
Internet Engineering Task Force F. Galiegue, Ed.
Internet-Draft
Intended status: Informational K. Zyp, Ed.
Expires: August 4, 2013 SitePen (USA)
 G. Court
 January 31, 2013

JSON Schema: core definitions and terminology
draft-zyp-json-schema-04

Abstract

 JSON Schema defines the media type "application/schema+json", a JSON
 based format for defining the structure of JSON data. JSON Schema
 provides a contract for what JSON data is required for a given
 application and how to interact with it. JSON Schema is intended to
 define validation, documentation, hyperlink navigation, and
 interaction control of JSON data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 4, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Galiegue, et al. Expires August 4, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Schema January 2013

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 3
3. Core terminology . 3
3.1. Property, item . 3
3.2. JSON Schema, keywords 3
3.3. Empty schema . 3
3.4. Root schema, subschema 4
3.5. JSON Schema primitive types 4
3.6. JSON value equality 5
3.7. Instance . 5

4. Overview . 5
4.1. Validation . 5
4.2. Hypermedia and linking 6

5. General considerations . 6
5.1. Applicability to all JSON values 6
5.2. Programming language independence 6
5.3. JSON Schema and HTTP 6
5.4. JSON Schema and other protocols 6
5.5. Mathematical integers 7
5.6. Extending JSON Schema 7
5.7. Security considerations 7

6. The "$schema" keyword . 7
6.1. Purpose . 7
6.2. Customization . 8

7. URI resolution scopes and dereferencing 8
7.1. Definition . 8
7.2. URI resolution scope alteration with the "id" keyword . . 8
7.2.1. Valid values . 8
7.2.2. Usage . 9
7.2.3. Canonical dereferencing and inline dereferencing . . . 10
7.2.4. Inline dereferencing and fragments 11

7.3. Interoperability considerations 11
 8. Recommended correlation mechanisms for use with the HTTP
 protocol . 11

8.1. Correlation by means of the "Content-Type" header 11
8.2. Correlation by means of the "Link" header 12

9. IANA Considerations . 12
10. References . 12
10.1. Normative References 12
10.2. Informative References 12

Appendix A. ChangeLog . 13

Galiegue, et al. Expires August 4, 2013 [Page 2]

Internet-Draft JSON Schema January 2013

1. Introduction

 JSON Schema is a JSON media type for defining the structure of JSON
 data. JSON Schema provides a contract for what JSON data is required
 for a given application and how to interact with it. JSON Schema is
 intended to define validation, documentation, hyperlink navigation,
 and interaction control of JSON data.

 This specification defines JSON Schema core terminology and
 mechanisms; related specifications build upon this specification and
 define different applications of JSON Schema.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The terms "JSON", "JSON text", "JSON value", "member", "element",
 "object", "array", "number", "string", "boolean", "true", "false",
 and "null" in this document are to be interpreted as defined in RFC

4627 [RFC4627].

3. Core terminology

3.1. Property, item

 When refering to a JSON Object, as defined by [RFC4627], the terms
 "member" and "property" may be used interchangeably.

 When refering to a JSON Array, as defined by [RFC4627], the terms
 "element" and "item" may be used interchangeably.

3.2. JSON Schema, keywords

 A JSON Schema is a JSON document, and that document MUST be an
 object. Object members (or properties) defined by JSON Schema (this
 specification, or related specifications) are called keywords, or
 schema keywords.

 A JSON Schema MAY contain properties which are not schema keywords.

3.3. Empty schema

 An empty schema is a JSON Schema with no properties, or with
 properties which are not schema keywords.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Galiegue, et al. Expires August 4, 2013 [Page 3]

Internet-Draft JSON Schema January 2013

3.4. Root schema, subschema

 This example of a JSON Schema has no subschemas:

 {
 "title": "root"
 }

 JSON Schemas can also be nested, as in this example:

 {
 "title": "root",
 "otherSchema": {
 "title": "nested",
 "anotherSchema": {
 "title": "alsoNested"
 }
 }
 }

 In this example, "nested" and "alsoNested" are subschemas, and "root"
 is a root schema.

3.5. JSON Schema primitive types

 JSON Schema defines seven primitive types for JSON values:

 array A JSON array.

 boolean A JSON boolean.

 integer A JSON number without a fraction or exponent part.

 number Any JSON number. Number includes integer.

 null The JSON null value.

 object A JSON object.

 string A JSON string.

Galiegue, et al. Expires August 4, 2013 [Page 4]

Internet-Draft JSON Schema January 2013

3.6. JSON value equality

 Two JSON values are said to be equal if and only if:

 both are nulls; or

 both are booleans, and have the same value; or

 both are strings, and have the same value; or

 both are numbers, and have the same mathematical value; or

 both are arrays, and:

 have the same number of items; and

 items at the same index are equal according to this definition;
 or

 both are objects, and:

 have the same set of property names; and

 values for a same property name are equal according to this
 definition.

3.7. Instance

 An instance is any JSON value. An instance may be described by one
 or more schemas.

 An instance may also be referred to as "JSON instance", or "JSON
 data".

4. Overview

 This document proposes a new media type "application/schema+json" to
 identify JSON Schema for describing JSON data. JSON Schemas are
 themselves written in JSON. This, and related specifications, define
 keywords allowing to describe this data in terms of allowable values,
 textual descriptions and interpreting relations with other resources.
 The following sections are a summary of features defined by related
 specifications.

4.1. Validation

 JSON Schema allows applications to validate instances, either non
 interactively or interactively. For instance, an application may

Galiegue, et al. Expires August 4, 2013 [Page 5]

Internet-Draft JSON Schema January 2013

 collect JSON data and check that this data matches a given set of
 constraints; another application may use a JSON Schema to build an
 interactive interface in order to collect user input according to
 constraints described by JSON Schema.

4.2. Hypermedia and linking

 JSON Schema provides a method for extracting link relations from
 instances to other resources, as well as describing interpretations
 of instances as multimedia data. This allows JSON data to be
 interpreted as rich hypermedia documents, placed in the context of a
 larger set of related resources.

5. General considerations

5.1. Applicability to all JSON values

 It is acknowledged that an instance may be any valid JSON value as
 defined by [RFC4627]. As such, JSON Schema does not mandate that an
 instance be of a particular type: JSON Schema can describe any JSON
 value, including null.

5.2. Programming language independence

 JSON Schema is programming language agnostic. The only limitations
 are the ones expressed by [RFC4627] and those of the host programming
 language.

5.3. JSON Schema and HTTP

 This specification acknowledges the role of HTTP [RFC2616] as the
 dominant protocol in use on the Internet, and the wealth of official
 specifications related to it.

 This specification uses a subset of these specifications to recommend
 a set of mechanisms, usable by this protocol, to associate JSON
 instances to one or more schemas.

5.4. JSON Schema and other protocols

 JSON Schema does not define any semantics for the client-server
 interface for any other protocols than HTTP. These semantics are
 application dependent, or subject to agreement between the parties
 involved in the use of JSON Schema for their own needs.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2616

Galiegue, et al. Expires August 4, 2013 [Page 6]

Internet-Draft JSON Schema January 2013

5.5. Mathematical integers

 It is acknowledged by this specification that some programming
 languages, and their associated parsers, use different internal
 representations for floating point numbers and integers, while others
 do not.

 As a consequence, for interoperability reasons, JSON values used in
 the context of JSON Schema, whether that JSON be a JSON Schema or an
 instance, SHOULD ensure that mathematical integers be represented as
 integers as defined by this specification.

5.6. Extending JSON Schema

 Implementations MAY choose to define additional keywords to JSON
 Schema. Save for explicit agreement, schema authors SHALL NOT expect
 these additional keywords to be supported by peer implementations.
 Implementations SHOULD ignore keywords they do not support.

5.7. Security considerations

 Both schemas and instances are JSON values. As such, all security
 considerations defined in RFC 4627 [RFC4627] apply.

6. The "$schema" keyword

6.1. Purpose

 The "$schema" keyword is both used as a JSON Schema version
 identifier and the location of a resource which is itself a JSON
 Schema, which describes any schema written for this particular
 version.

 This keyword MUST be located at the root of a JSON Schema. The value
 of this keyword MUST be a URI [RFC3986] and a valid JSON Reference
 [json-reference]; this URI MUST be both absolute and normalized. The
 resource located at this URI MUST successfully describe itself. It
 is RECOMMENDED that schema authors include this keyword in their
 schemas.

 The following values are predefined:

http://json-schema.org/schema# JSON Schema written against the
 current version of the specification.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986
http://json-schema.org/schema#

Galiegue, et al. Expires August 4, 2013 [Page 7]

Internet-Draft JSON Schema January 2013

http://json-schema.org/hyper-schema# JSON Schema written against the
 current version of the specification.

http://json-schema.org/draft-04/schema# JSON Schema written against
 this version.

http://json-schema.org/draft-04/hyper-schema# JSON Schema
 hyperschema written against this version.

http://json-schema.org/draft-03/schema# JSON Schema written against
 JSON Schema, draft v3 [json-schema-03].

http://json-schema.org/draft-03/hyper-schema# JSON Schema
 hyperschema written against JSON Schema, draft v3
 [json-schema-03].

6.2. Customization

 When extending JSON Schema with custom keywords, schema authors
 SHOULD define a custom URI for "$schema". This custom URI MUST NOT
 be one of the predefined values.

7. URI resolution scopes and dereferencing

7.1. Definition

 JSON Schema uses JSON Reference [json-reference] as a mechanism for
 schema addressing. It extends this specification in two ways:

 JSON Schema offers facilities to alter the base URI against which
 a reference must resolve by the means of the "id" keyword;

 it defines a specific dereferencing mechanism extending JSON
 Reference to accept arbitrary fragment parts.

 Altering the URI within a schema is called defining a new resolution
 scope. The initial resolution scope of a schema is the URI of the
 schema itself, if any, or the empty URI if the schema was not loaded
 from a URI.

7.2. URI resolution scope alteration with the "id" keyword

7.2.1. Valid values

 The value for this keyword MUST be a string, and MUST be a valid URI.
 This URI MUST be normalized, and SHOULD NOT be an empty fragment (#)
 or the empty URI.

http://json-schema.org/hyper-schema#
http://json-schema.org/draft-04/schema#
http://json-schema.org/draft-04/hyper-schema#
http://json-schema.org/draft-03/schema#
http://json-schema.org/draft-03/hyper-schema#

Galiegue, et al. Expires August 4, 2013 [Page 8]

Internet-Draft JSON Schema January 2013

7.2.2. Usage

 The "id" keyword (or "id", for short) is used to alter the resolution
 scope. When an id is encountered, an implementation MUST resolve
 this id against the most immediate parent scope. The resolved URI
 will be the new resolution scope for this subschema and all its
 children, until another id is encountered.

 When using "id" to alter resolution scopes, schema authors SHOULD
 ensure that resolution scopes are unique within the schema.

 This schema will be taken as an example:

 {
 "id": "http://x.y.z/rootschema.json#",
 "schema1": {
 "id": "#foo"
 },
 "schema2": {
 "id": "otherschema.json",
 "nested": {
 "id": "#bar"
 },
 "alsonested": {
 "id": "t/inner.json#a"
 }
 },
 "schema3": {
 "id": "some://where.else/completely#"
 }
 }

 Subschemas at the following URI-encoded JSON Pointer [json-pointer]s
 (starting from the root schema) define the following resolution
 scopes:

 # (document root) http://x.y.z/rootschema.json#

 #/schema1 http://x.y.z/rootschema.json#foo

 #/schema2 http://x.y.z/otherschema.json#

 #/schema2/nested http://x.y.z/otherschema.json#bar

http://x.y.z/rootschema.json#
http://x.y.z/rootschema.json#foo
http://x.y.z/otherschema.json#
http://x.y.z/otherschema.json#bar

Galiegue, et al. Expires August 4, 2013 [Page 9]

Internet-Draft JSON Schema January 2013

 #/schema2/alsonested http://x.y.z/t/inner.json#a

 #/schema3 some://where.else/completely#

7.2.3. Canonical dereferencing and inline dereferencing

 When resolving a URI against a resolution scope, an implementation
 may choose two modes of operation:

 canonical dereferencing The implementation dereferences all resolved
 URIs.

 inline dereferencing The implementation chooses to dereference URIs
 within the schema.

 Implementations MUST support canonical dereferencing, and MAY support
 inline dereferencing.

 For example, consider this schema:

 {
 "id": "http://my.site/myschema#",
 "definitions": {
 "schema1": {
 "id": "schema1",
 "type": "integer"
 },
 "schema2", {
 "type": "array",
 "items": { "$ref": "schema1" }
 }
 }
 }

 When an implementation encounters the "schema1" reference, it
 resolves it against the most immediate parent scope, leading to URI
 "http://my.site/schema1#". The way to process this URI will differ
 according to the chosen dereferencing mode:

 if canonical dereferencing is used, the implementation will
 dereference this URI, and fetch the content at this URI;

 if inline dereferencing is used, the implementation will notice
 that URI scope "http://my.site/schema1#" is already defined within
 the schema, and choose to use the appropriate subschema.

http://x.y.z/t/inner.json#a

Galiegue, et al. Expires August 4, 2013 [Page 10]

Internet-Draft JSON Schema January 2013

7.2.4. Inline dereferencing and fragments

 When using inline dereferencing, a resolution scope may lead to a URI
 which has a non empty fragment part which is not a JSON Pointer, as
 in this example:

 {
 "id": "http://some.site/schema#",
 "not": { "$ref": "#inner" },
 "definitions": {
 "schema1": {
 "id": "#inner",
 "type": "boolean"
 }
 }
 }

 An implementation choosing to support inline dereferencing SHOULD be
 able to use this kind of reference. Implementations choosing to use
 canonical dereferencing, however, are not required to support it.

7.3. Interoperability considerations

 Inline dereferencing can produce canonical URIs which differ from the
 canonical URI of the root schema. Schema authors SHOULD ensure that
 implementations using canonical dereferencing obtain the same content
 as implementations using inline dereferencing.

 Extended JSON References using fragments which are not JSON Pointers
 are not dereferenceable by implementations choosing not to support
 inline dereferencing. This kind of reference is defined for
 backwards compatibility, and SHOULD NOT be used in new schemas.

8. Recommended correlation mechanisms for use with the HTTP protocol

 It is acknowledged by this specification that the majority of
 interactive JSON Schema processing will be over HTTP. This section
 therefore gives recommendations for materializing an instance/schema
 correlation using mechanisms currently available for this protocol.
 An instance is said to be described by one (or more) schema(s).

8.1. Correlation by means of the "Content-Type" header

 It is RECOMMENDED that a MIME type parameter by the name of "profile"
 be appended to the "Content-Type" header of the instance being
 processed. If present, the value of this parameter MUST be a valid

Galiegue, et al. Expires August 4, 2013 [Page 11]

Internet-Draft JSON Schema January 2013

 URI, and this URI SHOULD resolve to a valid JSON Schema. The MIME
 type MUST be "application/json", or any other subtype.

 An example of such a header would be:

 Content-Type: application/my-media-type+json;
 profile=http://example.com/my-hyper-schema#

8.2. Correlation by means of the "Link" header

 When using the "Link" header, the relation type used MUST be
 "describedBy", as defined by RFC 5988, section 5.3 [RFC5988]. The
 target URI of the "Link" header MUST be a valid JSON Schema.

 An example of such a header would be:

 Link: <http://example.com/my-hyper-schema#>; rel="describedBy"

9. IANA Considerations

 The proposed MIME media type for JSON Schema is defined as follows:

 type name: application;

 subtype name: schema+json.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic
 Syntax", STD 66, RFC 3986, January 2005.

https://datatracker.ietf.org/doc/html/rfc5988#section-5.3
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986

Galiegue, et al. Expires August 4, 2013 [Page 12]

Internet-Draft JSON Schema January 2013

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627,
 July 2006.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 October 2010.

 [json-reference] Bryan, P. and K. Zyp, "JSON Reference (work in
 progress)", September 2012, <http://tools.ietf.org/

html/draft-pbryan-zyp-json-ref-03>.

 [json-pointer] Bryan, P. and K. Zyp, "JSON Pointer (work in
 progress)", September 2012, <http://tools.ietf.org/

html/draft-ietf-appsawg-json-pointer-07>.

 [json-schema-03] Court, G. and K. Zyp, "JSON Schema, draft 3",
 September 2012, <http://tools.ietf.org/html/

draft-zyp-json-schema-03>.

Appendix A. ChangeLog

draft-00

 * Initial draft.

 * Salvaged from draft v3.

 * Mandate the use of JSON Reference, JSON Pointer.

 * Define the role of "id". Define URI resolution scope.

 * Add interoperability considerations.

Authors' Addresses

 Francis Galiegue (editor)

 EMail: fgaliegue@gmail.com

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5988
http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
http://tools.ietf.org/html/draft-ietf-appsawg-json-pointer-07
http://tools.ietf.org/html/draft-ietf-appsawg-json-pointer-07
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03
https://datatracker.ietf.org/doc/html/draft-00

Galiegue, et al. Expires August 4, 2013 [Page 13]

Internet-Draft JSON Schema January 2013

 Kris Zyp (editor)
 SitePen (USA)
 530 Lytton Avenue
 Palo Alto, CA 94301
 USA

 Phone: +1 650 968 8787
 EMail: kris@sitepen.com

 Gary Court
 Calgary, AB
 Canada

 EMail: gary.court@gmail.com

Galiegue, et al. Expires August 4, 2013 [Page 14]

