
Workgroup: Network Working Group

Internet-Draft: draft-zubov-snif-02

Published: 7 February 2022

Intended Status: Experimental

Expires: 11 August 2022

Authors: J. Zubov

VESvault Corp

Deploying Publicly Trusted TLS Servers on IoT Devices Using SNI-based

End-to-End TLS Forwarding (SNIF)

Abstract

This document proposes a solution, referred as SNIF, that provides

the means for any Internet connected device to:

allocate a globally unique anonymous hostname;

obtain and maintain a publicly trusted X.509 certificate issued

for the allocated hostname;

accept incoming TLS connections on specific TCP ports of the

allocated hostname from any TLS clients that are capable of

sending Server Name Indication.

The private key associated with the X.509 certificate is securely

stored on the TLS terminating device, and is never exposed to any

other party at any step of the process.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-zubov-snif.

Information can be found at https://snif.host.

Source for this draft and an issue tracker can be found at https://

github.com/vesvault/snif-i-d.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-zubov-snif
https://datatracker.ietf.org/doc/draft-zubov-snif
https://snif.host
https://github.com/vesvault/snif-i-d
https://github.com/vesvault/snif-i-d
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Overview

3. SNIF CA Proxy Protocol

3.1. Protocol Summary

3.2. Protocol Flow

3.3. CN Allocation Request

3.4. CSR Submission Request

3.5. Certificate Download Request

4. SNIF Relay Protocol Suite

4.1. SNIF Messages

4.2. SNIF Control Connection Protocol

4.3. SNIF Service Connection Protocol

4.4. SNIF Client Connection Protocol

4.5. SNIF IPC FIFO Protocol

4.6. Abuse Management

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Author's Address

¶

¶

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

A typical Internet-of-Things (IoT) device connects to the Internet

using a dynamic IP address, and is usually unable to accept incoming

connections to TCP ports. A dedicated trusted relay is needed to

facilitate the communications between the IoT device and its

intended users. While all communications are recommended to be TLS

encrypted, the trusted relay will terminate each TLS connection and

therefore have access to unencrypted traffic between IoT devices and

user clients, which may pose undesirable security risk.

Designing a dedicated relay that works in end-to-end encrypted mode,

where the TLS tunnel is established between the IoT device and the

client, and is passed by the relay in an encrypted form, raises

additional challenges. Clients expect to be able to verify the

authenticity of the TLS certificate presented by the IoT device they

are connecting to. Public certificate authorities requite to

validate the ownership of the hostname the certificate is being

requested for, using certain challenge mechanisms. Therefore, the

IoT device needs to allocate a unique hostname, and to be able to

complete the CA challenge in order to acquire a trusted certificate.

Alternatively, the client may decide to use a different certificate

trust scheme, not based on publicly trusted root CAs. In this case,

the client is limited to specifically built software with custom

trust rules, or the system trust root on the client device needs to

be customized.

This document proposes a solution, referred as SNIF, that allows any

common TLS client with standard root CAs, such as a web browser, to

establish a trusted end-to-end TLS connection with an IoT device

using the unique hostname permanently allocated to the device, via a

dedicated relay.

While this document focuses on IoT devices, SNIF is applicable to

any physical or virtual device or software that can benefit from

accepting trusted TLS connections to an anonymous hostname.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Overview

SNIF CA Proxy is a combination of web-based services and background

processes that run on a publicly accessible server, normally on the

¶

¶

¶

¶

¶

¶

same physical server as SNIF Relay. SNIF CA Proxy allocates

hostnames for SNIF Connectors and facilitates issuing and renewing

X.509 certificates [RFC5280] without having access to the

Connectors' private keys. The functions of SNIF CA Proxy are

described in Section 3.

SNIF Relay is a process that runs on a publicly accessible server,

normally on the same physical server as SNIF CA Proxy. SNIF Relay

facilitates end-to-end TLS connections, [RFC8446] or older versions,

between SNIF Clients and SNIF Connectors. The functions of SNIF

Relay are described in Section 4.

SNIF Connector is a software process that runs on an IoT device, or

on other type of device that intends to provide TLS-based services

that can be accessed by general purpose TLS clients using SNIF

Relay. SNIF Connector can be implemented as a standalone process

that communicates with the TLS server processes over local

filesystem and sockets, or as an integral part of a TLS server

process.

SNIF Client is any common TLS-compatible client with SNI capability

[RFC6066], such as a web browser or an email client, that connects

to a SNIF hostname provided by a specific SNIF Connector. SNIF

Client does not need any awareness of SNIF, or of any protocols

described in this document.

Certificate Authority (CA) is a service that issues public trusted

TLS Certificates to specific hostnames when requested by the

hostname owner, upon validating the ownership of the hostname. CA

does not need any awareness of SNIF, except for a working

relationship with the SNIF CA Proxy that requests certificates using

protocols supported by the CA.

SNIF Peripheral Process is any kind of additional service that

extends or supplements functions of SNIF, in a way not defined

within the scope of this document.

3. SNIF CA Proxy Protocol

SNIF CA Proxy Protocol is designed for securely acquiring and

maintaining a publicly trusted TLS/SSL X.509 certificate issued by a

Certificate Authority to a uniquely allocated hostname, by an agent

that has no direct control over that hostname, or over a server the

hostname is pointing to.

3.1. Protocol Summary

SNIF CA Proxy accepts requests from SNIF Connectors via HTTP /

HTTPS.

¶

¶

¶

¶

¶

¶

¶

¶

SNIF CA Proxy interacts with the CA using protocols supported by the

CA, such as ACME [RFC8555], not covered by this document.

Each SNIF Connector is configured with a specific initiation URL

({initUrl}), which is specific to the SNIF CA Proxy server the

Connector intends to work with. Depending on the CA Proxy rules,

{initUrl} might be unique for each Connector, or common for multiple

Connectors.

3.2. Protocol Flow

Upon the initial start or after a hard reset, the Connector SHALL

generate a Private Key, which needs to be securely permanently

stored by the Connector. Any key algorithm acceptable by the CA can

be used, generally RSA-4096 is recommended.

The Connector SHALL send a CN Allocation Request using the

{initUrl}.

Having the canonical name {cn}, the Connector SHALL generate a CSR

[RFC2986] using the Private Key, the subject containing the {cn}.

The CSR subject may or may not have other fields besides {cn},

according to the specific requirements of the CA.

The Connector SHALL issue a CSR Submission Request to send the CSR

to the CA Proxy.

Once the CSR is submitted, the Connector MUST permanently store the

{cn} by some means - to minimize the storage compartments it might

be practical to generate and store a dummy self-signed certificate

with the {cn} in the subject until it gets replaced with a trusted

certificate issued by the CA.

A this point, the Connector will normally know the SNIF hostname it

will be using with the SNIF Relay - it matches the {cn} in case of a

single host CN, or is a one sub-level down from a wildcard {cn}, the

name being derived by the Connector in a way that is not

deterministically derivable from the {cn} and the public key, e.g. a

hash of the Private Key. The Connector SHOULD communicate the

hostname by some means to the SNIF Clients that will be accessing

the Connector. The means of such communication is not covered by

this document.

The Connector can now send a Certificate Download Request, and

SHOULD verify the returned Certificate. If the Certificate is valid

- the Connector MUST permanently store it.

If the Certificate Download Request fails - the Connector SHOULD

repeat the request after certain delay. In case if the response was

401 and the {authUrl} is returned in a header, and the Connector has

¶

¶

¶

¶

¶

¶

¶

¶

¶

Connection from:

Connection to:

Protocol:

Connection from:

the means of communicating with the device user - the Connector also

SHOULD alert the user and bring {authUrl} to their attention by some

means, so the user can complete the required authorization steps. If

the Connector has no means of alerting the user, which is often the

case with IoT devices - the user MUST be provided with some external

means of authorizing with the CA Proxy, not covered by this

domcument.

Once the Certificate is stored, the Connector is capable of

terminating SNIF connections, and may proceed launching a SNIF

Control Connection (Section 4.2).

The Connector SHOULD watch for the expiration of the stored

Certificate. If the Certificate is about to expire in 7 days or

less, or has already expired - the Connector SHOULD send a

Certificate Download Requests, and repeat with appropriate delays

until the renewed Certificate is successfully downloaded and

verified.

At any stage of the flow, if the Connector receives unexpected

volume of rejections or inconsistent responses from the CA Proxy,

the Connector MAY decide to hard reset the storage and start the

flow over from the beginning. In such case, the Connector will have

to re-send its new SNIF hostname to any concerned SNIF Clients, the

means of such communication is not covered by this document.

3.3. CN Allocation Request

SNIF Connector

SNIF CA Proxy

https or http

Response 200: Canonical Name (CN) is successfully allocated. The

response headers MUST include X-SNIF-CN: with the value of the

allocated {cn}, either a wildcard starting with "*.", or a single

hostname, depending on the CA Proxy rules. The response content type

SHOULD be "text/plain", the response body SHOULD include the copy of

the allocated {cn}, optionally padded with newlines or spaces on the

right. The Relay MUST NOT ever return a CN that's been previously

returned by another CN Allocation Request.

Any other response: Error, try again later.

3.4. CSR Submission Request

SNIF Connector

¶

¶

¶

¶

¶

¶

¶

 GET {initUrl}¶

¶

¶

¶

Connection to:

Protocol:

Connection from:

Connection to:

Protocol:

SNIF CA Proxy

http

{cn_host} is a hostname derived from the {cn} - it is identical to

{cn} in case of a single-host CN, or is the {cn} with truncated

initial "*." in case of a wildcard CN.

The request body MUST contain a PEM encoded PKCS#10 CSR [RFC5967],

the newlines are either <CR><LF> or <LF>, the length of the body

SHOULD NOT exceed 16384 bytes.

Note that a CSR for the specific allocated CN can be submitted to

the CA Proxy once in a lifetime. In case of an incorrect submission

the Connector SHOULD hard reset the storage and restart the flow

from the beginning, including allocating a new CN.

Response 201: the CSR is successfully submitted. The response

headers MAY include X-SNIF-AuthUrl: with the value of an {authUrl},

that SHOULD, if possible, be communicated to the user to authorize

the certificate issuance.

Response 403: the CSR for this CN has already been submitted, or is

denied by the CA Proxy rules. If the Connector receives 403, is

SHOULD hard reset the storage and restart the CA Proxy flow from the

beginning.

Response 404: the CN was not allocated.

Any other response: Error, try again later.

3.5. Certificate Download Request

SNIF Connector

SNIF CA Proxy

http

{cn_host} is a hostname derived from the {cn} - it is identical to

{cn} in case of a single-host CN, or is the {cn} with truncated

initial "*." in case of a wildcard CN.

¶

¶

 PUT http://{cn_host}/snif-cert/{cn_host}.csr

 Content-Type: application/pkcs10

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

 GET http://{cn_host}/snif-cert/{cn_host}.crt¶

¶

The CA Proxy SHOULD check for a cached previously generated

Certificate chain for the {cn}. If the cached Certificate chain is

found and if it expires in more that 10 days in the future - the

cached Certificate chain SHOULD be returned with status 200.

Otherwise, if the {cn} has a valid CSR and a proper authorization to

issue a certificate - the CA Proxy SHOULD return status 503 and

SHOULD launch a background process that communicates with the CA to

issue or renew the certificate, and caches the issued Certificate

chain for subsequent Certificate Download Requests.

Response 200: the Certificate chain is returned. The Content-Type of

such response SHOULD be "application/x-x509-ca-cert". The response

body MUST be a PEM encoded X.509 certificate chain, the issued

certificate being the first member, the newlines are either <CR><LF>

or <LF>, the length of the body SHOULD NOT exceed 65535 bytes.

Response 503: the Certificate is being issued, try later.

Response 401: Certificate issuance authorization is required. The

response headers MAY include X-SNIF-AuthUrl: with the value of an

{authUrl}, that SHOULD, if possible, be communicated to the user to

authorize the certificate issuance. If the CA Proxy expects to work

with Connectors that cannot communicate with the user, it MUST

include external means of the authorization, not covered by this

document.

Response 404: the CN was not allocated, or the CSR was not

submitted.

Any other response: Error, try again later.

4. SNIF Relay Protocol Suite

Except for SNIF Client Connection, all protocols mentioned below

involve sending and receiving asynchronous SNIF Messages over a

specific type of stream connection.

SNIF Control Connection Protocol defines communications between SNIF

Relay and SNIF Connector that runs on an IoT device, or other type

of device that provides TLS-based services through SNIF.

SNIF Service Connection Protocol defines secondary communications

between SNIF Relay and SNIF Connector that include end-to-end TLS

traffic forwarded by the Relay.

SNIF Client Connection Protocol defines TLS communications between

SNIF Relay and a Client, where the Relay acts as a transparent end-

to-end forwarder.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Protocol name:

Connection from:

Connection to:

SNIF IPC FIFO Protocol defines communications between nodes of a

SNIF Relay cluster, and/or between SNIF Relay and SNIF Peripheral

Processes.

4.1. SNIF Messages

A SNIF Message consists of a 1 or more ASCII characters excluding

special characters, terminated by <CR><LF>.

The total length of a SNIF Message, including the terminal <CR><LF>,

SHOULD NOT exceed 4096 bytes.

8-bit characters are discouraged. If 8-bit characters are used, they

SHOULD comply to UTF-8 [RFC3629].

The receiving party SHOULD silently ignore any invalid or malformed

SNIF message.

4.2. SNIF Control Connection Protocol

snif

SNIF Connector

SNIF Relay

To be able to open a SNIF Control Connection, the SNIF Connector

MUST have a valid trusted TLS/SSL certificate, the CN hostname DNS

pointing to the SNIF Relay or a wildcard CN having a sub-host DNS

pointing to the SNIF Relay, and a Private Key that matches the

Certificate. Normally, the SNIF Connector will generate the Private

Key and use SNIF CA Proxy Protocol (Section 3) to obtain and

maintain the Certificate, although other means can be used.

To initiate the Control Connection, the SNIF Connector opens a TCP

connection to the hostname matching the Certificate's CN, that

points to the Relay.

Upon accepting the incoming TCP connection, the SNIF Relay MUST

initiate a reversed TLS session as a client peer.

The SNIF Connector MUST initiate the TLS as a server peer, using the

Certificate and the Private Key.

Upon successful TLS negotiation, the SNIF Relay MUST validate the

SNIF Connector's certificate. If the certificate is not trusted, the

SNIF Relay MUST shut down the TLS session and the TCP socket

immediately.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Sent by:

Sent by:

Sent by:

If the certificate is accepted, both SNIF Relay and SNIF Connector

are ready to accept SNIF Messages from each other over the TLS

connection, as following.

SNIF Connector

The SNIF LISTEN message informs the Relay that the Connector is

ready to accept incoming TLS connections to {hostname} through the

Relay.

{hostname} MUST specify a single host (no wildcards), and MUST match

the CN of the Connector's TLS certificate - either match a wildcard

CN, or exactly match a single host CN.

The SNIF LISTEN message SHOULD be sent only once per the Control

Connection. The Relay SHOULD ignore any invalid or subsequent SNIF

LISTEN messages.

SNIF Relay

The SNIF CONNECT message informs the Connector of an incoming TLS

connection from a Client to the Connector's {dst_host}, TCP port

{dst_port}.

{conn_id} is a unique alphanumeric connection identifier assigned by

the Relay, {cln_addr}:{cln_port} are the Client's remote IPv4/IPv6

address and TCP port, {cln_addr} is supplied in "[" brackets "]".

The Relay sends the SNIF CONNECT message to Connectors with

{dst_host} matching the {hostname} the Connector is listening to.

The Connector doesn't need to verify {dst_host}.

If the Connector decides to accept the connection - it MUST launch a

SNIF Service Connection to {fwd_host}:{fwd_port}. It also SHOULD

send any SNIF message back to the Relay over the Control Connection

to update the keep-alive timer, a copy of the SNIF ACCEPT message

that is sent over the Service Connection can be used.

In case of a rejection - the Connector SHOULD send SNIF CLOSE with

matching {conn_id}.

SNIF Connector

¶

 SNIF LISTEN {hostname}¶

¶

¶

¶

¶

 SNIF CONNECT {conn_id} {dst_host}:{dst_port} {fwd_host}:{fwd_port} {cln_addr}:{cln_port}¶

¶

¶

¶

¶

¶

¶

 SNIF CLOSE {conn_id}¶

¶

Sent by:

Sent by:

Sent by:

The SNIF CLOSE message instructs the Relay to terminate the Client

connection with matching {conn_id}.

For SNIF CLOSE received from a Connector, the Relay MUST validate

that the connection was targeted at the Connector's {hostname},

otherwise ignore the message.

SNIF Connector

The SNIF ABUSE message instructs the Relay to increase the DoS

protection abuse counter for the Client that initiated the

connection {conn_id} by {abuse score}.

{abuse score} SHOULD be an integer from 1 to 255, 1 is the score for

a normal non-abusive connection.

For SNIF ABUSE received from a Connector, the Relay MUST validate

that the connection was targeted at the Connector's {hostname},

otherwise ignore the message.

SNIF Connector or SNIF Relay

The SNIF MSG message is relayed between the Connector and the SNIF

Peripheral Processes attached to the Relay.

{content} SHOULD NOT contain whitespaces or special characters. Its

semantics is specific to the targeted Peripheral Process, and is not

covered by this document.

For SNIF MSG received by the Relay from a Connector, the Relay MUST

verify that the {hostname} matches the one associated with the

Connector, forward the message to all IPC FIFOs if matched, ignore

otherwise.

For SNIF MSG received by the Relay from an IPC FIFO, the Relay

SHOULD forward the message to the Connector(s) with the matching

{hostname}, ignore the message if none are found.

Note that in certain uncommon circumstances a SNIF MSG send by a

Connector might come back to the Connector through a different

Control Connection. The Connector SHOULD be aware of this fact to

avoid a potential message storm.

SNIF Connector or SNIF Relay

¶

¶

 SNIF ABUSE {conn_id} {abuse_score}¶

¶

¶

¶

¶

 SNIF MSG {hostname} {content}¶

¶

¶

¶

¶

¶

¶

 NOOP¶

¶

Protocol name:

Connection from:

Connection to:

The NOOP message is not associated with any explicit action, except

that the Relay receiving NOOP from the connector SHOULD promply send

NOOP or any other message back to the Connector. Therefore, the

Connector may use NOOP as a keep-alive ping.

4.3. SNIF Service Connection Protocol

snif-srv

SNIF Connector

SNIF Relay

The SNIF Connector opens a TCP connection to the {fwd_host}:

{fwd_port} in response to a SNIF CONNECT message received from the

Relay over the Control Connection.

The Connector MUST immediately send a SNIF ACCEPT message over the

Service Connection as a plain TCP:

The {conn_id} is the one that was received in the SNIF CONNECT

message over the Control Connection.

Upon sending the SNIF ACCEPT message, the Connector MUST immediately

assign further control and bi-directional traffic of the SNIF

Service Connection to the matching TLS server process.

If the Relay decides to reject the connection, either because of

invalid message or {conn_id}, or because of reaching the abuse

threshold - the Relay SHOULD terminate the TCP connection

immediately.

Otherwise, the Relay SHOULD link the Service Connection to the

matched Client Connection, forward to the Service Connection all

buffered TLS data previously received from the Client, and start bi-

directional forwarding between the Client Connection and the Service

Connection.

When either Client or Service Connection is shut down, or an

inactivity timeout is reached, the Relay SHOULD shut down both the

Client Connection and the Service Connection.

Once the Relay has linked the Client Connection matching the

{conn_id} to the Service Connection, any further SNIF ACCEPT

messages with the same {conn_id} on other Service Connections MUST

be rejected.

4.4. SNIF Client Connection Protocol

¶

¶

¶

¶

¶

¶

 SNIF ACCEPT {conn_id}¶

¶

¶

¶

¶

¶

¶

Protocol name:

Connection from:

Connection to:

snif-cln

Any TLS enabled software, such as a web browser or

an email client

SNIF Relay

From the Client's perspective, a SNIF Client Connection functions as

a direct TLS connection to the IoT Device.

The ports the Relay is listening to, can be any well-known ports for

services with persistent TLS, such as https or imaps, or can be any

custom ports agreed among the Relay, the Connectors and the Clients.

The Relay accepts an incoming TCP connection, receives and buffers

the incoming initial data from the client, and attempts to interpret

the received data as a TLS handshake.

If the received data is not recognized as a TLS handshake, does not

contain an SNI record in a supported format, or the SNI hostname

does not meet rules defined for the Relay - the Relay SHOULD

immediately reject the TLS session with an appropriate error status,

and shut down the Client Connection.

If the SNI hostname is found acceptable - the Relay allocates a

unique {conn_id}, checks if there are current Control Connections

that match the SNI hostname, and sends a SNIF CONNECT message over

those connections.

If there are no active applicable Control Connections, or if the

Relay doesn't receive a response from a SNIF Connector within a

specified timeframe - the Relay SHOULD forward the same SNIF CONNECT

message over IPC FIFOs (if any are open) to alert cluster peer

Relays and Peripheral processes of the incoming Client Connection.

A Service Connection with a matching SNIF ACCEPT establishes an end-

to-end TLS circuit with the Client Connection. Once established, the

Relay bi-directionally forwards all traffic between the Client and

the Service Connection until either of the connections is closed or

is timed out due to inactivity.

Upon receiving a matching SNIF CLOSE - the Relay MUST terminate the

Client Connection. If a Service Connection has already been linked

it MUST be terminated too, otherwise the Relay SHOULD attempt to

gracefully reject TLS on the Client Connection with an appropriate

status prior to shutting down TCP.

4.5. SNIF IPC FIFO Protocol

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Protocol name:

Connection from:

Connection to:

Direction:

Direction:

snif-fifo

SNIF Relay or SNIF Peripheral Service

SNIF Relay or SNIF Peripheral Service

SNIF IPC FIFO is a permanent trusted connection between the SNIF

Relay and a SNIF Peripheral Process, or between a pair of nodes in a

SNIF Relay cluster. An IPC FIFO is usually unidirectional, but a

bidirectional connection can serve as a pair of FIFOs. An IPC FIFO

can be implemented as a Unix FIFO pipe, a TCP socket, an SSH tunnel

or by other means. The mechanism of establishing and maintaining IPC

FIFOs is implementation specific and is not covered by this

document.

The following SNIF Messages are defined over an IPC FIFO from the

perspective of a SNIF Relay:

Send or Receive

(see SNIF Control Connection, Section 4.2).

The SNIF CONNECT message is sent by a Relay over an IPC FIFO in case

if the Relay failed to reach the respective Connector through

Control Connections. SNIF CONNECT sent by a Relay MUST be followed

up by one of SNIF CLEAR or SNIF CLOSE to inform the Peripheral

Processes of the further outcome.

When a SNIF CONNECT message is received by a Relay, the Relay SHOULD

forward it to any matching open Control Connections, or ignore it

otherwise.

Send

The SNIF CLEAR message SHOULD be sent by a Relay only as a followup

to SNIF CONNECT with a matching {conn_id}, in case if the Client

Connection that triggered SNIF CONNECT was accepted by a Service

Connection.

The purpose of SNIF CLEAR is to advice Peripheral Processes to cease

further attempts of reaching the Connector by external means, not

specified within this document.

¶

¶

¶

¶

¶

 SNIF CONNECT {conn_id} {dst_host}:{dst_port} {fwd_host}:{fwd_port} {cln_addr}:{cln_port}¶

¶

¶

¶

¶

 SNIF CLEAR {conn_id}¶

¶

¶

¶

 SNIF CLOSE {conn_id}¶

Direction:

Direction:

Direction:

Direction:

Send or Receive

(see SNIF Control Connection, Section 4.2).

The SNIF CLOSE message SHOULD be sent by a Relay only as a followup

to SNIF CONNECT with a matching {conn_id}, in case if the Client

Connection that triggered SNIF CONNECT was closed without being

accepted.

When the SNIF CLOSE is received by a Relay, the Relay SHOULD

immediately close the matching Client and/or Service Connection if

any found, ignore the message otherwise.

Receive

(see SNIF Control Connection, Section 4.2).

Send or Receive

(see SNIF Control Connection, Section 4.2).

Send

The SNIF CTL message is sent by a Relay to inform Peripheral

Processes about Control Connections. The first version is sent for

each opening Control Connection, and is followed up by the second

version with the matching {ctl_fd} when the Control Connection is

closed. {ctl_fd} is a numeric descriptor which is unique for open

connections, but can be reused after a connection is closed.

4.6. Abuse Management

SNIF Relay SHOULD implement basic protection from denial of service.

A separate abuse count SHOULD be assigned to each remote address,

incremented by 1 on every incoming connection from the address,

incremented by a specified score on every received SNIF ABUSE

message, and periodically decremented or reset at regular time

intervals.

If the abuse counter for a certain remote address reaches a specific

threshold, the Relay SHOULD drop any further TCP connections from

that address until the abuse counter goes below the threshold. The

¶

¶

¶

¶

 SNIF ABUSE {conn_id} {abuse_score}¶

¶

¶

 SNIF MSG {hostname} {content}¶

¶

¶

 SNIF CTL {ctl_fd} {hostname} {remote_addr}:{remote_port}

 SNIF CTL {ctl_fd}

¶

¶

¶

¶

Relay MAY allow some grace above the threshold to incoming SNIF

Service Connections, to minimize stalled Client Connections.

SNIF Connector MAY implement basic protection from denial of service

by limiting the number of accepted connections per period of time

and/or the total number of open connections, and reject connections

over the limit.

5. Security Considerations

All information communicated to/from SNIF CA Proxy over plain

unencrypted HTTP is safe to be exposed to third parties or to

intruders without compromising any private information.

To mitigate request flooding potentially resulting in denial of

service, it is RECOMMENDED for SNIF CA Proxy to require a

Certificate issuance authorization. For SNIF Connectors that have a

means of interacting with the user such as a built-in web browser,

the CA Proxy SHOULD implement an interactive authorization mechanism

not described in this document, and return {authUrl} to the

Connector (Section 3.5), and the Connector SHOULD open {authUrl} in

the browser for the user to complete the process.

For a SNIF CA Proxy that intends to work with devices that have

limited capabilities of interacting with their user, some non-

interactive Certificate issuance authorization mechanism SHOULD be

implemented. As an example of such mechanism, each SNIF Connector

can have a unique {initUrl}, and each device is supplied with a

unique setup URL presented to the user, the CA Proxy properly

mapping each setup URL to the mathing {initUrl}, and using the setup

URL to authorize the certificate issuance and to communicate the

SNIF Connector's hostname to the user's browser. Such mechanism MUST

have a means of alerting the user about misrouted setup, when some

other agent other than the legitimate user has used the same setup

URL during the device setup process, in such case the user MUST be

instructed to immediately hard reset the device and repeat the

setup. The details of such mechanism are not covered by this

document.

Since each certificate issued by a CA remains on the certificate

transparency public records, it is RECOMMENDED for SNIF CA Proxy to

only issue Certificates with a wildcard CN. This way, the actual

Connector's hostname (Section 3.2) will not be listed on the public

records.

SNIF Control Connection Protocol communicates all sensitive

information over a TLS connection with a trusted certificate.

SNIF Service Connection Protocol communicates a randomly generated

{conn_id} over an unsecure TCP connection. Except if used over a

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC2986]

trusted SNIF IPC FIFO, the {conn_id} can be used only once to accept

the Client's TLS connection, which in turn can only be successfully

negotiated by the targeted SNIF Connector. All further

communications are comprised of end-to-end encrypted TLS traffic.

The security of the TLS encrypted content between the Client and the

Connector is specific to the protocols involved. The underlying

protocol SHOULD require proper authentication specific to the

protocol before communicating any sensitive information. Negotiation

of the credentials for such authentication is not covered by this

document.

SNIF Client Connection is a TLS session with a trusted certificate.

The security of the TLS encrypted content between the Client and the

Connector is specific to the protocols involved.

SNIF IPC FIFO connections SHOULD only be established between

mutually trusted parties, and need to be secured by external means

specific to the implementation, such as filesystem permissions, TLS

or SSH tunnels etc. The security of such external means cannot be

assessed within the scope of this document.

A compromised SNIF CA Proxy can potentially issue certificates to

any hostnames allocated by the Relay, including a catch-all

wildcard, using an alternative private key, and thus allow a man-in-

the-middle attack on any SNIF Connectors associated with the Relay.

This vulnerability can be mitigated by constant monitoring of public

TLS Transparency logs, such as [RFC6962]. At least one independent

party SHOULD continuously monitor TLS Transparency logs for each

deployed SNIF CA Proxy and Relay. Once any duplicate or overlapping

certificates are detected - the corresponding SNIF Relay MUST be

permanently deemed compromised.

6. IANA Considerations

Protocols "snif", "snif-srv", "snif-cln" and "snif-fifo" are

registered with IANA.

TCP port 7123 is registered with IANA for protocol "snif".

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC5280]

[RFC6066]

[RFC8174]

[RFC8446]

[RFC3629]

[RFC5967]

[RFC6962]

[RFC8555]

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Turner, S., "The application/pkcs10 Media Type", RFC

5967, DOI 10.17487/RFC5967, August 2010, <https://

www.rfc-editor.org/info/rfc5967>.

Laurie, B., Langley, A., and E. Kasper, "Certificate

Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,

<https://www.rfc-editor.org/info/rfc6962>.

Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.

Kasten, "Automatic Certificate Management Environment

(ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,

<https://www.rfc-editor.org/info/rfc8555>.

Author's Address

Jim Zubov

VESvault Corp

Email: jz@vesvault.com

URI: https://snif.host

https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc5967
https://www.rfc-editor.org/info/rfc5967
https://www.rfc-editor.org/info/rfc6962
https://www.rfc-editor.org/info/rfc8555
mailto:jz@vesvault.com
https://snif.host

	Deploying Publicly Trusted TLS Servers on IoT Devices Using SNI-based End-to-End TLS Forwarding (SNIF)
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Overview
	3. SNIF CA Proxy Protocol
	3.1. Protocol Summary
	3.2. Protocol Flow
	3.3. CN Allocation Request
	3.4. CSR Submission Request
	3.5. Certificate Download Request

	4. SNIF Relay Protocol Suite
	4.1. SNIF Messages
	4.2. SNIF Control Connection Protocol
	4.3. SNIF Service Connection Protocol
	4.4. SNIF Client Connection Protocol
	4.5. SNIF IPC FIFO Protocol
	4.6. Abuse Management

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Author's Address

