Internet Draft Tanja Zseby

draft-zseby-ipfix-applicability-00.txt FhI FOKUS

Expires: November 2002 Reinaldo Penno
Nortel Networks
Nevil Brownlee
CAIDA

June 2002

IPFIX Applicability

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts. Internet-Drafts are draft documents valid for a maximum of
six months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet- Drafts
as reference material or to cite them other than as "work in
progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/l1id-abstracts. txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

This document describes how various applications can use the IP
Flow Information Export (IPFIX) protocol. It furthermore shows how
the IPFIX framework relates to other architectures and frameworks.

INTRODUCTION

APPLICATIONS OF IPFIX

1. ACCOUNTING WITH IPFIX

INTRUSION DETECTION WITH IPFIX

QOS MONITORING WITH IPFIX

.1. Measurement of Round-trip-time (RTT) with IPFIX
Measurement of One-way-delay (OwWD) with IPFIX
Measurement of Loss with IPFIX

Measurement of delay variation with IPFIX

. Sampling for QoS Monitoring

RELATION OF IPFIX TO OTHER FRAMEWORKS AND PROTOCOLS
1. IPFIX AND AAA

N‘N‘N‘N\N\I—\
W (W IN

N
w
N

N
w
w

N
w
»

N
w
01

OO0 oA BB WWNDNDNNDN

w W

https://datatracker.ietf.org/doc/html/draft-zseby-ipfix-applicability-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

3.1.1. Connecting via an AAA Client 6
3.1.2. Connecting via an Application Specific Module (ASM) 6
3.2. IPFIX AND RTFM 7
3.2.1. Definition of 'flow' 7
3.2.2. Configuration and Management 8
3.2.3. Data Model details 9
3.2.4. Application/transport protocol 9

3.3. IPFIX CONSIDERATIONS FOR MIDDLEBOXES 10
3.3.1. Firewall 11
3.3.2. Network Address Translation 11
3.3.3. Traffic Conditioners 13
3.3.4. Tunneling 14
3.3.5. VPNs 14
4. SECURITY CONSIDERATION 16

1. Introduction

The IPFIX protocol defines how IP Flow information can be exported
from routers, measurement probes or other devices. It is intended to
provide input for various applications. This document describes how
applications can use the IPFIX protocol. Furthermore the relationship
of IPFIX to other frameworks and architectures are described.

2. Applications of IPFIX
2.1.Accounting with IPFIX

Usage based accounting is one of the major application for which the
IPFIX protocol has been developed. IPFIX flow records contain the
number of transferred bytes per flow. This information is an
essential input for usage-based accounting.

In order to realize usage-based accounting with IPFIX the flow
definition has to be chosen in accordance to the tariff model. A
tariff can for instance be based on individual end-to-end stream.
Accounting in such a scenario can be realized for instance with a
flow definition determined by the quintuple that consists of source
address, destination address, protocol and portnumbers. Another
example is a class-dependent tariff (e.g. in a DiffServ networks).
For this flows could be distinguished just by DiffServ codepoint
(DSCP) and source address.

2.2.Intrusion detection with IPFIX

Intrusion detection systems (IDS) monitor and control security
incidents. A typical IDS system includes components like sensor,
event collector, and management stations. Sensors monitor network and
system traffic for attacks and other security-related events. Sensors
respond to and notify the administrator about these events as they
occur. Event collectors are a middle-tier component responsible for

transmitting events from sensors to the console and database. The
management component serves the following purposes:

- visually monitors events (with a console)
- collects data from sensors (with one or more event collectors)
- stores data from sensors (in a database)

With IPFIX, events of interest can be reported to the sensor either
by the collecting process or directly by the exporting process. It
depends on the scenario and the events of interest which solution is
better. Getting information directly from the exporting process has
the advantage that the sensor gets the information faster. It does
not need to wait for collector processing time or until the collector
has all relevant data.

Getting the information from a collector allows to correlate data
from different exporting processes (e.g. from different routers) to
get a better picture about what is going on in the network.

2.3.Q0S Monitoring with IPFIX.

The performance of QoS monitoring is one target application for using
the IPFIX protocol. QoS monitoring is the passive observation of
transmission quality for single flows or traffic aggregates in the
network. One example of its usefulness is the validation of QoS
guarantees in service level agreements. Some QoS metrics require the
correlation of data from multiple measurement points. For this the
clock of the involved exporting devices need to be synchronized.
Furthermore such measurements would benefit from post-processing
functions (e.g. packet ID generation) at the exporter and/or
collector. This section describes how the monitoring of different
metrics can be performed with IPFIX. The following metrics are
considered: round trip time, one-way-delay, loss and delay variation.

2.3.1.Measurement of Round-trip-time (RTT) with IPFIX

The passive measurement of round-trip-times (RTT) can be performed by
using packet pair matching techniques as described in [Brow@0]. For
the measurements, request/response packet pairs from protocols like
DNS, ICMP, SNMP or TCP (syn/syn-ack, data/ack) are utilized to
passively observe the RTT [Brow0@]. As always for passive
measurements this only works if the required traffic of interest is
actually present in the network. In order to use this measurement
technique, the IPFIX metering process needs to measure both
directions. A classification of the protocols mentioned above has to
be done. That means parts of the transport header are used for the
classification. Since a differentiation of flows in accordance to the
transport header is one of the requirements for IPFIX, such
classification can be performed without extensions. Nevertheless, the
meter needs to recognize request and response packets for the given
protocols and therefore needs to look further into the packets. The
capability to do this analysis is not part of the IPFIX requirements

but can be achieved by optional extensions to the classification
process. The exporting device needs to assign a timestamp for the
arrival of the packets. The calculation of the RTT can be done
directly at the exporter or at the collector. In the first case IPFIX
would transfer the calculated RTT to the collector. In the second
case IPFIX needs to send the observed packet types and the timestamps
to the collector.

2.3.2.Measurement of One-way-delay (OWD) with IPFIX

Passive one-way-delay measurements require the collection of data at
two measurement points. It is necessary to recognize packets at the
second measurement point to correlate packet arrival events from both
points. This can be done by capturing packet header and parts of the
packet that can be used to recognize the same packet at the
subsequent measurement point.

To reduce the amount of measurement data a unique packet ID

can be calculated from the header and part of the content e.g. by
using a CRC or hash function [GrDM98, DuGr00, ZsZC01].Since IPFIX is
not targeted at packet capturing these functionalities do not need to
be supported by a standard IPFIX meter. Nevertheless, in some
scenarios it might be sufficient to calculate a packet ID under
consideration of header fields including datagram ID and maybe
sequence numbers (from transport protocols) without looking at parts
of the packet content. If packet IDs need to be unique

only for a certain time interval or a certain amount of packet ID
collisions is tolerable this can be a sufficient solution.

2.3.3.Measurement of Loss with IPFIX

Passive loss measurements for single flows can be performed at one
measurement point by using sequence numbers that are present in
higher layer protocols. This requires the capturing of the sequence
numbers of subsequent packets of the observed flow by the IPFIX
metering process. An alternative to this is to perform a two-point
measurement as described above and just consider packets as lost that
do not arrive at the second measurement point in a given maximum time
frame.

2.3.4.Measurement of delay variation with IPFIX

Delay variation is defined as the difference of one-way-delay values
for selected packets [DeCi@l]. Therefore this metric can be
calculated by performing passive measurement of one-way-delay for
subsequent packets (e.g. of a flow) and then calculating the
differences.

2.3.5.8ampling for QoS Monitoring

Since QoS monitoring can produce an overwhelming amount of
measurement data, methods such as aggregation of results, and

sampling would greatly increase the efficiency of the collection and
analysis process. Sampling methods can be grouped according to the
sampling strategy (systematic, random or stratified) and the trigger
that starts a sampling interval (count-based, time-based or packet-
content-based) [C1PB93]. Sampling can also be used as a method to
dynamically reduce resource consumption if the meter is overloaded.
Then the IPFIX meter can switch to a sampling method if too many
packets have to be observed. Since the expected estimation error
heavily depends on the deployed sampling strategy, the application
that receives the data needs to be aware of the sampling scheme and
the parameters in use. Therefore it is important that the IPFIX
exporter informs the collector precisely about the used sampling
strategy. This is especially important if the metering process
dynamically invokes sampling.

3. Relation of IPFIX to other frameworks and protocols
3.1.IPFIX and AAA

AAA defines a protocol and architecture for authentication,
authorization and accounting for service usage. The DIAMETER protocol
is used for AAA communication for network access services (Mobile IP,
NASREQ, and ROAMOPS). The AAA architecture [REC2903] provides a
framework for extending the AAA support also for other services.
DIAMETER defines the exchange of messages between AAA entities, e.g.
between AAA clients at access devices and AAA servers and among AAA
servers. It is used also for the transfer of accounting records.
Usage-based accounting requires measurement data from the network.
IPFIX defines a protocol to export such data from routers,
measurement probes and other devices.

The provisioning of accounting with IPFIX can be realized without an
AAA infrastructure. The collector can directly forward the
measurement information to an accounting application Nevertheless, if
an AAA infrastructure is in place, IPFIX can provide the input for
the generation of accounting records and several features of the AAA
architecture can be used. Features include the mapping of a user ID
to the flow information (by using authentication information), the
generation of DIAMETER accounting records and the secure exchange of
accounting records between domains with DIAMETER. Three possibilities
to connect IPFIX and AAA can be distinguished:

3.1.1.Connecting via an AAA Client

One possibility to connect IPFIX and AAA is to run an AAA client on
the IPFIX collector. This client can generate DIAMETER accounting
messages and send them to an AAA server. The mapping of the flow
information to a user ID can be done in the AAA server by using
data from the authentication process. DIAMETER accounting messages
can be sent to the accounting application or to other AAA servers
(e.g. in roaming scenarios).

https://datatracker.ietf.org/doc/html/rfc2903

| AAA-S |------------- >| AAA-S |
Fommmmo oo + [S +
N
| DIAMETER
I
I
B TR +--+
| | AAA-C | |
+ Fe------- +
| I
| Collector |
B +
N
| IPFIX
I
Fomm e e o - +
| Exporter |
S SRUREpUp . +

Figure 2: IPFIX collector connects to AAA server via AAA client

3.1.2.Connecting via an Application Specific Module (ASM)

Another possibility is to directly connect the IPFIX collector with
the AAA server via an application specific module (ASM).

Application specific modules have been proposed by the IRTF AAA
architecture research group (AAARCH) in [REC2903]. They act as an
interface between AAA server and service equipment. In this case

the IPFIX collector is part of the ASM. The ASM acts as an interface
between the IPFIX protocol and the input interface of the AAA server.
The ASM translates the received IPFIX data into an appropriate format
for the AAA server. The AAA server then can add information about the
user ID and generate a DIAMETER accounting record. This accounting
record can be sent to an accounting application or to other AAA
servers.

tommmenan- + DIAMETER Hommaeaen +
| AAA-S |------------- >| AAA-S |
Fommmmo oo + Fommmm oo +

A
I

o e e +

| ASM |

| H+---memeem - +

| | Collector | |

S +

https://datatracker.ietf.org/doc/html/rfc2903

Figure 3: IPFIX connects to AAA server via ASM

3.2.IPFIX and RTFM

This section compares the Real-time Traffic Flow Measurement (RTFM)
framework with the IPFIX framework.

3.2.1.Definition of 'flow'

RTFM and IPFIX both use the same definition of flow; a flow is a set
of packets which share a common set of end-point address attribute
values.A flow is therefore completely specified by that set of
values, together with an inactivity timeout. A flow is considered to
have ended when no packets are seen for at least the inactivity time.

RTFM flows are bidirectional, which has given rise to some confusion.
At the simplest level, a flow information exporter may achieve this
by maintaining two unidirectional flows, one for each direcion. To
export bidirectional flow information, e.g. to- and from- packet
counts, for a flow from A to B, the exporter has only to search its
flow table to find the matching flow from B to A.

RTFM, however, takes bi-directionality a stage further, by including
in the RTFM architecture [RFC 2722] a fully-detailed algorithm for
realtime matching of the two directions of a flow. This was done
for two reasons, to reduce the memory required to store each

flow (common address attributes for each direction), and to allow
for attributes which required fine detail for the two directions,
e.g. short-term bit rate distributions [RFC 2724].

** So far there has been no suggestion that IPFIX should do this.

3.2.2.Configuration and Management

The RTFM architecture specifies a complete system for gathering
flow information. It defines three entities,
- Meters are very similar to IPFIX exporters.
- Meter Readers are very similar to IPFIX collectors.
- Managers co-ordinate the activities of meters and meter readers,
and download configuration to them.

Note that the whole RTFM system is asynchronous, many readers may
collector flow data from a meter, and any reader may collect flow
data from many meters.

Rulesets allow the user to specify which flows are of interest,

https://datatracker.ietf.org/doc/html/rfc2722
https://datatracker.ietf.org/doc/html/rfc2724

which are the source and destination ends of each flow, and

what level of address granularity is required in the metered flows.
For example, one may select all packets from 192.168/16, but

build flow information for 192.168/24. RTFM selection is done by
testing under masks, and the masks do not have to use consective ones
from the left. Non-contiguous masks were considered important for
handling some 0SI protocols, but the need for that has diminished
considerably.

The RTFM approach is based on RMON, in that if a user wants to
collect flow data for some particular set of flows, this can be
achieved by writing a ruleset, i.e. an SRL program [RFEC 2723], to
specify what flows are of interest, requesting a manager to download
that ruleset to a meter, and requesting the manager to have a meter
reader collect the flow data at specified intervals.

The details of how the manager communicates this information to
meters and meter readers is not specified in the architecture. RTFM
has a Meter MIB [REC 2720], which is a standard which can be used to
configure a meter, but nothing is said about how to configure a meter
reader.

The extent to which IPFIX should specify how meters or exporters
should be configured is, at this stage, an open question. Clearly
a collector needs some way to be sure of what it's collecting,
e.g. by receiving 'templates' from the meter.

RTFM and IPFIX both leave parts of the system unspecified. For RTFM
flow data to be useful one must know the ruleset used to configure
the meter, but a user can specify the ruleset. For IPFIX one knows
what the data is from the templates, but we have yet to determine
whether in-band configuration will be supported.

3.2.3.Data Model details
3.2.3.1.Count in one bucket

wWithin a ruleset, a packet may only be counted on one bucket, i.e. it
may only be included in one flow. This means that the meter does not
have to keep track of overlapping flows - if such aggregation is
required, it must be done after the raw flow data has been read by a
meter reader.

>From time to time one may wish to collect flow data for different
levels of aggreation at the same time. RTFM allows a meter to run
several rulesets at the same time, and meter readers must specify
which rulesets they are collecting data from.

The 'count in one bucket' rule, together with the ability to run
multiple rulesets, has proved very simple and effective in practice.

3.2.3.2.Counter wrapping

https://datatracker.ietf.org/doc/html/rfc2723
https://datatracker.ietf.org/doc/html/rfc2720

For its packet- and byte-count attributes RTFM uses continuously-
incrementing 64-bit counters, which are never reset. This makes
asynchronous meter reading easy, any reader simply has to remember

its previous reading and compute the difference. The only caveat is that
the meter should be read often enough to avoid situations when the
counter has cycled more than once between readings.

3.2.3.3.Sampling issues

RTFM provides 1 out of N sampling as a configuration option, so
that some metering interfaces may only process every Nth packet.
The RTFM Arcitecture [RFEC 2722] does not discuss the statistical
implications of this, merely saying that users will need to
satisfy themselves that sampling makes sense in their environment.

RTFM makes no provision for flow sampling. Recently there has been a
lot of interest in flow sampling schemes which favour the 'most
important' flows, perhaps we need to consider this for IPFIX.

3.2.4.Application/transport protocol

RTFM has a standards-track Meter MIB [REC 2720], which can be used
both to configure a meter and to read flow data from it. The MIB
provides a way to read lists of attributes with a single Object
Identifier (called a 'package'), which dramatically reduces the SNMP
overhead for flow data collection. NeTraMet, a widely-used
open-source RTFM implementation, uses SNMPv2C for configuration and
data collection.

SNMP, of course, normally uses UDP as its transport protocol.
Since RTFM requires a reliable flow data transport system,

an RTFM meter reader must time out and resend unanswered SNMP
requests.

Apart from being clumsy, this can limit the maximum data transfer
rate from meter to meter reader. SNMP over TCP would be a better
approach, but that is currently an IRTF project.

On the other hand, RTFM does not specify an application protocol in
its architecture, leaving this as an implementation issue. For
example, a team at IBM Research implemented a RTFM meter and meter
reader in a single host, with the reader storing the flow data
directly into a large database system. Simlarly, many NeTraMet
user run the meter and meter reader on the same host system.

A need for high flow data rates highlights the need for careful
systems design when building a flow data collection system. When
data rates are high, and it is not possible to use a high level of
aggregation, then it makes sense to have the collectors very close to
their exporters. Once the data is safely on a dedicated host
machine, large volumes of it can be moved using 'background'
techniques such as FTP.

https://datatracker.ietf.org/doc/html/rfc2722
https://datatracker.ietf.org/doc/html/rfc2720

The RTFM architecture only specifies a pull model for getting
data out of a meter. To implement push mode data transfer would
require specification of triggers to indicate when data should
be sent for each flow.

3.3.IPFIX Considerations for Middleboxes

A Middlebox is a network intermediate device that implements one or
more of the middlebox services. Policy based packet filtering (a.k.a.
firewall), Network address translation (NAT), Intrusion detection,
Load balancing, Policy based tunneling and IPsec security are all
examples of a middlebox function (or service). [MCEW]. For instance,
a NAT middlebox is a middlebox implementing NAT service and a
firewall middlebox is a middlebox implementing firewall service.

It is expected that the exporter in the IPFIX architecture will
probably implement some form of middlebox service given its ubiquity
today. Since some of these middlebox services might affect flow
exportation and how the collector interprets them, there is a need to
provide an analysis of these implications in relation to the IPFIX
architecture and a set of recommendations.

The following sections provide a non-exhaustive analysis of middlebox
services, its implications on the IPFIX architecture and a
corresponding set of recommendations.

3.3.1.Firewall

Firewall is a policy based packet filtering middlebox function,
typically used for restricting access to/from specific devices and
applications. The policies are often termed Access Control Lists
(ACLs) [MCEW].

The firewall middlebox service allows the exporter to explicitly drop
packets based on some administrative policy. In this case, the
exporter can take one of the following actions that will have a
direct impact on the information provided by the collector to the
user.

- Silently Discard

In this case the packet is discarded and no flow information record
is sent to the collector.

- Discard and export flow

In this case the packet is discarded, and the flow information record
is sent to the collector.

- Discard and export flow with discard notification

In this case the packet is discarded, and the flow information record
is sent to the collector with an indication that the packet was
discarded.

3.3.2.Network Address Translation

Network Address Translation is a method by which IP addresses are
mapped from one address realm to another, providing transparent
routing to end hosts. Transparent routing here refers to modifying
end-node addresses en-route and maintaining state for these updates
so that when a datagram leaves one realm and enters another,
datagrams pertaining to a session are forwarded to the right end-host
in either realm [NAT-TERM].

>From an exporter (middlebox) perspective, a NAT is composed of two
flows, one from the client to the NAT middlebox and another from the
NAT middlebox to the destination. Based on this fact, the exporter
has several modes of operation, i.e., it can export the private realm
flow, the public realm, or both. This is further constrained by the
flavor of NAT implemented, meaning that in order for the exported
information to be useful for the collector, sometimes the associated
flows on the two realms need to be exported in the same flow record.

Although there are many flavors of address translation that lend
themselves to different applications, this section will only address
the IPFIX architecture implications of traditional NAT, bi-
directional NAT and twice NAT.

3.3.2.1.Traditional NAT

Traditional NAT would allow hosts within a private network to
transparently access hosts in the external network, in most cases. In
a traditional NAT, sessions are unidirectional, outbound from the
private network. This is in contrast with bi-directional NAT, which
permits sessions in both inbound and outbound directions. A detailed
description of traditional NAT may be found in section [NAT-TERM].

If the exporter is providing traditional NAT service and only the
private realm flow is exported, only destination based information
can be inferred from the collector. The reason for this is twofold.
First, the collector will not be able to find the reverse flow (when
applicable) associated with a private realm flow record, and second
is that in the more general scenario the collector can be connected
to several exporters providing NAT service and there might be
overlapping private realm addresses between the networks connected to
these exporters.

In a traditional NAT scenario the exporter SHOULD export private and
public realm information in the same flow record or provide the
collector with a unique key to associate the two if exported on

different flow records.

3.3.2.2.Bi-Directional NAT

With a bi-directional NAT, sessions can be initiated from hosts in
the public network as well as the private network. Private network
addresses are bound to globally unique addresses, statically or
dynamically as connections are established in either direction.
Detailed description of Bi-Directional may be found in section [NAT-
TERM] .

3.3.2.3.Twice NAT

Twice NAT is a variation of NAT in that both the source and
destination addresses are modified by NAT as a datagram crosses
address realms. This is in contrast to Traditional-NAT and Bi-
Directional NAT, where only one of the addresses (either source or
destination) is translated. Note, there is no such term as 'Once-
NAT'. Detailed description of Bi-Directional may be found in section
[NAT-TERM].

In the case of twice NAT the exporter MUST export private and public
realm information in the same flow record or provide the collector
with a unique key to associate the two if exported on different flow
records.

3.3.3.Traffic Conditioners

A traffic conditioner may contain the following elements: meter,
marker, shaper, and dropper. A traffic stream is selected by a
classifier, which steers the packets to a logical instance of a
traffic conditioner[DIFF-ARCH].

>From an IPFIX architecture perspective we are going to address
marking, shaping and dropping services.

3.3.3.1.Marking

Diffserv packet markers set the DS field of a packet to a particular
codepoint, adding the marked packet to a particular DS behavior
aggregate. The marker may be configured to mark all packets which
are steered to it to a single codepoint, or may be configured to mark
a packet to one of a set of codepoints used to select a PHB in a PHB
group, according to the state of a meter. When the marker changes
the codepoint in a packet it is said to have "re-marked" the packet
[DIFF-ARCH].

>From and IPFIX architecture perspective, the exporter can take one of
the following actions when it needs to remark a packet.

- Unmarked flow

The exporter can export the flow before it was remarked. This mode of
operation is strongly discouraged.

- Remarked flow
The exporter can export the flow after it was remarked.
- Unmarked and remarked flow.

The exporter can export the flow before and after it was remarked or
export the flow before it was remarked and an indication of what was
the DSCP after it was remarked.

3.3.3.2.Shapers

Shapers delay some or all of the packets in a traffic stream in Order
to bring the stream into compliance with a traffic profile. A shaper
usually has a finite-size buffer, and packets may be discarded if
there is not sufficient buffer space to hold the delayed packets.

For an IPFIX perspective, since the discard of a packet by a shaper
is not voluntary, no indication should be sent to the collector.

3.3.3.3.Droppers

Droppers discard some or all of the packets in a traffic stream in
order to bring the stream into compliance with a traffic profile.
This process is known as "policing" the stream. Note that a dropper
can be implemented as a special case of a shaper by setting the
shaper buffer size to zero (or a few) packets.

In a manner analogous to the middlebox firewall service, middlebox
policing services also allow the exporter to explicitly drop packets
based on some administrative policy.

The three possible export behaviors described for the firewall
service when a packet needs to be dropped are also applicable to
here, i.e., silent discard, discard and export flow, discard and
export flow with discard notification.

3.3.4.Tunneling

The exporter can export the flows before and/or after they get
tunneled. In the later case the encapsulated flow information might
not be available due to confidentiality precautions such as those
used by IPsec, or due to the fact the exporter lacks the necessary
intelligence to inspect the encapsulated packet. Moreover, depending
on where in the network the exporter is located, it might only be
able to export flows associated with the tunnel, without visibility
into the encapsulated packet.

Apart from what was said above, it should also be factored in the
fact that flows exported before they get tunneled, will provide
information about the private network sites, but not necessarily
about the backbone, since the route taken by the packet it's now know
at that point in time (and vice-versa).

3.3.5.VPNs

The term "Virtual Private Network" (VPN) refers to the communication
between a set of sites, making use of a shared network
infrastructure. Multiple sites of a private network may therefore
communicate via the public infrastructure, in order to facilitate the
operation of the private network. The logical structure of the VPN,
such as addressing, topology, connectivity, reachability, and access
control, is equivalent to part of or all of a conventional private
network using private facilities [RFC2764] [VPN-2547BIS].

There are multiple flavors of VPNs, the one with more relevance to
the IPFIX architecture is the PE-based-VPN. A PE-based VPN (or
Provider Edge-based Virtual Private Network) is one in which PE
devices in the SP network provide the VPN. This allows the existence
of the VPN to be hidden from the CE devices, which can operate as if
part of a normal customer network. A detailed discussion of VPNs can
be found in [PPVPN-FR].

3.3.5.1.Layer 3 PE-based VPN

A layer 3 PE-based VPN is one in which the SP takes part in IP level
forwarding based on the customer network's IP address space. 1In

general, the customer network is likely to make use of private and/or
non-unique IP addresses. This implies that at least some devices in
the provider network needs to understand the IP address space as used
in the customer network. Typically this knowledge is limited to the
PE device [PPVPN-FR] which is directly attached to the customer.

In a layer 3 PE-based VPN the provider will need to participate in
some aspects of management and provisioning of the VPNs, such as
ensuring that the PE devices are configured to support the correct
VPNs. This implies that layer 3 PE-based VPNs are by definition
provider provisioned VPNs [PPVPN-FR].

In order to connect the different VPN sites belonging to the same VPN
the SP uses a tunneling technique such as MPLS, L2TP or IPsec. These
tunnels originate and terminate on PE devices.

One of the characteristics of a layer 3 PE-based VPNs is that they
offload some aspects of VPN management from the customer network.
>From an IPFIX architecture perspective, this means that the SP is the
one that potentially will be providing the IPFIX service for the VPNs
that it provides connectivity.

https://datatracker.ietf.org/doc/html/rfc2764

The exporter in Layer 3 PE-based VPN can be located on the customer's
network, on the SP's backbone (P Router) or on the edge (PE router).
The premise of this discussion is that the exporter is the one
providing middlebox services, so in the case of VPNs we assume that
the exporter is located in a PE device.

3.3.5.1.1.0verlapping Address Realms

In the case the exporter plays the role of a PE router [VPN-2547BIS]
in a provider provisioned VPN scenario and has VPNs with overlapping
private address realms, it can only provide useful non-conflicting
information to the provider for intra-VPN traffic if it uses a
technique that allows the collector to uniquely identify to which VPN
the flow belongs.

Several techniques could be used to accomplish this goal. One of
these techniques is to include the VPN Global unique identifier [VPN-
ID] as one of the keys in the flow record.

In the case the exporter supports VPNs with overlapping private
address realms, it MUST include the VPN-ID [VPN-ID] in the exported
flow record.

3.3.5.2.Layer 2 PE-based VPN [TBD]

A layer 2 PE-based VPN is one in which the network is aware of the
VPN, but does only layer 2 forwarding and signaling. This implies
that the SP provisions and maintains layer 2 connectivity between CE
devices [VPN-L2]7.

Forwarding options include MAC addresses (such as LAN emulation), use
of point-to-point link layer connections (FR or ATM), multipoint-to-
point (using MPLS multipoint to point LSPs), and point-to-multipoint
(e.g. ATM VCCs).

For a layer 2 PE-based VPN, the PE device may be a router, LSR, or IP
switch. From the CE's perspective, the PE will be operating as a
switch.

4. Security Consideration

This document describes the usage of IPFIX in various scenarios.
Currently only the IPFIX target applications (accounting, QoS
monitoring, traffic profiling, traffic engineering and intrusion
detection) are addressed. The security requirements for those
applications are already addressed in the IPFIX requirements draft.
These requirements must be considered for the selection and
specification of the IPFIX protocol. The IPFIX extensions proposed in
this document do not induce further security hazards.

The second section of this document describes how IPFIX can be used
in combination with other frameworks. New security hazards can arise

when two individually secure frameworks are combined. For the
combination of AAA with IPFIX an ASM or an IPFIX collector can
function as transit point for the messages. It has to be ensured that
at this point the applied security mechanisms (e.g. encryption of
messages) are maintained.

6. References

[QuzCO2] J. Quittek ,et. Al "Requirements for IP Flow Information
Export ", (work in progress) ,Internet Draft, Internet Engineering
Task Force, <draft-ietf-ipfix-regs-01.txt>, February 2002

[Wood®2]M. Wood ,et al.," Intrusion Detection Message Exchange
Requirements", (work in progress), Internet Draft, Internet
Engineering Task Force, draft-ietf-idwg-requirements-06,February
2002.

[Awdu02] Daniel 0. Awduche, et. al.," Overview and Principles of
Internet Traffic Engineering", (work in progress), Internet Draft,
Internet Engineering Task Force, draft-ietf-tewg-principles-02.txt,
May 2002

[BrowdO] Nevil Brownlee: Packet Matching for NeTraMet Distributions,
http://www2.auckland.ac.nz/net//Internet/rtfm/meetings/47-
adelaide/pp-dist/

[DeCi®1] C. Demichelis, P. Cimento: IP Packet Delay Variation Metric
for IPPM, <draft-ietf-ippm-ipdv-08.txt>, November 2001

[RFC2680] G. Almes, S. Kalidindi, M. Zekauskas: A One-way Packet Loss
Metric for IPPM, September 1999

[C1PB93] K.C. Claffy, George C Polyzos, Hans-Werner Braun:
Application of Sampling Methodologies to Network Traffic
Characterization, Proceedings of ACM SIGCOMM'93,

San Francisco, CA, USA, September 13 - 17, 1993

[GrDM98] Ian D. GRAHAM, Stephen F. DONNELLY, Stele MARTIN, Jed
MARTENS, John G. CLEARY: Nonintrusive and Accurate Measurement of
Unidirectional Delay and Delay Variation on the Internet, INET'98,
Geneva, Switzerland,

21-24 July, 1998

[DuGre®] Nick Duffield, Matthias Grossglauser: "Trajectory Sampling
for Direct Traffic Observation", Proceedings of ACM SIGCOMM 2000,
Stockholm, Sweden, August 28 - September 1, 2000.

[RFC2679] G. Almes, S. Kalidindi, M. Zekauskas: A One-way Delay
Metric for IPPM, Request for Comments: 2679, September 1999

[ZszC01] Tanja Zseby, Sebastian Zander, Georg Carle: Evaluation

https://datatracker.ietf.org/doc/html/draft-ietf-ipfix-reqs-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idwg-requirements-06
https://datatracker.ietf.org/doc/html/draft-ietf-tewg-principles-02.txt
http://www2.auckland.ac.nz/net//Internet/rtfm/meetings/47-
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ipdv-08.txt

of Building Blocks
for Passive One-way-delay Measurements, Proceedings of Passive and
Active Measurement Workshop (PAM 2001), Amsterdam, The Netherlands,
April 23-24, 2001

[MCFW] Srisuresh, S. et al. "Middlebox Communication Architecture
and framework," work in progress. October 2001.

[NAT-TERM] Srisuresh, P. and M. Holdrege, "IP Network Address
Translator (NAT) Terminology and Considerations", RFC 2663, August
1999.

[NAT-TRAD] Srisuresh, P. and K. Egevang, "Traditional IP Network
Address Translator (Traditional NAT)", REC 3022, January 2001.

[PPVPN-FR] Callon, R., Suzuki, M., et al. "A Framework for Provider
Provisioned Virtual Private Networks ", work in progress, <draft-
ietf-ppvpn-framework-03.txt>, January 2002.

[VPN-L2] Rosen, E., "An Architecture for L2VPNs," Internet-draft
<draft-ietf-ppvpn-12vpn-00.txt>, July 2001.

[RFC2475] Black, D., Blake, S., Carlson, M., Davies, E., Wang, Z. and
W. Weiss, "An Architecture for Differentiated Services", RFC 2475,
December 1998.

[RFC2903] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, D. Spence,
"Generic AAA Architecture", RFC 2903, August 2000

7. Acknowledgements

We would like to thank the following persons for their contribution,
discussion on the mailing list and valuable comments:

Robert Loewe

8. Author's Addresses

Tanja Zseby

Fraunhofer Institute for Open Communication Systems(FOKUS)
Kaiserin-Augusta-Allee 31

10589 Berlin

Germany

Phone: +49 30 3463 7153

Email: zseby@fokus.fhg.de

Reinaldo Penno
Nortel Networks, Inc.
2305 Mission College Boulevard

https://datatracker.ietf.org/doc/html/rfc2663
https://datatracker.ietf.org/doc/html/rfc3022
https://datatracker.ietf.org/doc/html/draft-ietf-ppvpn-l2vpn-00.txt
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2903

Building SC9-B1240
Santa Clara, CA 95134
Email: rpenno@nortelnetworks.com

Nevil Brownlee

CAIDA (UCSD/SDSC)

9500 Gilman Drive

La Jolla, CA 92093-0505
Phone : +1 858 534 8338
Email : nevil@caida.org

9. Full Copyright Statement

Copyright (C) The Internet Society (date). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain
it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction
of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such
as by removing the copyright notice or references to the Internet
Society or other Internet organizations, except as needed for the
purpose of developing Internet standards in which case the
procedures for copyrights defined in the Internet Standards process
must be followed, or as required to translate it into.

