
Network Working Group J. Zinky
Internet-Draft A. Caro
Intended status: Experimental Raytheon BBN Technologies
Expires: February 24, 2013 G. Stein
 Laboratory for
 Telecommunications Sciences
 August 23, 2012

Random Binary FEC Scheme for Bundle Protocol
draft-zinky-dtnrg-random-binary-fec-scheme-00

Abstract

 This document describes the Random Binary Forward Error Correcting
 (FEC) Scheme for the Erasure Coding Extension [ErasureCoding] to the
 DTN Bundle Protocol [RFC5050]. The Random Binary FEC scheme is a
 Fully-Specified FEC scheme adhering to the specification guidelines
 of the FEC Building Block [RFC5052]. The DTN Bundle protocol is used
 as the Content Delivery Protocol. This FEC scheme is one of many
 possible FEC schemes that may be used by the Erasure Coding
 Extension. The Random Binary FEC scheme has several properties that
 makes it efficient in the case where Data Objects are divided into
 hundreds to thousands of source-symbols and where the resources
 available of decoding are substantially greater than the resources
 available for encoding.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 24, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Zinky, et al. Expires February 24, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DTN-EC-Scheme August 2012

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
2.1. Definitions . 4
2.2. Notation . 5
2.3. Abbreviations . 6
2.4. Requirements Notation 6

3. Random Binary FEC Overview 7
4. Formats and Codes . 8
4.1. FEC Payload ID . 8
4.2. FEC Object Transmission Information 8
4.2.1. Mandatory . 8
4.2.2. Common . 9
4.2.3. Scheme-Specific 9

5. Procedures . 13
5.1. Bitwise XOR . 13
5.2. Solve . 13
5.3. Rank . 14

6. Random Binary FEC code specification 15
6.1. Encoder . 15
6.2. Decoder . 15
6.3. Intermediate Recoder 16

7. Configure . 17
7.1. Full Random Binary . 17
7.2. Windowed Erasure Codes 17
7.3. Compact No-code FEC Scheme 18
7.4. Block Parity . 18

8. Security Considerations 19
9. IANA Considerations . 20
10. References . 21
10.1. Normative References 21
10.2. Informative References 21

 Authors' Addresses . 22

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Zinky, et al. Expires February 24, 2013 [Page 2]

Internet-Draft DTN-EC-Scheme August 2012

1. Introduction

 The Coding Layer of the Erasure Coding Extension encodes an ordered
 array of Chunks into an Encoding, which consisting of an Encoding
 Data and Encoding Vector (coding formula coefficients). The DTN
 Bundle protocol is used as the Content Delivery Protocol (CDP) to
 transfer the Encoding to the destination. When a significate number
 of Encodings have arrived, they are decoded and the resulting ordered
 array of Chunks is delivered to the Data Object layer at the
 destination.

 For Random Binary Coding, Encoding Vectors are generated randomly and
 are sent with the Encoding Data as a unit in the same Bundle. This
 allows the encoding process and transfer overhead to be relatively
 efficient at the cost of an expensive decode process. Each Encoding
 is effectively a repair symbol and carries the same potential
 information about the Chunks. Any Encoding can be treated as
 equivalent to any other Encoding. Thus, the DTN communication
 channel can be extremely poor, and can reorder, delay, or drop a
 large percentage of the Encodings. The only important factor is the
 number of non-duplicate Encodings that arrive. Random Binary coding
 can generate a large number (exponential in N) of non-duplicate
 Encodings to compensate for huge drop rates, even greater than 99%
 drops. Also, receipt feedback does not have to acknowledge specific
 Encodings, but only has to summarize the state of the received
 Encoding Set, such as the expected number of Encodings that need to
 be received before all Chunks can be decoded.

 The Random Binary FEC Scheme may be configured to behave like a wide
 variety of traditional FEC schemes by restricting which Encodings are
 generated. Different Encoding restrictions may be used depending on
 the expected conditions of the DTN and the application transfer
 requirements. For example, in the case where bundles are not
 reordered and the drop rate is low, the system could be configured to
 behave like a block parity FEC. Configuration options are described
 in Section 7.

 This document only addresses the Coding Layer of the Erasure Coding
 Extension and follows the organization recommended in [RFC5052]. The
 first section introduces the Random Binary FEC definitions, notation,
 and formats. Following sections describe procedures used to
 implement the scheme and the actual process of encoding, decoding and
 recoding. An additional section describes how to configure Random
 Binary FEC to handle different DTN conditions and end user
 requirements. The document ends with discussions on Security and
 IANA considerations.

https://datatracker.ietf.org/doc/html/rfc5052

Zinky, et al. Expires February 24, 2013 [Page 3]

Internet-Draft DTN-EC-Scheme August 2012

2. Terminology

 The terminology used in this document follows the terminology of
 Erasure Coding Extension to the Bundle Protocol [ErasureCoding] and
 the FEC Building Block [RFC5052]. These documents have more
 comprehensive descriptions for the concepts used in this document.

2.1. Definitions

 Data Octets is the array of octets that stores the Data Object and
 meta data to be transferred. The Data Octets array is treated as
 a whole entity and has a UUID. The Data Object Layer divides the
 Data Octets into an ordered array of equal length Chunks, which
 are considered the input and output for the Coding Layer. The
 Data Object Layer is responsible for padding the last Chunk and
 storing the Data Object length in the meta data.

 Coding Formula maps Chunks onto Encoding Data. The Random Binary
 FEC coding formula is a linear combination of Chunks over the
 mathematical field GF(2).

E = Vn-1 * Cn-1 + ... + Vi * Ci + ... + V0 * C0
 Where the V's are the binary coefficients of the coding formula
 and the C's are the Chunks. The coding formula is identified by
 its array of binary coefficients (V) and is stored in the Encoding
 Vector. The coding formula can also be concisely represented as
 binary dot product (see Section 2.2) between the vector of
 coefficients and the vector of Chunks.
 E = V dot C

 Hamming Weight is the number of coefficients with a nonzero value in
 an Encoding Vector. Encodings with low (sparse) Hamming weights
 need only a few XOR operations to generate the Encoding Data. Low
 Hamming weights are desirable for the encoding process, because
 they consume fewer encoder resources to generate.

 Rank is a measure of independence for a set of Encodings. An
 Encoding Set is a group of Encodings that share the same UUID.
 The Encoding Vectors from the Encoding Set can be combined as the
 rows of a KxN binary matrix (S), where K is the number of
 Encodings in the Encoding Set and N is the number of Chunks. The
 Rank of this matrix is the number of linearly independent
 Encodings in the Encoding Set. When an Encoding is added to an
 Encoding Set, it is called Innovative, if it is not a linear
 combination of the already received encodings, thereby raising the
 rank of the matrix S. Otherwise, it is called Redundant. If an
 Encoding Set has rank equal to the number of Chunks (N), then the
 Encoding Set has full rank and can be used to solve for all

https://datatracker.ietf.org/doc/html/rfc5052

Zinky, et al. Expires February 24, 2013 [Page 4]

Internet-Draft DTN-EC-Scheme August 2012

 Chunks. Calculating the rank of an Encoding Set is discussed in
Section 5.3

 Transmission Overhead is the expected number of extra Encodings
 received in order to have a full rank Encoding Set. All the
 Encodings generated by this FEC scheme can be considered repair
 symbols, so when Encodings are added to an Encoding Set, some of
 the Encodings may be redundant. Transmission overhead is the
 expected number of redundant Encodings before the Encoding Set can
 be solved.

2.2. Notation

 number_of_chunks (N or n) is the number Chunks.

 chunk_length (L) is the number of octets in a Chunk. All Chunks for
 Data Octets with the same UUID MUST have the same length.

 Chunk Index (i) range from 0 to N - 1.

 Chunk (C) is an octet array of the raw data from Data Octets.

 Encoding Data (E) is an octet array of the coding data.

 Encoding Vector (V) is a binary array of coefficients that
 represents the coding formula.

 Encoding Set Matrix (S) is a binary matrix that is formed from N
 linearly independent Encoding Vectors.

 Bitwise Exclusive Or (XOR) is an operator on two octet arrays.
 Bitwise XOR is an expensive operation and efficient
 implementations are discussed in Section 5.1.

 Binary Dot Product (dot) is an operator on a vector of binary
 coefficients and a vector of octet arrays. The result is an octet
 array. The Binary Dot Product XORs together the octet arrays that
 corresponded to nonzero values in the binary vector and ignores
 the octet arrays that correspond to zeros.

 The following table summarizes the corresponding terms used in
 [RFC5052] and in [ErasureCoding].

https://datatracker.ietf.org/doc/html/rfc5052

Zinky, et al. Expires February 24, 2013 [Page 5]

Internet-Draft DTN-EC-Scheme August 2012

 +------------------------+------------------------+
 | RFC5052 | DTN Erasure Coding |
 +------------------------+------------------------+
 | Source Symbol | Chunk |
 | | |
 | Repair Symbol | Encoding Data |
 | | |
 | Encoding Symbol | Chunk or Encoding Data |
 | | |
 | Encoding Symbol Length | Chunk Length |
 | | |
 | FEC Payload ID | Encoding Vector |
 | | |
 | Generator Matrix | Encoding Set Matrix |
 +------------------------+------------------------+

 Table 1: Comparison of Terms

2.3. Abbreviations

 For convenience the following Abbreviation are used in this document.

 BPA: Bundle Protocol Agent, see [RFC5050]

 CDP: Content Delivery Protocol, see [RFC5052]

 DTN: Delay/Disruption Tolerant Network, see [RFC5050]

 FEC: Forward Error Correction, see [RFC5052]

 SDNV: Self-Delimiting Numeric Values, see [RFC6256]

 XOR: Exclusive or (math operation)

2.4. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/rfc2119

Zinky, et al. Expires February 24, 2013 [Page 6]

Internet-Draft DTN-EC-Scheme August 2012

3. Random Binary FEC Overview

 The Random Binary FEC scheme is a specific implementation of the
 Coding Layer that defines the encoding, decoding, and recoding
 process.

 The Random Binary FEC scheme encodes Chunks by creating the linear
 combination of Chunks over the mathematical field GF(2). In GF(2),
 the values of the coefficients are zero and one, multiply is the AND
 Boolean operator, and addition is the XOR Boolean operator. A linear
 combination sums together the Chunks, using the XOR operator, whose
 coefficients are one in the Encoding Vector. In the general case,
 the coefficients of an Encoding Vector are selected at random, so a
 large number of Encodings can be generated (2^N), where N is the
 number of Chunks. Every Encoding can be considered a repair symbol,
 except for the degenerate cases where only one coefficient is
 nonzero. In this case, only one Chunk is XORed into the Encoding, so
 the Encoding acts as a source symbol.

 Decoding requires collecting enough Encodings to solve the set of
 binary linear equations. To accomplish this, at least N innovative
 Encodings must be collected in order to solve the linear equations
 and decode all N Chunks. For Random Binary coding, decoding is an
 expensive operation for which there is no guarantee that the first N
 Encodings received will be sufficient to decode all the Chunks, i.e.
 it is expected that some of the Encodings received will be redundant.
 Decoding is unlikely to decode any chunks until roughly N distinct
 Encodings have arrived and will, with probability greater than 1/2,
 be able to decode all chunks when N + 2 distinct encodings have
 arrived [Stud2006]. So the arrival process is fairly abrupt with no
 Chunks being delivered even though many Encodings have arrived and
 then quickly around the time the Nth distinct Encoding arrives all
 the Chunks can be Decoded.

 In the case where the DTN network has very short contact times
 relative to the transmission time of the Data Object and nodes move
 randomly, Encodings for the same Data Object may take radically
 different paths to the destination. Encodings may be Recoded by
 Intermediate Recoders along the path, to reduce the chance that
 duplicate Encodings will be delivered to the destination from
 alternative paths. Transmissions to multiple destinations also
 benefit, because the destinations do not have to receive the same
 Encodings, just enough non-duplicate Encodings.

Zinky, et al. Expires February 24, 2013 [Page 7]

Internet-Draft DTN-EC-Scheme August 2012

4. Formats and Codes

 This section maps the concepts defined in the FEC Building Blocks
 [RFC5052] to the Content Delivery Protocol services offered by the
 Erasure Coding Extension of the DTN Bundle Protocol [ErasureCoding].
 This FEC Scheme fully specifies the functions of a Coding Layer for
 the Erasure Coding Extension. Encoding Vector and Encoding Data are
 the two data structures used to represent an Encoding at the Coding
 Layer. This section shows how they are formatted into the Erasure
 Coding Extension Block and Bundle Payload for delivery by the DTN
 Bundle Protocol. The section's organization follows the FEC Building
 Blocks recommendation for easy comparison with other FEC schemes.

4.1. FEC Payload ID

 As defined in the [RFC5052], the FEC Payload ID contains information
 that indicates to the FEC decoder the relationships between the
 encoding symbols (Encoding Data) carried by a particular packet
 (Bundle) and the FEC encoding transformation. For the Random Binary
 FEC Scheme, the FEC Payload ID is the Encoding Vector, which holds
 the coefficients of the coding formula from all Chunks to the
 particular Encoding Data. The raw Encoding Vector is a binary array
 of coefficients that is the length of the number_of_chunks (N), which
 can be 1000's of bits long. Section 4.2.3 defines how the Encoding
 Vector is efficiently formated into the FEC Scheme Parameters field
 of the Erasure Coding Extension Block.

4.2. FEC Object Transmission Information

 The FEC Object Transmission Information contains information which is
 essential to the decoder in order to decode the encoded object.

4.2.1. Mandatory

 FEC Encoding ID is an the ID for the type of FEC Scheme. For the
 Erasure Coding Extension, the FEC Encoding ID also defines the
 format of the FEC Scheme Parameters field of the Erasure Coding
 Extension Block. The Random Binary Scheme has four different
 formats, so it has four different FEC Encoding IDs. The FEC
 Encoding ID is stored in the FEC Scheme Type field of the Erasure
 Coding Extension Block as an SDNV value. Section 4.2.3 defines
 the values of FEC Encoding IDs used by the Random Binary FEC
 Scheme.

https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5052

Zinky, et al. Expires February 24, 2013 [Page 8]

Internet-Draft DTN-EC-Scheme August 2012

4.2.2. Common

 The following parameters are common to all FEC Schemes.

 Transfer-Length is the length of the array of unencoded Data Octets
 to be transfered. The transfer length is not stored in a field in
 the bundle, but is calculated by the formula:

 transfer_length = number_of_chunks * chunk_length

 Encoding-Symbol-Length is the length of the octet array that can
 either hold an Encoding Data (repair symbol) or a Chunk (source
 symbol), i.e. the chunk_length. The Encoding Data is transfered
 as the Bundle Payload. So the Encoding-Symbol-Length is the
 length of the Bundle Payload and is not stored as an explicit
 field in the Erasure Coding Extension Block.

 Maximum-Source-Block-Length The Random Binary FEC scheme does not
 use Blocks, so does not use Maximum Source Block Length.

 Max-Number-of-Encoding-Symbols The Random Binary FEC scheme does not
 limit the number of Encoding Bundles that can be generated and
 sent by the Coding Layer. But the Regulating Layer of Erasure
 Coding Extension does define a Handling Specification field that
 COULD be used to limit the rate and amount of Redundant Encoding
 Bundles that are forwarded by the Intermediate Regulating Layer.
 Thus, effectively setting a limit on the Max-Number-of-Encoding-
 Symbols forwarded by Intermediate Nodes.

4.2.3. Scheme-Specific

 Encoding Data (repair symbol) is the result of applying the coding
 formula to the Chunks (source symbols). Encoding Data is a array
 of octets. Encoding Data is stored in the Bundle Payload in
 highest octet index first order, with no padding and no trailing
 zero. The Bundle Payload only contains the Encoding Data octet
 array, no additional payload header is used by the Random Binary
 FEC scheme.

 Encoding Vector is an array of binary coefficients of the coding
 formula with length equal to the number_of_chunks. The Encoding
 Vector is stored into the Coding Parameters Field of the EC
 Extension Block. Several formats are specified in this document,
 each of which reduces the number of bits needed to transmit the
 vector in certain cases. The number of bits needed depends on the
 contents of the vector, i.e., on the number and distribution of
 the ones in the vector. An Encoding Vector MAY be represented in
 any of the formats, but the choice of format can dramatically

Zinky, et al. Expires February 24, 2013 [Page 9]

Internet-Draft DTN-EC-Scheme August 2012

 reduce the length of the Coding Parameter field. Encodings for
 the same Object UUID MAY use different vector formats. Encoders
 SHOULD dynamically choose the shortest format, when constructing
 an Encoding Bundle. Decoders and Recoders SHALL support all
 formats.

4.2.3.1. Full Binary Array: FEC Scheme Type = 1

 The most general Encoding Vector format is to send all the binary
 coefficients as an array of octets. The Encoding Vector binary
 coefficients are packed 8 coefficients to an octet. The lowest octet
 index and bit index is 0. If the number of binary coefficients is
 not a multiple of 8, padding bits are added to the highest indicies
 using the value of zero. The resulting octet array is sent with the
 highest index first.

 +--------------+--------+---+
 | Field | Type | Description |
 +--------------+--------+---+
 | Packed | Octets | All binary coefficients of the Encoding |
 | Binary Array | | Vector packed into an octet array. |
 +--------------+--------+---+

 Table 2: Full Vector

 The bit array has the following implicit parameters:

 octet_array_length = ceiling(number_of_chunks / 8)

 octet_index = floor(coeff_index / 8)

 bit_within_octet = coeff_index MOD 8

4.2.3.2. List of Chunk Indicies: FEC Scheme Type = 2

 For Encoding Vectors with a low Hamming weight, i.e. with few
 coefficients that have the value of one, a list of the vector
 indicies for the ones reduce the parameter length. The list of
 indices starts with the list length, followed by the list of
 indicies. All numbers SHALL be in SDNV format. The index list has
 the following format:

Zinky, et al. Expires February 24, 2013 [Page 10]

Internet-Draft DTN-EC-Scheme August 2012

 +--------------+------+---+
 | Field | Type | Description |
 +--------------+------+---+
List Length	SDNV	The number of indicies in the Encoding
		Vector with coefficient of one.
Index List	SDNV	List of indicies with coefficient value
		equal to one. The indicies SHOULD be in
		order from least to largest. Duplicate
		indicies SHALL NOT be sent by the Encoder
		and SHALL be ignored by the Decoder.
 +--------------+------+---+

 Table 3: List of Indicies

4.2.3.3. Windowed Binary Array: FEC Scheme Type = 3

 When an Encoding Vector has its ones grouped in a single small range
 of indicies, for example Windowed encoding [Stud2006], a partial bit
 vector should be sent. The starting index is sent along with a bit
 array of that contains all the coefficients that are ones. The
 Windowed Octet Array has the following format:

 +--------------+------+---+
 | Field | Type | Description |
 +--------------+------+---+
Lowest Index	SDNV	The lowest index value with a coefficient
		of one. Bit index for zero of the Packed
		Octet Array will be offset by this index.
Length Octet	SDNV	octet_array_length = ceiling(
Array		(highest_index - lowest_index) / 8)
Packed	SDNV	Encoding Vector packed into octet array
Binary Array		using bit array to octet array mapping from
		FEC Scheme Type 1.
 +--------------+------+---+

 Table 4: Partial Vector

4.2.3.4. Finite Field Array: FEC Scheme Type = 4

 Random Binary FEC is a special case of a Random Finite Field FEC,
 where the finite field is specifically GF(2), instead of GF(2^m). In
 the general Random Finite Field FEC, Encoding Vector coefficients are
 represented as a binary number of length m. The finite field GF(2^m)
 is characterized by a irreducible polynomial from Section 8.1 of
 [RFC5510]. Higher values of m, such as m=8, are useful in situations

https://datatracker.ietf.org/doc/html/rfc5510#section-8.1
https://datatracker.ietf.org/doc/html/rfc5510#section-8.1

Zinky, et al. Expires February 24, 2013 [Page 11]

Internet-Draft DTN-EC-Scheme August 2012

 where the number of Chunks is small and it is desirable to reduce the
 number of redundant Encodings that are expected to be received in
 order to get a full rank. Random Binary FEC implementations MUST be
 able to interpret a Finite Field Array with m=1, as a Full Binary
 Array.

 For transmission, Encoding Vector coefficients are packed into an
 array of bits. The lowest bit index and coefficient index is 0. The
 coefficient with index 0 is packed into with its least significant
 bit into bit index 0. Subsequent coefficients are concatenated to
 fill the bit array. The bit array is packed into a octet array. If
 the number of coefficients (n) times their length (m) is not a
 multiple of 8, padding bits are added to the highest bit positions
 using the value of zero. The resulting octet array is sent with the
 highest index first.

 +--------------+--------+---+
 | Field | Type | Description |
 +--------------+--------+---+
Finite Field	SDNV	Specifies the finite field of the form
Degree (m)		GF(2^m), where m is the Finite Field
		Degree.
Packed	Octets	Encoding Vector packed into an octet
Coefficients		array, with each coefficient is
Array		represented as a binary number of length
		m.
 +--------------+--------+---+

 Table 5: Finite Field

 The octet array has the following implicit parameters:

 octet_array_length = ceiling((number_of_chunks * m) / 8)

 octet_index = floor((coeff_index * m) / 8)

 starting_bit_within_octet = (coeff_index * m) MOD 8

Zinky, et al. Expires February 24, 2013 [Page 12]

Internet-Draft DTN-EC-Scheme August 2012

5. Procedures

 The Random Binary FEC scheme uses the following procedures which are
 common to the encode, decode and recode processes.

5.1. Bitwise XOR

 Encoding involves the XOR operation on multiple Chunks to form an
 Encoding Data. Decoding involves the XOR operation on multiple
 Encoding Datas to recover a Chunk. XORing two octet arrays logically
 takes every bit in one array and performs the XOR operation on the
 corresponding bit in the other array. That is, the octet index and
 the bit position within the octet are the same. The results are put
 into the corresponding bit of a new array. Note that bits that do
 not share the same index do not interact with each other. So even
 though Chunks and Encoding Data are defined as octet arrays, the bit-
 wise XOR can be implemented using any convenient memory unit, such as
 byte, int or long.

 The XOR operation is the most CPU intensive operation used by this
 FEC scheme, so the number of XOR operations SHOULD be minimized and
 the XOR operation implementation SHOULD be efficient. To minimize
 XORs in the encoding process, a low Hamming weight Encoding Vector
 SHOULD be used. To maximize the efficiency of the XOR operation, the
 largest memory unit available SHOULD be used, such as 64 bit long.

5.2. Solve

 To solve the simultaneous equations to decode the Encodings back into
 Chunks, the most general solution is to use Gaussian Elimination to
 either invert the Encoding Set matrix or to algebraically solve the
 equations directly. The Encoding Vectors are used as rows to form a
 Encoding Set matrix (S). The Encoding Data can be used to form
 vector (e). The encoding process can be represented in matrix
 notation as a vector of Encoding Data (e) that was created by
 multiplying the Encoding Set matrix (S) by the vector of Chunks (c).
 e = c S
 Gaussian Elimination can be used to calculate the inverse of the
 encoding matrix (S^-1). The Chunks can be recovered by multiplying
 the vector of Encodings Datas by the inverted encoding matrix.
 c = e S^-1
 If the Hamming weight of the Encoding Vectors are low and hence the
 Encoding Set matrix is sparse. Solving the equations algebraically
 instead of using the matrix inversion, usually results in less octet
 array XOR operations.

 Gaussian Elimination is an expensive operation that involves O(N^3)
 operations over the field GF(2) and O(N^2) XOR operations on Encoding

Zinky, et al. Expires February 24, 2013 [Page 13]

Internet-Draft DTN-EC-Scheme August 2012

 Data octet arrays. A large body of research has been conducted to
 create efficient algorithms to solve simultaneous equations and will
 not be presented in this document, but SHOULD be exploited by
 implementations of the Random Binary FEC scheme. Many of these
 algorithms involve restricting the form of the Encoding Vectors, with
 dramatic reductions in encoding or decoding cost, but with other
 tradeoffs in terms of reliability, bandwidth used, or other systemic
 factors. Section 7 discusses several options on how to configure the
 encoding process to best match the tradeoffs.

5.3. Rank

 The rank operation determines the number of linearly independent
 Encodings in an Encoding Set, i.e the rank of the Encoding Set matrix
 S. The rank operator is less expensive than solving the whole
 Encoding Set. If the rank is calculated incrementally as each
 Encoding is inserted into its Encoding Set, then an insert has O(N^2)
 operations in the field GF(2), but needs no XOR operations on
 Encoding Data octet arrays. Given the reduced cost of the rank
 operator, it can be used to determine which Encodings to use in the
 solving process. It is also used to detect redundant Encodings. As
 with solving, a large body of research has been conducted to create
 efficient algorithms to calculate rank and will not be presented in
 this document, but SHOULD be exploited by implementations of the
 Random Binary FEC scheme.

Zinky, et al. Expires February 24, 2013 [Page 14]

Internet-Draft DTN-EC-Scheme August 2012

6. Random Binary FEC code specification

 The Coding layer consists of an Encoder and Decoder at the end
 points. Intermediate Recoders may also be used to generate new
 Encodings from previously received Encodings to reduce the chance
 that duplicate Encodings are propagated over different paths to the
 destination.

6.1. Encoder

 The encoding process transforms a linear combination of Chunks into
 an Encoding. The encoding coefficients are stored in the Encoding
 Vector. For the general Random Binary Encoding the coefficients are
 generated randomly, for example by setting K indicies to one and the
 rest to zero. The Hamming weight of the of the Encoding Vector
 SHOULD be low to reduce the number of bitwise XOR operations done by
 the Encoder process. Empirical measurement show a Hamming weight of
 O(log N) generates Encodings that are as diverse as using Hamming
 weights of O(N) [Stud2006]. One caution on generating Encoding
 Vectors, if all the Hamming weights for Encodings in an Encoding Set
 are even, then the Encoding Set can not be solved [Stud2006]. A
 simple solution to avoid this situation is to generate Encoding
 Vectors with odd Hamming weights.

 The Encoding Data (E) is generated by taking the binary dot product
 of the Encoding Vector (V) and the vector of Chunks (C). That is,
 the Encoding Data accumulates an octet array that is the XOR of
 Chunks whose coefficient is one in the Encoding Vector.
 E = V dot C

6.2. Decoder

 When the Encoding Set rank is equal to the number of Chunks (N), then
 N linearly independent Encodings can be extracted and used to solve
 for the Chunks, see Section 5.2. If the encoding process is
 restricted, then simplified decoding algorithms can be used that
 exploit the restriction. The choice of decoding algorithm is left to
 the implementation, but to support interoperability, implementations
 MUST support the unrestricted encoding process. For example, a
 decoder could detect the pattern of Encodings and use the appropriate
 decoder algorithm, but would default to Gaussian Elimination.

 Decoding can be done incrementally by partially solving the decoding
 equations as the Encodings arrive. For some configurations of the
 encoding process, such as Block Parity, some Chunks can be solved
 before all N innovative Encodings have arrived. In these cases, the
 Decoder MAY deliver these Chunks to the Data Object layer before all
 Chunks can be decoded.

Zinky, et al. Expires February 24, 2013 [Page 15]

Internet-Draft DTN-EC-Scheme August 2012

6.3. Intermediate Recoder

 Intermediate Recoders generate new Encodings from the Encodings that
 it has already received. Recoding reduces the chance that duplicate
 Encodings are delivered over different paths to the destination. The
 recode operation selects several Encodings from the Encoding Set at
 Random. The selected Encodings are combined to form a new Encoding.
 The combination procedure is as follows

 The new Encoding Vector is the XOR of the coefficients of all the
 selected Encoding Vectors

 The new Encoding Data is the XOR of the octet arrays of all the
 selected Encoding Datas.

 When two Encodings with Hamming weight less than N/2 are combined,
 the resulting Hamming weight tends be larger than the originals.
 Conversely, when two Encodings with Hamming weight more than N/2 are
 combined, the resulting Hamming weight tend be smaller than the
 originals. Thus, the recoding process drives the Hamming weight
 towards N/2. As Encoding Bundles are transfered across the DTN,
 recoding can change any special configuration restrictions put on the
 encoding process. Recoding SHOULD have the option to be disabled as
 part of the Regulating Layer Handling Specification.

 Care should be given to the recoding process to insure that all
 Encodings in the Encoding Set are represented in the new stream of
 recoded Encodings. If each new Encoding draws always from the whole
 Encoding Set, then some Encodings will be chosen less often than
 others. Hence their information will not be propagated as much as
 Encodings that were selected more often. This problem is a form of
 the Coupon Collectors Problem, which results in an Encoding Stream
 that needs to receive up to N Log (N) Encodings instead of only N + 2
 to receive the full rank. One solution is to generate new Encodings
 in cycles. Each Encoding is allowed to be used only once during a
 cycle and when all Encodings are used a new cycle begins.

Zinky, et al. Expires February 24, 2013 [Page 16]

Internet-Draft DTN-EC-Scheme August 2012

7. Configure

 The Random Binary Scheme may be configured to implement the following
 basic FEC schemes, all of which can be represented by the formats in

Section 4.2.3 . The configurations restrict the coding formulas,
 which results in encoding streams with different properties, and
 potentially different decoding algorithms. Some of these FEC schemes
 are described in other RFCs and are fully specified here for the
 content delivery protocol using DTN bundles.

7.1. Full Random Binary

 Full Random Binary is the generic configuration on which other
 configuration characteristics are compared. Full Random Binary
 generates encodings randomly over the full range of possible Encoding
 Vectors. A new Encoding is generated by randomly setting each
 coefficient in the Encoding Vector to one, with a probability of 1/2.
 The resulting stream of Encodings has an average Hamming weight of N
 / 2. So the encoding process has O(N) octet array XORs. The
 received Encoding Set has no special structure, so the decoder must
 use full Gaussian Elimination. The algebraic solver algorithm does
 not have an advantage over the matrix inversion in this case, so the
 decoder process has O(N^2) octet array XORs. The expected
 transmission overhead is only N + 1.6, when the number of Chunks is
 on the order of 1000's. Finally, the coefficients of the Encoding
 Vector has no restrictions, so the Encoding Vector is packed into the
 full vector format (Table 2).

7.2. Windowed Erasure Codes

 With a simple restriction for how the random coefficients are
 generated, the encoding and decoding cost can be dramatically reduced
 while still maintaining the low transmission overhead of the Full
 Random configuration [Stud2006].

 The windowed configuration first restricts the Hamming weight and
 then restricts the range that coefficients can be set to one to a
 "window" of consecutive indicies. The Hamming weight is restricted
 to 2 log (N), but should be odd. So the encoder process is O(log N)
 instead of O(N) with Full Random. The window has a length of 2
 sqr(N) and the offset is chosen randomly for each new Encoding, with
 wrapping from highest to lowest index. With a slight modification to
 the Gaussian Elimination algorithm, the decoder can algebraically
 solve the Encoding Set with a windowed matrix in O(N^2.5), instead of
 the O(N^3) for Full Random. The transmission overhead remains close
 to the N + 1.6 overhead of the Full Random. Unfortunately,
 unconstrained Recoding will disrupt the specialized form of the
 windowed encoding matrix, which will result in higher decoding times

Zinky, et al. Expires February 24, 2013 [Page 17]

Internet-Draft DTN-EC-Scheme August 2012

 to again be O(N^3). Finally the coefficients are restricted to a
 window, so the Encoding Vector should be packed into the partial
 vector format (Table 4).

7.3. Compact No-code FEC Scheme

 The degenerate case of sending only Encodings with Hamming weight of
 one, i.e. only source symbols, can behave like an additional
 fragmentation layer or as the test case named "Compact No-code FEC
 Scheme" in [RFC5445]. In this configuration, the encoding and
 decoding process perform no work, but the system is not protected
 from any dropped bundles. Since the Encoding Vector has only one
 coefficient with value of one, its index should be packed into the
 list of indicies format (Table 3).

7.4. Block Parity

 To show the flexibility of the Random Binary FEC scheme, the classic
 block parity FEC scheme described in [RFC5445] can be fully specified
 for the DTN content delivery protocol using DTN bundles. As in the
 Compact No-code FEC Scheme, source symbols are sent unencoded with
 its Chunk index packed into the list of indicies format (Table 3).
 The block parity repair symbol has all the coefficients in the block
 to set to one, and uses partial vector format (Table 4). The normal
 incremental decoder will automatically detect source symbols as
 solved. The parity repair symbol will be applied, if any source
 symbols are dropped, or it is treated as redundant, if no bundles
 where dropped in the block. Chunks may be delivered as they arrive.
 The Block Parity FEC scheme is practical in the case where dropped
 bundles are rare and not bursty.

https://datatracker.ietf.org/doc/html/rfc5445
https://datatracker.ietf.org/doc/html/rfc5445

Zinky, et al. Expires February 24, 2013 [Page 18]

Internet-Draft DTN-EC-Scheme August 2012

8. Security Considerations

 No additional security considerations have been identified beyond
 those described in [ErasureCoding]

Zinky, et al. Expires February 24, 2013 [Page 19]

Internet-Draft DTN-EC-Scheme August 2012

9. IANA Considerations

 The Random Binary Scheme uses three FEC Encoding IDs. The assigned
 IDs should be less than 128 in order to fit into one byte using SDNV
 values. The reference implementation uses the following FEC Scheme
 Types:

 Full Binary Array = 1

 List of Chunk Indicies = 2

 Windowed Binary Array = 3

 Finite Field Array = 4

Zinky, et al. Expires February 24, 2013 [Page 20]

Internet-Draft DTN-EC-Scheme August 2012

10. References

10.1. Normative References

 [ErasureCoding]
 Zinky, J., Caro, A., and G. Stein, "Bundle Protocol
 Erasure Coding Extension",

draft-zinky-dtnrg-erasure-coding-extension-00 (work in
 progress), Aug 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, November 2007.

 [RFC5052] Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052, August 2007.

 [RFC5510] Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo,
 "Reed-Solomon Forward Error Correction (FEC) Schemes",

RFC 5510, April 2009.

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, May 2011.

10.2. Informative References

 [RFC5445] Watson, M., "Basic Forward Error Correction (FEC)
 Schemes", RFC 5445, March 2009.

 [Stud2006]
 Studholme, C. and I. Blake, "Windowed Erasure Codes",
 IEEE International Symposium on Information Theory,
 July 2006.

https://datatracker.ietf.org/doc/html/draft-zinky-dtnrg-erasure-coding-extension-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc5052
https://datatracker.ietf.org/doc/html/rfc5510
https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/rfc5445

Zinky, et al. Expires February 24, 2013 [Page 21]

Internet-Draft DTN-EC-Scheme August 2012

Authors' Addresses

 John Zinky
 Raytheon BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: jzinky@bbn.com

 Armando Caro
 Raytheon BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: acaro@bbn.com

 Gregory Stein
 Laboratory for Telecommunications Sciences
 8080 Greenmead Drive
 College Park, MD 20740
 US

 Email: gstein@ece.umd.edu

Zinky, et al. Expires February 24, 2013 [Page 22]

