SHOULD be sent in a subsequent offer/answer
 exchange (a re-INVITE in SIP) after the completion of ZRTP exchange
 using the ZRTP SAS SDP attributes defined in Appendix A.

 The SAS is not a secret value, but it must be compared to see if it
 matches at both ends of the communications channel. The two users
 read it aloud to their partners to see if it matches. This allows
 detection of a man-in-the-middle (MITM) attack.

https://datatracker.ietf.org/doc/html/rfc3548

Zimmermann, et al. Expires September 5, 2007 [Page 36]

Internet-Draft ZRTP March 2007

8.1. SAS Verified Flag

 The SAS Verified flag (V) is set based on the user indicating that
 SAS comparison has been successfully performed. The SAS Verified
 flag is exchanged securely in the Confirm1 and Confirm2 messages of
 the next session. In other words, each party sends the SAS Verified
 flag from the previous session in the Confirm message of the current
 session. It is perfectly reasonable to have a ZRTP endpoint that
 never sets the SAS Verified flag, because it would require adding
 complexity to the user interface to allow the user to set it. The
 SAS Verified flag is not required to be set, but if it is available
 to the client software, it allows for the possibility that the client
 software could render to the user that the SAS verify procedure was
 carried out in a previous session.

 Regardless of whether there is a user interface element to allow the
 user to set the SAS Verified flag, it is worth caching a shared
 secret, because doing so reduces opportunities for an attacker in the
 next call.

 If at any time the users carry out the SAS comparison procedure, and
 it actually fails to match, then this means there is a very
 resourceful man in the middle. If this is the first call, the MITM
 was there on the first call, which is impressive enough. If it
 happens in a later call, it also means the MITM must also know the
 cached shared secret, because you could not have carried out any
 voice traffic at all unless the session key was correctly computed
 and is also known to the attacker. This implies the MITM must have
 been present in all the previous sessions, since the initial
 establishment of the first shared secret. This is indeed a
 resourceful attacker. It also means that if at any time he ceases
 his participation as a MITM on one of your calls, the protocol will
 detect that the cached shared secret is no longer valid -- because it
 was really two different shared secrets all along, one of them
 between Alice and the attacker, and the other between the attacker
 and Bob. The continuity of the cached shared secrets make it possible
 for us to detect the MITM when he inserts himself into the ongoing
 relationship, as well as when he leaves. Also, if the attacker tries
 to stay with a long lineage of calls, but fails to execute a DH MITM
 attack for even one missed call, he is permanently excluded. He can
 no longer resynchronize with the chain of cached shared secrets.

 Some sort of user interface element (maybe a checkbox) is needed to
 allow the user to tell the software the SAS verify was successful,
 causing the software to set the SAS Verified flag (V), which
 (together with our cached shared secret) obviates the need to perform
 the SAS procedure in the next call. An additional user interface
 element can be provided to let the user tell the software he detected

Zimmermann, et al. Expires September 5, 2007 [Page 37]

Internet-Draft ZRTP March 2007

 an actual SAS mismatch, which indicates a MITM attack. The software
 can then take appropriate action, clearing the SAS Verified flag, and
 erase the cached shared secret from this session. It is up to the
 implementer to decide if this added user interface complexity is
 warranted.

 If the SAS matches, it means there is no MITM, which also implies it
 is now safe to trust a cached shared secret for later calls. If
 inattentive users don't bother to check the SAS, it means we don't
 know whether there is or is not a MITM, so even if we do establish a
 new cached shared secret, there is a risk that our potential attacker
 may have a subsequent opportunity to continue inserting himself in
 the call, until we finally get around to checking the SAS. If the
 SAS matches, it means no attacker was present for any previous
 session since we started propagating cached shared secrets, because
 this session and all the previous sessions were also authenticated
 with a continuous lineage of shared secrets.

8.2. Signing the SAS

 The SAS MAY be signed and the signature sent using the Confirm1 or
 Confirm2 messages. The signature algorithm is also sent in the
 Confirm1 or Confirm2 message, along with the length of the signature.
 The key types and signature algorithms are for future study. The
 signature is calculated over the 64 bit sasvalue. The signatures
 exchanged in the encrypted Confirm1 or Confirm2 messages MAY be used
 to authenticate the ZRTP exchange.

9. IANA Considerations

 This specification defines two new SDP [10] attributes in Appendix A.
 The IANA registration of ZRTP SDP attribute:

 Contact name: Phil Zimmermann <prz@mit.edu>

 Attribute name: "zrtp-zid".

 Type of attribute: Session level or Media level.

 Subject to charset: Not.

 Purpose of attribute: The 'zrtp-zid' indicates that a UA supports the
 ZRTP protocol and provides the ZID of the UA.

 Allowed attribute values: Hex.

 IANA registration of the ZRTP SAS SDP attribute:

Zimmermann, et al. Expires September 5, 2007 [Page 38]

Internet-Draft ZRTP March 2007

 Contact name: Phil Zimmermann <prz@mit.edu>

 Attribute name: "zrtp-sas".

 Type of attribute: Media level.

 Subject to charset: Yes.

 Purpose of attribute: The 'zrtp-sas' is used to convey the ZRTP SAS
 string and value. The string is identical to that
 rendered to the users. The value is the 64 bit SAS
 encoded as hex.

 Allowed attribute values: String and Hex.

10. Security Considerations

 This document is all about securely keying SRTP sessions. As such,
 security is discussed in every section.

 Most secure phones rely on a Diffie-Hellman exchange to agree on a
 common session key. But since DH is susceptible to a man-in-the-
 middle (MITM) attack, it is common practice to provide a way to
 authenticate the DH exchange. In some military systems, this is done
 by depending on digital signatures backed by a centrally-managed PKI.
 A decade of industry experience has shown that deploying centrally
 managed PKIs can be a painful and often futile experience. PKIs are
 just too messy, and require too much activation energy to get them
 started. Setting up a PKI requires somebody to run it, which is not
 practical for an equipment provider. A service provider like a
 carrier might venture down this path, but even then you have to deal
 with cross-carrier authentication, certificate revocation lists, and
 other complexities. It is much simpler to avoid PKIs altogether,
 especially when developing secure commercial products. It is
 therefore more common for commercial secure phones in the PSTN world
 to augment the DH exchange with a Short Authentication String (SAS)
 combined with a hash commitment at the start of the key exchange, to
 shorten the length of SAS material that must be read aloud. No PKI
 is required for this approach to authenticating the DH exchange. The
 AT&T TSD 3600, Eric Blossom's COMSEC secure phones [15], PGPfone
 [13], and CryptoPhone [16] are all examples of products that took
 this simpler lightweight approach.

 The main problem with this approach is inattentive users who may not
 execute the voice authentication procedure, or unattended secure
 phone calls to answering machines that cannot execute it.

Zimmermann, et al. Expires September 5, 2007 [Page 39]

Internet-Draft ZRTP March 2007

 Additionally, some people worry about voice spoofing. But it is a
 mistake to think this is simply an exercise in voice impersonation
 (perhaps this could be called the "Rich Little" attack). Although
 there are digital signal processing techniques for changing a
 person's voice, that does not mean a man-in-the-middle attacker can
 safely break into a phone conversation and inject his own short
 authentication string (SAS) at just the right moment. He doesn't
 know exactly when or in what manner the users will choose to read
 aloud the SAS, or in what context they will bring it up or say it, or
 even which of the two speakers will say it, or if indeed they both
 will say it. In addition, some methods of rendering the SAS involve
 using a list of words such as the PGP word list, in a manner
 analogous to how pilots use the NATO phonetic alphabet to convey
 information. This can make it even more complicated for the
 attacker, because these words can be worked into the conversation in
 unpredictable ways. Remember that the attacker places a very high
 value on not being detected, and if he makes a mistake, he doesn't
 get to do it over. Some people have raised the question that even if
 the attacker lacks voice impersonation capabilities, it may be unsafe
 for people who don't know each other's voices to depend on the SAS
 procedure. This is not as much of a problem as it seems, because it
 isn't necessary that they recognize each other by their voice, it's
 only necessary that they detect that the voice used for the SAS
 procedure matches the voice in the rest of the phone conversation.

 A popular and field-proven approach is used by SSH (Secure Shell)
 [18], which Peter Gutmann likes to call the "baby duck" security
 model. SSH establishes a relationship by exchanging public keys in
 the initial session, when we assume no attacker is present, and this
 makes it possible to authenticate all subsequent sessions. A
 successful MITM attacker has to have been present in all sessions all
 the way back to the first one, which is assumed to be difficult for
 the attacker. All this is accomplished without resorting to a
 centrally-managed PKI.

 We use an analogous baby duck security model to authenticate the DH
 exchange in ZRTP. We don't need to exchange persistent public keys,
 we can simply cache a shared secret and re-use it to authenticate a
 long series of DH exchanges for secure phone calls over a long period
 of time. If we read aloud just one SAS, and then cache a shared
 secret for later calls to use for authentication, no new voice
 authentication rituals need to be executed. We just have to remember
 we did one already.

 If we ever lose this cached shared secret, it is no longer available
 for authentication of DH exchanges, so we would have to do a new SAS
 procedure and start over with a new cached shared secret. Then we
 could go back to omitting the voice authentication on later calls.

Zimmermann, et al. Expires September 5, 2007 [Page 40]

Internet-Draft ZRTP March 2007

 A particularly compelling reason why this approach is attractive is
 that SAS is easiest to implement when a GUI or some sort of display
 is available, which raises the question of what to do when no display
 is available. We envision some products that implement secure VoIP
 via a local network proxy, which lacks a display in many cases. If
 we take an approach that greatly reduces the need for a SAS in each
 and every call, we can operate in GUI-less products with greater
 ease.

 It's a good idea to force your opponent to have to solve multiple
 problems in order to mount a successful attack. Some examples of
 widely differing problems we might like to present him with are:
 Stealing a shared secret from one of the parties, being present on
 the very first session and every subsequent session to carry out an
 active MITM attack, and solving the discrete log problem. We want to
 force the opponent to solve more than one of these problems to
 succeed.

 ZRTP can use different kinds of shared secrets. Each type of shared
 secret is determined by a different method. All of the shared
 secrets are hashed together to form a session key to encrypt the
 call. An attacker must defeat all of the methods in order to
 determine the session key.

 First, there is the shared secret determined entirely by a Diffie-
 Hellman key agreement. It changes with every call, based on random
 numbers. An attacker may attempt a classic DH MITM attack on this
 secret, but we can protect against this by displaying and reading
 aloud a SAS, combined with adding a hash commitment at the beginning
 of the DH exchange.

 Second, there is an evolving shared secret, or ongoing shared secret
 that is automatically changed and refreshed and cached with every new
 session. We will call this the cached shared secret, or sometimes
 the retained shared secret. Each new image of this ongoing secret is
 a non-invertable function of its previous value and the new secret
 derived by the new DH agreement. It's possible that no cached shared
 secret is available, because there were no previous sessions to
 inherit this value from, or because one side loses its cache.

 There are other approaches for key agreement for SRTP that compute a
 shared secret using information in the signaling. For example, [20]
 describes how to carry a MIKEY (Multimedia Internet KEYing) [21]
 payload in SDP [10]. Or [19] describes directly carrying SRTP keying
 and configuration information in SDP. ZRTP does not rely on the
 signaling to compute a shared secret, but If a client does produce a
 shared secret via the signaling, and makes it available to the ZRTP
 protocol, ZRTP can make use of this shared secret to augment the list

Zimmermann, et al. Expires September 5, 2007 [Page 41]

Internet-Draft ZRTP March 2007

 of shared secrets that will be hashed together to form a session key.
 This way, any security weaknesses that might compromise the shared
 secret contributed by the signaling will not harm the final resulting
 session key.

 There may also be a static shared secret that the two parties agree
 on out-of-band in advance. A hashed passphrase would suffice.

 The shared secret provided by the signaling (if available), the
 shared secret computed by DH, and the cached shared secret are all
 hashed together to compute the session key for a call. If the cached
 shared secret is not available, it is omitted from the hash
 computation. If the signaling provides no shared secret, it is also
 omitted from the hash computation.

 No DH MITM attack can succeed if the ongoing shared secret is
 available to the two parties, but not to the attacker. This is
 because the attacker cannot compute a common session key with either
 party without knowing the cached secret component, even if he
 correctly executes a classic DH MITM attack. Mixing in the cached
 shared secret for the session key calculation allows it to act as an
 implicit authenticator to protect the DH exchange, without requiring
 additional explicit HMACs to be computed on the DH parameters. If
 the cached shared secret is available, a MITM attack would be
 instantly detected by the failure to achieve a shared session key,
 resulting in undecryptable packets. The protocol can easily detect
 this. It would be more accurate to say that the MITM attack is not
 merely detected, but thwarted.

 When adding the complexity of additional shared secrets beyond the
 familiar DH key agreement, we must make sure the lack of availability
 of the cached shared secret cannot prevent a call from going through,
 and we must also prevent false alarms that claim an attack was
 detected.

 An small added benefit of using these cached shared secrets to mix in
 with the session keys is that it augments the entropy of the session
 key. Even if limits on the size of the DH exchange produces a
 session key with less than 256 bits of real work factor, the added
 entropy from the cached shared secret can bring up all the subsequent
 session keys to the full 256-bit AES key strength, assuming no
 attacker was present in the first call.

 We could have authenticated the DH exchange the same way SSH does it,
 with digital signatures, caching public keys instead of shared
 secrets. But this approach with caching shared secrets seemed a bit
 simpler, requiring less CPU time for low-powered mobile platforms
 because it avoids an added digital signature step.

Zimmermann, et al. Expires September 5, 2007 [Page 42]

Internet-Draft ZRTP March 2007

 The ZRTP SDP attributes convey information through the signaling that
 is already available in clear text through the media path. For
 example, the ZRTP flag is equivalent to sending a ZRTP Hello message.
 The SAS is calculated from a hash of material from ZRTP messages sent
 over the media path. As a result, none of the ZRTP SDP attributes
 require confidentiality from the signaling.

 The ZRTP SAS attributes can use the signaling channel as an out-of-
 band authentication mechanism. This authentication is only useful if
 the signaling channel has end-to-end integrity protection. Note that
 the SIP Identity header field [23] provides middle-to-end integrity
 protection across SDP message bodies which provides useful protection
 for ZRTP SAS attributes.

11. Acknowledgments

 The authors would like to thank Bryce Wilcox-O'Hearn for his
 contributions to the design of this protocol, and to thank Jon
 Peterson, Colin Plumb, Hal Finney, Colin Perkins, and Dan Wing for
 their helpful comments and suggestions. Also thanks to David McGrew,
 Roni Even, Viktor Krikun, Werner Dittmann, Allen Pulsifer, Klaus
 Peters, and Abhishek Arya for their feedback and comments.

12. Appendix A - Signaling Interactions

 This section discusses how ZRTP, SIP, and SDP work together.

 The signaling secret (sigs) can be derived from SIP signaling and
 passed from the signaling protocol used to establish the RTP session
 to ZRTP. Its the dialog identifier of a Secure SIP (sips) session: a
 string composed of Call-ID and the local and remote tags. It can be
 considered a secret because it is always transported using TLS and is
 randomly generated for each SIP call. The local and remote tags are
 sorted in ascending order in the hash. From the definitions in RFC

3261 [17]:

 sigs = hash(call-id | tag1 | tag2)

 Note: the dialog identifier of a non-secure SIP session should not be
 considered a signaling secret as it has no confidentiality
 protection.

 Note: The signaling secret secret may not be regarded as having
 adequate entropy for cryptographic protection without augmentation by
 key material from other sources.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Zimmermann, et al. Expires September 5, 2007 [Page 43]

Internet-Draft ZRTP March 2007

 For the SRTP secret (srtps), it is the SRTP master key and salt.
 This information may have been passed in the signaling using [20] or
 [19], for example:

 srtps = hash(SRTP master key | SRTP master salt)

 Note that ZRTP may be implemented without coupling with the SIP
 signaling. For example, ZRTP can be implemented as a "bump in the
 wire" or as a "bump in the stack" in which RTP sent by the SIP UA is
 converted to ZRTP. In these cases, the SIP UA will have no knowledge
 of ZRTP. As a result, the signaling path discovery mechanisms
 introduced in this section should not be definitive - they are a
 hint. Despite the absence of an indication of ZRTP support in an
 offer or answer, a ZRTP endpoint SHOULD still send Hello messages.

 ZRTP endpoints which have control over the signaling path include a
 ZRTP SDP attributes in their SDP offers and answers. The ZRTP
 attribute, a=zrtp-id is a flag to indicate support for ZRTP. There
 are a number of potential uses for this attribute. It is useful when
 signaling elements would like to know when ZRTP may be utilized by
 endpoints. It is also useful if endpoints support multiple methods
 of SRTP key management. The ZRTP attribute can be used to ensure
 that these key management approaches work together instead of against
 each other. For example, if only one endpoint supports ZRTP but both
 support another method to key SRTP, then the other method will be
 used instead. When used in parallel, an SRTP secret carried in an
 a=keymgt [20] or a=crypto [19] attribute can be used as a shared
 secret for the srtp_secret. The ZRTP attribute is also used to
 signal to an intermediary ZRTP device not to act as a ZRTP endpoint,
 as discussed in Appendix C.

 The a=zrtp-zid attribute can be included at a media level or at the
 session level. It indicates support of ZRTP and provides the ZID
 encoded in hex of the endpoint. When used at the media level, it
 indicates that ZRTP is supported on this media stream. When used at
 the session level, it indicates that ZRTP is supported in all media
 streams in the session described by the offer or answer and that the
 same ZID will be used for both streams.

 In some scenarios, it is desirable for a signaling intermediary to be
 able to validate the SAS on behalf of the user. This could be due to
 an endpoint which has a user interface unable to render the SAS. Or,
 this could be a protection by an organization against lazy users who
 never check the SAS. Using either the ZRTP SAS or ZRTP SASvalue
 attribute, the SAS check can be performed without requiring the human
 users to speak the SAS. Note that this check can only be relied on
 if the signaling path has end-to-end integrity protection.

Zimmermann, et al. Expires September 5, 2007 [Page 44]

Internet-Draft ZRTP March 2007

 The ZRTP SAS attribute a=zrtp-sas is a Media level SDP attribute that
 can be used to carry the SAS string and value. The string is
 identical to that rendered to the user while contents of the string
 passed depends on the negotiated SAS Type. The value is the 64 bit
 SAS value encoded as hex. Since the SAS is not known at the start of
 a session, the a=zrtp-sas attribute will never be present in the
 initial offer/answer exchange. After the ZRTP exchange has
 completed, the SAS is known and can be exchanged over the signaling
 using a second offer/answer exchange (a re-INVITE in SIP terms).
 Note that the SAS is not a secret and as such does not need
 confidentiality protection when sent over the signaling path.

 The ABNF for the ZRTP attribute is as follows:

 zrtp-attribute = "a=zrtp-zid:" zid-value

 zid-value = 1*(HEXDIG)

 The ABNF for the ZRTP SAS attribute is as follows:

 zrtp-sas-attribute = "a=zrtp-sas:" sas-string sas-value

 sas-string = non-ws-string

 non-ws-string = 1*(VCHAR/%x80-FF)
 ;string of visible characters

 sas-value = 1*(HEXDIG)

 Example of the ZRTP attribute in an initial SDP offer or answer used
 at the session level:

 v=0
 o=bob 2890844527 2890844527 IN IP4 client.biloxi.example.com
 s=
 c=IN IP4 client.biloxi.example.com
 a=zrtp-zid:4cc3ffe30efd02423cb054e5
 t=0 0
 m=audio 3456 RTP/AVP 97 33
 a=rtpmap:97 iLBC/8000
 a=rtpmap:33 no-op/8000

 Example of the ZRTP SAS and SASvalue attribute in a subsequent SDP
 offer or answer used at the media level. Note that the a=zrtp-id
 attribute doesn't provide any additional information when used with

Zimmermann, et al. Expires September 5, 2007 [Page 45]

Internet-Draft ZRTP March 2007

 the SAS and SASvalue attributes but does not do any harm:

 v=0
 o=bob 2890844527 2890844528 IN IP4 client.biloxi.example.com
 s=
 c=IN IP4 client.biloxi.example.com
 a=zrtp-zid:4cc3ffe30efd02423cb054e5
 t=0 0
 m=audio 3456 RTP/AVP 97 33
 a=rtpmap:97 iLBC/8000
 a=rtpmap:33 no-op/8000
 a=zrtp-sas: opzf 5e017f3a6563876a

 Another example showing a second media stream being added to the
 session. A second DH exchange is performed (instead of using the
 Preshared mode) resulting in a second set of ZRTP SAS and SASvalue
 attributes.

 v=0
 o=bob 2890844527 2890844528 IN IP4 client.biloxi.example.com
 s=
 c=IN IP4 client.biloxi.example.com
 a=zrtp-zid:4cc3ffe30efd02423cb054e5
 t=0 0
 m=audio 3456 RTP/AVP 97 33
 a=rtpmap:97 iLBC/8000
 a=rtpmap:33 no-op/8000
 a=zrtp-sas: opzf 5e017f3a6563876a
 m=video 51372 RTP/AVP 31 33
 a=rtpmap:31 H261/90000
 a=rtpmap:33 no-op/8000
 a=zrtp-sas: gwif e1027fa9f865221c

13. Appendix B - The ZRTP Disclosure flag

 There are no back doors defined in the ZRTP protocol specification.
 The designers of ZRTP would like to discourage back doors in ZRTP-
 enabled products. However, despite the lack of back doors in the
 actual ZRTP protocol, it must be recognized that a ZRTP implementer
 might still deliberately create a rogue ZRTP-enabled product that
 implements a back door outside the scope of the ZRTP protocol. For
 example, they could create a product that discloses the SRTP session
 key generated using ZRTP out-of-band to a third party. They may even
 have a legitimate business reason to do this for some customers.

 For example, some environments have a need to monitor or record
 calls, such as stock brokerage houses who want to discourage insider

Zimmermann, et al. Expires September 5, 2007 [Page 46]

Internet-Draft ZRTP March 2007

 trading, or special high security environments with special needs to
 monitor their own phone calls. We've all experienced automated
 messages telling us that "This call may be monitored for quality
 assurance". A ZRTP endpoint in such an environment might
 unilaterally disclose the session key to someone monitoring the call.
 ZRTP-enabled products that perform such out-of-band disclosures of
 the session key can undermine public confidence in the ZRTP protocol,
 unless we do everything we can in the protocol to alert the other
 user that this is happening.

 If one of the parties is using a product that is designed to disclose
 their session key, ZRTP requires them to confess this fact to the
 other party through a protocol message to the other party's ZRTP
 client, which can properly alert that user, perhaps by rendering it
 in a GUI. The disclosing party does this by sending a Disclosure
 flag (D) in Confirm1 and Confirm2 messages as described in Sections
 6.7 and 6.8.

 Note that the intention here is to have the Disclosure flag identify
 products that are designed to disclose their session keys, not to
 identify which particular calls are compromised on a call-by-call
 basis. This is an important legal distinction, because most
 government sanctioned wiretap regulations require a VoIP service
 provider to not reveal which particular calls are wiretapped. But
 there is nothing illegal about revealing that a product is designed
 to be wiretap-friendly. The ZRTP protocol mandates that such a
 product "out" itself.

 You might be using a ZRTP-enabled product with no back doors, but if
 your own GUI tells you the call is (mostly) secure, except that the
 other party is using a product that is designed in such a way that it
 may have disclosed the session key for monitoring purposes, you might
 ask him what brand of secure telephone he is using, and make a mental
 note not to purchase that brand yourself. If we create a protocol
 environment that requires such back-doored phones to confess their
 nature, word will spread quickly, and the "unseen hand" of the free
 market will act. The free market has effectively dealt with this in
 the past.

 Of course, a ZRTP implementer can lie about his product having a back
 door, but the ZRTP standard mandates that ZRTP-compliant products
 MUST adhere to the requirement that a back door be confessed by
 sending the Disclosure flag to the other party.

 There will be inevitable comparisons to Steve Bellovin's 2003 April
 fool's joke, when he submitted RFC 3514 [22] which defined the "Evil
 bit" in the IPV4 header, for packets with "evil intent". But we
 submit that a similar idea can actually have some merit for securing

https://datatracker.ietf.org/doc/html/rfc3514

Zimmermann, et al. Expires September 5, 2007 [Page 47]

Internet-Draft ZRTP March 2007

 VoIP. Sure, one can always imagine that some implementer will not be
 fazed by the rules and will lie, but they would have lied anyway even
 without the Disclosure flag. There are good reasons to believe that
 it will improve the overall percentage of implementations that at
 least tell us if they put a back door in their products, and may even
 get some of them to decide not to put in a back door at all. From a
 civic hygiene perspective, we are better off with having the
 Disclosure flag in the protocol.

 If an endpoint stores or logs SRTP keys or information that can be
 used to reconstruct or recover SRTP keys after they are no longer in
 use (i.e. the session is active), or otherwise discloses or passes
 SRTP keys or information that can be used to reconstruct or recover
 SRTP keys to another application or device, the Disclosure flag D
 MUST be set in the Confirm1 or Confirm2 message.

14. Appendix C - Intermediary ZRTP Devices

 This section discusses the operation of a ZRTP endpoint which is
 actually an intermediary. For example, consider a device which
 proxies both signaling and media between endpoints. There are three
 possible ways in which such a device could support ZRTP.

 An intermediary device can act transparently to the ZRTP protocol.
 To do this, a device MUST pass RTP header extensions and payloads (to
 allow the ZRTP Flag) and non-RTP protocols multiplexed on the same
 port as RTP (to allow ZRTP and STUN). This is the RECOMMENDED
 behavior for intermediaries as ZRTP and SRTP are best when done end-
 to-end.

 An intermediary device could implement the ZRTP protocol and act as a
 ZRTP endpoint on behalf of non-ZRTP endpoints behind the intermediary
 device. The intermediary could determine on a call-by-call basis
 whether the endpoint behind it supports ZRTP based on the presence or
 absence of the ZRTP SDP attribute flag (a=zrtp-id). For non-ZRTP
 endpoints, the intermediary device could act as the ZRTP endpoint
 using its own ZID and cache. This approach MUST only be used when
 there is some other security method protecting the confidentiality of
 the media between the intermediary and the inside endpoint, such as
 IPSec or physical security.

 The third mode, which is NOT RECOMMENDED, is for the intermediary
 device to attempt to back-to-back the ZRTP protocol. In this mode,
 the intermediary would attempt to act as a ZRTP endpoint towards both
 endpoints of the media session. This approach MUST NOT be used as it
 will always result in a detected Man-in-the-Middle attack and will
 generate alarms on both endpoints and likely result in the immediate

Zimmermann, et al. Expires September 5, 2007 [Page 48]

Internet-Draft ZRTP March 2007

 termination of the session. It cannot be stated strongly enough that
 there are no usable back-to-back uses for the ZRTP protocol.

 In cases where centralized media mixing is taking place, the SAS will
 not match when compared by the humans. However, this situation is
 known in the SIP signaling by the presence of the isfocus feature tag
 [25]. As a result, when the isfocus feature tag is present, the SAS
 can only be verified by comparison in the signaling or by validating
 signatures in the Confirm. For example, consider a audio conference
 call with three participants Alice, Bob, and Carol hosted on a
 conference bridge in Dallas. There will be three ZRTP encrypted
 media streams between each participant and Dallas. Each will have a
 different SAS. Each participant will be able to validates their SAS
 with the conference bridge using a=zrtp-sas or Confirm messages
 containing signatures.

 SIP feature tags can also be used to detect if a session is
 established with an automaton such as an IVR, voicemail system, or
 speech recognition system. The display of SAS strings to users
 should be disabled in these cases.

 It is possible that an intermediary device acting as a ZRTP endpoint
 might still receive ZRTP Hello and other messages from the inside
 endpoint. This could occur if there is another inline ZRTP device
 which does not include the ZRTP SDP attribute flag. If this occurs,
 the intermediary MUST NOT pass these ZRTP messages if it is acting as
 the ZRTP endpoint.

15. Appendix D - RTP Header Extension Flag for ZRTP

 This specification defines a new RTP header extension used only for
 discovery of support for ZRTP. No ZRTP data is transported in the
 extension. When used, the X bit is set in the RTP header to indicate
 the presence of the RTP header extension.

Section 5.3.1 in RFC 3550 defines the format of an RTP Header
 extension. The Header extension is appended to the RTP header. The
 first 16 bits are an identifier for the header extension, and the
 following 16 bits are length of the extension header in 32 bit words.
 The ZRTP flag RTP header extension has the value of 0x505A and a
 length of 0. The format of the header extension is as shown in
 Figure 12.

https://datatracker.ietf.org/doc/html/rfc3550#section-5.3.1

Zimmermann, et al. Expires September 5, 2007 [Page 49]

Internet-Draft ZRTP March 2007

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 +-+

 Figure 12. RTP Extension header format for ZRTP Flag

 ZRTP endpoints SHOULD include the ZRTP Flag in RTP packets sent at
 the start of a session. For example, including the flag in the first
 1 second of RTP packets sent. The inclusion of the flag MAY be ended
 if a ZRTP message (such as Hello) is received.

16. References

16.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", STD 64,

RFC 3550, July 2003.

 [3] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

 [4] McGrew, D., "The use of AES-192 and AES-256 in Secure RTP",
draft-mcgrew-srtp-big-aes-00 (work in progress), April 2006.

 [5] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, May 2003.

 [6] Stone, J., Stewart, R., and D. Otis, "Stream Control
 Transmission Protocol (SCTP) Checksum Change", RFC 3309,
 September 2002.

 [7] Ferguson, N. and B. Schneier, "Practical Cryptography", Wiley
 Publishing 2003.

 [8] Barker, E. and J. Kelsey, "Recommendation for Random Number
 Generation Using Deterministic Random Bit Generators", NIST
 Special Publication 800-90 DRAFT (December 2005).

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/draft-mcgrew-srtp-big-aes-00
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3309

Zimmermann, et al. Expires September 5, 2007 [Page 50]

Internet-Draft ZRTP March 2007

 [9] Wilcox, B., "Human-oriented base-32 encoding", http://
cvs.sourceforge.net/viewcvs.py/libbase32/libbase32/

 DESIGN?rev=HEAD .

 [10] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [11] Dworkin, M., "Recommendation for Block Cipher: Methods and
 Techniques", NIST Special Publication 800-38A 2001 Edition.

16.2. Informative References

 [12] Wing, D., "Media Security Requirements",
draft-wing-media-security-requirements-00 (work in progress),

 October 2006.

 [13] Zimmermann, P., "PGPfone",
http://www.pgpi.org/products/pgpfone/ .

 [14] Zimmermann, P., "Zfone", http://www.philzimmermann.com/zfone .

 [15] Blossom, E., "The VP1 Protocol for Voice Privacy Devices
 Version 1.2", http://www.comsec.com/vp1-protocol.pdf .

 [16] "CryptoPhone", http://www.cryptophone.de/ .

 [17] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [18] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH) Protocol
 Architecture", RFC 4251, January 2006.

 [19] Andreasen, F., Baugher, M., and D. Wing, "Session Description
 Protocol (SDP) Security Descriptions for Media Streams",

RFC 4568, July 2006.

 [20] Arkko, J., Lindholm, F., Naslund, M., Norrman, K., and E.
 Carrara, "Key Management Extensions for Session Description
 Protocol (SDP) and Real Time Streaming Protocol (RTSP)",

RFC 4567, July 2006.

 [21] Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.
 Norrman, "MIKEY: Multimedia Internet KEYing", RFC 3830,
 August 2004.

 [22] Bellovin, S., "The Security Flag in the IPv4 Header", RFC 3514,
 April 1 2003.

http://cvs.sourceforge.net/viewcvs.py/libbase32/libbase32/
http://cvs.sourceforge.net/viewcvs.py/libbase32/libbase32/
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/draft-wing-media-security-requirements-00
http://www.pgpi.org/products/pgpfone/
http://www.philzimmermann.com/zfone
http://www.comsec.com/vp1-protocol.pdf
http://www.cryptophone.de/
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc4567
https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/rfc3514

Zimmermann, et al. Expires September 5, 2007 [Page 51]

Internet-Draft ZRTP March 2007

 [23] Peterson, J. and C. Jennings, "Enhancements for Authenticated
 Identity Management in the Session Initiation Protocol (SIP)",

RFC 4474, August 2006.

 [24] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Methodology for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", draft-ietf-mmusic-ice-13 (work in
 progress), January 2007.

 [25] Johnston, A. and O. Levin, "Session Initiation Protocol (SIP)
 Call Control - Conferencing for User Agents", BCP 119,

RFC 4579, August 2006.

Authors' Addresses

 Philip Zimmermann
 Zfone Project

 Email: prz@mit.edu

 Alan Johnston (editor)
 Avaya
 St. Louis, MO 63124

 Email: alan@sipstation.com

 Jon Callas
 PGP Corporation

 Email: jon@pgp.com

https://datatracker.ietf.org/doc/html/rfc4474
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-13
https://datatracker.ietf.org/doc/html/bcp119
https://datatracker.ietf.org/doc/html/rfc4579

Zimmermann, et al. Expires September 5, 2007 [Page 52]

Internet-Draft ZRTP March 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Zimmermann, et al. Expires September 5, 2007 [Page 53]

