IP Version 6 Addressing Architecture

<draft-ietf-ipngwg-addr-arch-02.txt>

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

To learn the current status of any Internet-Draft, please check the `1id-abstracts.txt` listing contained in the Internet-Drafts Shadow Directories on ds.internic.net (US East Coast), nic.nordu.net (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific Rim).

This Internet Draft expires November 1, 1995.
1.0 INTRODUCTION

This specification defines the addressing architecture of the IP Version 6 protocol. It includes a detailed description of the address formats for IPv6 [IPV6].

The editors would like to acknowledge the contributions of Paul Francis, Jim Bound, Brian Carpenter, Deborah Estrin, Peter Ford, Bob Gilligan, Christian Huitema, Tony Li, Greg Minshall, Erik Nordmark, Yakov Rekhtor, Bill Simpson, and Sue Thomson.

2.0 IPv6 ADDRESSING

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces. There are three types of addresses:

Unicast: An identifier for a single interface. A packet sent to a unicast address is delivered to the interface identified by that address.

Anycast: An identifier for a set of interfaces (typically belonging to different nodes). A packet sent to an anycast address is delivered to one of the interfaces identified by that address (the "nearest" one, according to the routing protocols' measure of distance).

Multicast: An identifier for a set of interfaces (typically belonging to different nodes). A packet sent to a multicast address is delivered to all interfaces identified by that address.

There are no broadcast addresses in IPv6, their function being superseded by multicast addresses.

In this document, fields in addresses are given a specific name, for example "subscriber". When this name is used with the term "ID" for identifier after the name (e.g., "subscriber ID"), it refers to the contents of the named field. When it is used with the term "prefix" (e.g. "subscriber prefix") it refers to all of the address up to and including this field.
In IPv6, all zeros and all ones are legal values for any field, unless specifically excluded. Specifically, prefixes may contain zero-valued fields or end in zeros.

2.1 Addressing Model

IPv6 Addresses of all types are assigned to interfaces, not nodes. Since each interface belongs to a single node, any of that node's interfaces' unicast addresses may be used as an identifier for the node.

An IPv6 unicast address refers to a single interface. A single interface may be assigned multiple IPv6 addresses of any type (unicast, anycast, and multicast). There are two exceptions to this model. These are:

1) A single address may be assigned to multiple physical interfaces if the implementation treats the multiple physical interfaces as one interface when presenting it to the internet layer. This is useful for load-sharing over multiple physical interfaces.

2) Routers may have unnumbered interfaces (i.e., no IPv6 address assigned to the interface) on point-to-point links to eliminate the necessity to manually configure and advertise the addresses. Addresses are not needed for point-to-point interfaces on routers if those interfaces are not to be used as the origins or destinations of any IPv6 datagrams.

IPv6 continues the IPv4 model that a subnet is associated with one link. Multiple subnets may be assigned to the same link.

2.2 Text Representation of Addresses

There are three conventional forms for representing IPv6 addresses as text strings:

1. The preferred form is x:x:x:x:x:x:x:x, where the 'x's are the hexadecimal values of the eight 16-bit pieces of the address. Examples:
Note that it is not necessary to write the leading zeros in an individual field, but there must be at least one numeral in every field (except for the case described in 2.).

2. Due to the method of allocating certain styles of IPv6 addresses, it will be common for addresses to contain long strings of zero bits. In order to make writing addresses containing zero bits easier a special syntax is available to compress the zeros. The use of two "::" indicate multiple groups of 16-bits of zeros. For example the multicast address:

 FF01:0:0:0:0:0:0:43

may be represented as:

 FF01::43

The "::" can only appear once in an address. The "::" can also be used to compress the leading or trailing zeros in an address.

3. An alternative form that is sometimes more convenient when dealing with a mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the 'x's are the hexadecimal values of the six high-order 16-bit pieces of the address, and the 'd's are the decimal values of the four low-order 8-bit pieces of the address (standard IPv4 representation). Examples:

 0:0:0:0:0:0:13.1.68.3

 0:0:0:0:FFFF:129.144.52.38

or in compressed form:

 ::13.1.68.3
2.3 Address Type Representation

The specific type of an IPv6 address is indicated by the leading bits in the address. The variable-length field comprising these leading bits is called the Format Prefix (FP). The initial allocation of these prefixes is as follows:

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Prefix (binary)</th>
<th>Fraction of Address Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>0000 0000</td>
<td>1/256</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0000 0001</td>
<td>1/256</td>
</tr>
<tr>
<td>Reserved for NSAP Allocation</td>
<td>0000 001</td>
<td>1/128</td>
</tr>
<tr>
<td>Reserved for IPX Allocation</td>
<td>0000 010</td>
<td>1/128</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0000 011</td>
<td>1/128</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0000 1</td>
<td>1/32</td>
</tr>
<tr>
<td>Unassigned</td>
<td>0001</td>
<td>1/16</td>
</tr>
<tr>
<td>Unassigned</td>
<td>001</td>
<td>1/8</td>
</tr>
<tr>
<td>Provider-Based Unicast Address</td>
<td>010</td>
<td>1/8</td>
</tr>
<tr>
<td>Unassigned</td>
<td>011</td>
<td>1/8</td>
</tr>
<tr>
<td>Reserved for Neutral-Interconnect-Based Unicast Addresses</td>
<td>100</td>
<td>1/8</td>
</tr>
<tr>
<td>Unassigned</td>
<td>101</td>
<td>1/8</td>
</tr>
</tbody>
</table>
This allocation supports the direct allocation of provider addresses, local use addresses, and multicast addresses. Space is reserved for NSAP addresses, IPX addresses, and neutral-interconnect addresses. The remainder of the address space is unassigned for future use. This can be used for expansion of existing use (e.g., additional provider addresses, etc.) or new uses (e.g., separate locators and identifiers). Fifteen percent of the address space is initially allocated. The remaining 85% is reserved for future use.

Unicast addresses are distinguished from multicast addresses by the value of the high-order octet of the addresses: a value of FF (11111111) identifies an address as a multicast address; any other value identifies an address as a unicast address. Anycast addresses are taken from the unicast address space, and are not syntactically distinguishable from unicast addresses.

2.4 Unicast Addresses

The IPv6 unicast address is contiguous bit-wise maskable, similar to IPv4 addresses under Class-less Interdomain Routing [CIDR].
There are several forms of unicast address assignment in IPv6, including the global provider based unicast address, the neutral-interconnect unicast address, the NSAP address, the IPX hierarchical address, the site-local-use address, the link-local-use address, and the IPv4-capable host address. Additional address types can be defined in the future.

IPv6 nodes may have considerable or little knowledge of the internal structure of the IPv6 address, depending on the role the node plays (for instance, host versus router). At a minimum, a node may consider that unicast addresses (including its own) have no internal structure:

```
|                           128 bits                              |
+-----------------------------------------------------------------+
|                          node address                           |
+-----------------------------------------------------------------+
```

A slightly sophisticated host (but still rather simple) may additionally be aware of subnet prefix(es) for the link(s) it is attached to, where different addresses may have different values for n:

```
|                          n bits                 |   128-n bits   |
+------------------------------------------------+----------------+
|                   subnet prefix                | interface ID   |
+------------------------------------------------+----------------+
```

Still more sophisticated hosts may be aware of other hierarchical boundaries in the unicast address. Though a very simple router may have no knowledge of the internal structure of IPv6 unicast addresses, routers will more generally have knowledge of one or more of the hierarchical boundaries for the operation of routing protocols. The known boundaries will differ from router to router, depending on what positions the router holds in the routing hierarchy.

2.4.1 Unicast Address Examples

An example of a Unicast address format which will likely be common on LANs and other environments where IEEE 802 MAC addresses are available is:
<table>
<thead>
<tr>
<th>n bits</th>
<th>80-n bits</th>
<th>48 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>subscriber prefix</td>
<td>subnet ID</td>
<td>interface ID</td>
</tr>
</tbody>
</table>

Where the 48-bit Interface ID is an IEEE-802 MAC address. The use of IEEE 802 MAC addresses as a interface ID is expected to be very common in environments where nodes have an IEEE 802 MAC address. In other environments, where IEEE 802 MAC addresses are not available, other types of link layer addresses can be used, such as E.164 addresses, for the interface ID.

The inclusion of a unique global interface identifier, such as an IEEE MAC address, makes possible a very simple form of auto-configuration of addresses. A node may discover a subnet ID by listening to Router Advertisement messages sent by a router on its attached link(s), and then fabricating an IPv6 address for itself by using its IEEE MAC address as the interface ID on that subnet.

Another unicast address format example is where a site or organization requires additional layers of internal hierarchy. In this example the subnet ID is divided into an area ID and a subnet ID. Its format is:

<table>
<thead>
<tr>
<th>s bits</th>
<th>n bits</th>
<th>m bits</th>
<th>128-s-n-m bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>subscriber prefix</td>
<td>area ID</td>
<td>subnet ID</td>
<td>interface ID</td>
</tr>
</tbody>
</table>

This technique can be continued to allow a site or organization to add additional layers of internal hierarchy. It may be desirable to use an interface ID smaller than a 48-bit IEEE 802 MAC address to allow more space for the additional layers of internal hierarchy. These could be interface IDs which are administratively created by the site or organization.

2.4.2 The Unspecified Address
The address 0:0:0:0:0:0:0:0 is called the unspecified address. It must never be assigned to any node. It indicates the absence of an address. One example of its use is in the Source Address field of any IPv6 datagrams sent by an initializing host before it has learned its own address.

The unspecified address must not be used as the destination address of IPv6 datagrams or in IPv6 Routing Headers.

2.4.3 The Loopback Address

The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It may be used by a node to send an IPv6 datagram to itself. It may never be assigned to any interface.

The loopback address must not be used as the source address in IPv6 datagrams that are sent outside of a single node. An IPv6 datagram with a destination address of loopback must never be sent outside of a single node.

2.4.4 IPv6 Addresses with Embedded IPv4 Addresses

The IPv6 transition mechanisms include a technique for hosts and routers to dynamically tunnel IPv6 packets over IPv4 routing infrastructure. IPv6 nodes that utilize this technique are assigned special IPv6 unicast addresses that carry an IPv4 address in the low-order 32-bits. This type of address is termed an "IPv4-compatible IPv6 address" and has the format:

```
+--------------------------------------+--------------------------+
<table>
<thead>
<tr>
<th>80 bits</th>
<th>16</th>
<th>32 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000..............................0000</td>
<td>0000</td>
<td>IPv4 address</td>
</tr>
</tbody>
</table>
+------------------------------------+--------------------------+
```

A second type of IPv6 address which holds an embedded IPv4 address is also defined. This address is used to represent the addresses of IPv4-only nodes (those that *do not* support IPv6) as IPv6 addresses. This type of address is termed an "IPv4-mapped IPv6 address" and has the format:
2.4.5 NSAP Addresses

This mapping of NSAP address into IPv6 addresses is as follows:

| 7 | 121 bits |
|-------+---|
|0000001| to be defined |
+-------+---+

The draft definition, motivation, and usage are under study [NSAP].

2.4.6 IPX Addresses

This mapping of IPX address into IPv6 addresses is as follows:

| 7 | 121 bits |
|-------+---|
|0000010| to be defined |
+-------+---+

The draft definition, motivation, and usage are under study.

2.4.7 Provider-Based Global Unicast Addresses

The global provider-based unicast address is assigned as described in [ALLOC] and [ADDRF]. This assignment strategy is similar to assignment of IPv4 addresses under the CIDR scheme [CIDR]. The IPv6 global provider-based unicast address format is as follows:

<table>
<thead>
<tr>
<th>125-m-n-n-p-o</th>
<th>125-m-n-n-p-o</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>registry ID</td>
</tr>
</tbody>
</table>
The high-order part of the address is assigned to registries, who then assign portions of the address space to providers, who then assign portions of the address space to subscribers, etc.

The registry ID identifies the registry which assigns the provider portion of the address. The term "registry prefix" refers to the high-order part of the address up to and including the registry ID.

The provider ID identifies a specific provider which assigns the subscriber portion of the address. The term "provider prefix" refers to the high-order part of the address up to and including the provider ID.

The subscriber ID distinguishes among multiple subscribers attached to the provider identified by the provider ID. The term "subscriber prefix" refers to the high-order part of the address up to and including the subscriber ID.

The subnet ID identifies a specific physical link. There can be multiple subnets on the same physical link. A specific subnet can not span multiple physical links. The term "subnet prefix" refers to the high-order part of the address up to and including the subnet ID. The group of nodes identified by the subnet ID must be attached to the same link.

The interface ID identifies a single interface among the group of interfaces identified by the subnet prefix.

2.4.8 Local-use IPv6 Unicast Addresses

There are two types of local-use unicast addresses defined. These are Link-Local and Site-Local. The Link-Local is for use on a single link and the Site-Local is for use in a single site. Link-Local addresses have the following format:

```
|   10 |        n bits            |       118-n bits           |
+----------+-------------------------+----------------------------+
|1111111010|           0             |       interface ID         |
+----------+-------------------------+----------------------------+
```
Link-Local addresses are designed to be used for addressing on a single link for purposes such as auto-address configuration or when no routers are present.

Site-Local addresses have the following format:

```
| 10 | n bits | m bits | 118-n-m bits |
+--------------------------+--------------------------+--------------------------+
|1111110111|    0 | subnet ID | interface ID |
```

Site-Local addresses may be used for sites or organizations that are not (yet) connected to the global Internet. They do not need to request or "steal" an address prefix from the global Internet address space. IPv6 site-local addresses can be used instead. When the organization connects to the global Internet, it can then form global addresses by replacing the site-local prefix with a subscriber prefix.

2.5 Anycast Addresses

An IPv6 anycast address is an address that is assigned to more than one interface (typically belonging to different nodes), with the property that a packet sent to an anycast address is routed to the "nearest" interface having that address, according to the routing protocols' measure of distance.

Anycast addresses are allocated from the unicast address space, using any of the defined unicast address formats. Thus, anycast addresses are syntactically indistinguishable from unicast addresses. When a unicast address is assigned to more than one interface, thus turning it into an anycast address, the nodes to which the address is assigned must be explicitly configured to know that it is an anycast address.
For any assigned anycast address, there is a longest address prefix P that identifies the topological region in which all interfaces belonging to that anycast address reside. Within the region identified by P, each member of the anycast set must be advertised as a separate entry in the routing system (commonly referred to as a "host route"); outside the region identified by P, the anycast address may be aggregated into the routing advertisement for prefix P.

Note that in the worst case, the prefix P of an anycast set may be the null prefix, i.e., the members of the set may have no topological locality. In that case, the anycast address must be advertised as a separate routing entry throughout the entire internet, which presents a severe scaling limit on how many such "global" anycast sets may be supported. Therefore, it is expected that support for global anycast sets may be unavailable or very restricted.

One expected use of anycast addresses is to identify the set of routers belonging to an internet service provider. Such addresses could be used as intermediate addresses in an IPv6 Routing header, to cause a packet to be delivered via a particular provider or sequence of providers. Some other possible uses are to identify the set of routers attached to a particular subnet, or the set of routers providing entry into a particular routing domain.

There is little experience with widespread, arbitrary use of internet anycast addresses, and some known complications and hazards when using them in their full generality [ANYCST]. Until more experience has been gained and solutions agreed upon for those problems, the following restrictions are imposed on IPv6 anycast addresses:

- An anycast address MUST NOT be used as the source address of an IPv6 packet.
- An anycast address MUST NOT be assigned to an IPv6 host, that is, it may be assigned to an IPv6 router only.

2.5.1 Required Anycast Address

The Subnet-Router anycast address is predefined. It's format is as follows:
The "subnet prefix" in an anycast address is the prefix which identifies a specific link. This anycast address is syntactically the same as a unicast address for an interface on the link with the interface identifier set to zero.

Packets sent to the Subnet-Router anycast address will be delivered to one router on the subnet. All routers are required to support the Subnet-Router anycast addresses for the subnets which they have interfaces.

The subnet-router anycast address is intended to be used for applications where a node needs to communicate with one of a set of routers on a remote subnet. For example when a mobile host needs to communicate with one of the mobile agents on it's "home" subnet.

2.6 Multicast Addresses

An IPv6 multicast address is an identifier for a group of nodes. A node may belong to any number of multicast groups. Multicast addresses have the following format:

```
| 8 | 4 | 4 | 112 bits |
+---+---+---+-------------------+
|11111111|flgs|scop| group ID |
+---+---+---+-------------------+
```

11111111 at the start of the address identifies the address as being a multicast address.

```
flgs is a set of 4 flags: |0|0|0|T|
```

```
The high-order 3 flags are reserved, and must be initialized to 0.

T = 0 indicates a permanently-assigned ("well-known") multicast address, assigned by the global internet numbering authority.

T = 1 indicates a non-permanently-assigned ("transient") multicast address.

scop is a 4-bit multicast scope value used to limit the scope of the multicast group. The values are:

0 reserved
1 node-local scope
2 link-local scope
3 (unassigned)
4 (unassigned)
5 site-local scope
6 (unassigned)
7 (unassigned)
8 organization-local scope
9 (unassigned)
A (unassigned)
B (unassigned)
C (unassigned)
D (unassigned)
E global scope
F reserved

group ID identifies the multicast group, either permanent or transient, within the given scope.

The "meaning" of a permanently-assigned multicast address is independent of the scope value. For example, if the "NTP servers group" is assigned a permanent multicast address with a group ID of 43 (hex), then:

FF01:0:0:0:0:0:0:43 means all NTP servers on the same node as the sender.

FF02:0:0:0:0:0:0:43 means all NTP servers on the same link as the
sender.

FF05:0:0:0:0:0:0:43 means all NTP servers at the same site as the sender.

FF0E:0:0:0:0:0:0:43 means all NTP servers in the internet.

Non-permanently-assigned multicast addresses are meaningful only within a given scope. For example, a group identified by the non-permanent, site-local multicast address FF15:0:0:0:0:0:0:43 at one site bears no relationship to a group using the same address at a different site, nor to a non-permanent group using the same group ID with different scope, nor to a permanent group with the same group ID.

Multicast addresses must not be used as source addresses in IPv6 datagrams or appear in any routing header.

2.6.1 Pre-Defined Multicast Addresses

The following well-known multicast addresses are pre-defined:

Reserved Multicast Addresses:

| FF00:0:0:0:0:0:0:0 |
| FF01:0:0:0:0:0:0:0 |
| FF02:0:0:0:0:0:0:0 |
| FF03:0:0:0:0:0:0:0 |
| FF04:0:0:0:0:0:0:0 |
| FF05:0:0:0:0:0:0:0 |
| FF06:0:0:0:0:0:0:0 |
| FF07:0:0:0:0:0:0:0 |
| FF08:0:0:0:0:0:0:0 |
| FF09:0:0:0:0:0:0:0 |
| FF0A:0:0:0:0:0:0:0 |
| FF0B:0:0:0:0:0:0:0 |
| FF0C:0:0:0:0:0:0:0 |
| FF0D:0:0:0:0:0:0:0 |
| FF0E:0:0:0:0:0:0:0 |
| FF0F:0:0:0:0:0:0:0 |

The above multicast addresses are reserved and shall never be assigned.
to any multicast group.

All Nodes Addresses:   FF01:0:0:0:0:0:0:1
                        FF02:0:0:0:0:0:0:1

The above multicast addresses identify the group of all IPv6 nodes, within scope 1 (node-local) or 2 (link-local).

All Routers Addresses:  FF01:0:0:0:0:0:0:2
                         FF02:0:0:0:0:0:0:2

The above multicast addresses identify the group of all IPv6 routers, within scope 1 (node-local) or 2 (link-local).

All Hosts Addresses:    FF01:0:0:0:0:0:0:3
                         FF02:0:0:0:0:0:0:3

The above multicast addresses identify the group of all IPv6 hosts, within scope 1 (node-local) or 2 (link-local).

2.7 A Node's Required Addresses

A host is required to recognize the following addresses as identifying itself:

  o Assigned Unicast Addresses
  o Loopback Address
  o All Nodes Multicast Address
  o All Hosts Multicast Address
  o All other Multicast Addresses to which the host belongs.

A router is required to recognize the following addresses as identifying itself:

  o Assigned Unicast Addresses
  o Loopback Address
  o The Subnet-Router anycast addresses for the links it has interfaces.
  o All other Anycast addresses with which the router has been configured.
  o All Nodes Multicast Address
  o All Router Multicast Address
  o All other Multicast Addresses to which the router belongs.
The only address-prefixes which should be predefined in an implementation are the:

- Unspecified Address
- Loopback Address
- Multicast Prefix (FF)
- Local Use Prefixes (Link-Local and Site-Local)
- Pre-Defined Multicast Addresses
- IPv4 Compatible Prefixes

Implementations should assume all other addresses are unicast unless specifically configured (e.g., anycast addresses).
REFERENCES


[NSAP] B. Carpenter, Editor, "Mechanisms for OSI NSAPs, CLNP and TP over IPv6", Internet Draft.

DOCUMENT EDITOR'S ADDRESS

Robert M. Hinden                     Stephen E. Deering
Ipsilon Networks, Inc.               Xerox Palo Alto Research Center
2465 Latham Street, Suite 100       3333 Coyote Hill Road
Mt. View, CA 94040                  Palo Alto, CA 94304
USA                                  USA
phone: +1 415 528 4604               phone: +1 415 812 4839
fax: +1 415 528 4653                 fax: +1 415 812 4471
email: hinden@ipsilon.com           email: deering@parc.xerox.com
APPENDIX

This version of the "IPv6 Addressing Architecture" includes several changes from the previous version:

<draft-ietf-ipngwg-addr-arch-01.txt>
dated March 27, 1995. These changes are:

- Added definition of Subnet-Router anycast address for use by neighbor discovery and auto-addressing.

- Removed Community scop from multicast scop definitions.

- Added Local Use Prefixes (Link-Local and Site-Local) to list of predefined prefixes that an implementation is required to know.

- Minor clarifications, corrections, and typos fixed.

- New typos likely added.