
Network Working Group D. Goldsmith
Request for Comments: 2152 Apple Computer, Inc.
Obsoletes: RFC 1642 M. Davis
Category: Informational Taligent, Inc.
 May 1997

UTF-7

 A Mail-Safe Transformation Format of Unicode

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 The Unicode Standard, version 2.0, and ISO/IEC 10646-1:1993(E) (as
 amended) jointly define a character set (hereafter referred to as
 Unicode) which encompasses most of the world's writing systems.
 However, Internet mail (STD 11, RFC 822) currently supports only 7-
 bit US ASCII as a character set. MIME (RFC 2045 through 2049) extends
 Internet mail to support different media types and character sets,
 and thus could support Unicode in mail messages. MIME neither defines
 Unicode as a permitted character set nor specifies how it would be
 encoded, although it does provide for the registration of additional
 character sets over time.

 This document describes a transformation format of Unicode that
 contains only 7-bit ASCII octets and is intended to be readable by
 humans in the limiting case that the document consists of characters
 from the US-ASCII repertoire. It also specifies how this
 transformation format is used in the context of MIME and RFC 1641,
 "Using Unicode with MIME".

Motivation

 Although other transformation formats of Unicode exist and could
 conceivably be used in this context (most notably UTF-8, also known
 as UTF-2 or UTF-FSS), they suffer the disadvantage that they use
 octets in the range decimal 128 through 255 to encode Unicode
 characters outside the US-ASCII range. Thus, in the context of mail,
 those octets must themselves be encoded. This requires putting text
 through two successive encoding processes, and leads to a significant
 expansion of characters outside the US-ASCII range, putting non-
 English speakers at a disadvantage. For example, using UTF-8 together

Goldsmith & Davis Informational [Page 1]

https://datatracker.ietf.org/doc/html/rfc1642
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc1641

RFC 2152 UTF-7 May 1997

 with the Quoted-Printable content transfer encoding of MIME
 represents US-ASCII characters in one octet, but other characters may
 require up to nine octets.

Overview

 UTF-7 encodes Unicode characters as US-ASCII octets, together with
 shift sequences to encode characters outside that range. For this
 purpose, one of the characters in the US-ASCII repertoire is reserved
 for use as a shift character.

 Many mail gateways and systems cannot handle the entire US-ASCII
 character set (those based on EBCDIC, for example), and so UTF-7
 contains provisions for encoding characters within US-ASCII in a way
 that all mail systems can accomodate.

 UTF-7 should normally be used only in the context of 7 bit
 transports, such as mail. In other contexts, straight Unicode or
 UTF-8 is preferred.

 See RFC 1641, "Using Unicode with MIME" for the overall specification
 on usage of Unicode transformation formats with MIME.

Definitions

 First, the definition of Unicode:

 The 16 bit character set Unicode is defined by "The Unicode
 Standard, Version 2.0". This character set is identical with the
 character repertoire and coding of the international standard
 ISO/IEC 10646-1:1993(E); Coded Representation Form=UCS-2;
 Subset=300; Implementation Level=3, including the first 7
 amendments to 10646 plus editorial corrections.

 Note. Unicode 2.0 further specifies the use and interaction of
 these character codes beyond the ISO standard. However, any valid
 10646 sequence is a valid Unicode sequence, and vice versa;
 Unicode supplies interpretations of sequences on which the ISO
 standard is silent as to interpretation.

 Next, some handy definitions of US-ASCII character subsets:

 Set D (directly encoded characters) consists of the following
 characters (derived from RFC 1521, Appendix B, which no longer
 appears in RFC 2045): the upper and lower case letters A through Z
 and a through z, the 10 digits 0-9, and the following nine special
 characters (note that "+" and "=" are omitted):

https://datatracker.ietf.org/doc/html/rfc2152
https://datatracker.ietf.org/doc/html/rfc1641
https://datatracker.ietf.org/doc/html/rfc1521#appendix-B
https://datatracker.ietf.org/doc/html/rfc2045

Goldsmith & Davis Informational [Page 2]

RFC 2152 UTF-7 May 1997

 Character ASCII & Unicode Value (decimal)
 ' 39
 (40
) 41
 , 44
 - 45
 . 46
 / 47
 : 58
 ? 63

 Set O (optional direct characters) consists of the following
 characters (note that "\" and "~" are omitted):

 Character ASCII & Unicode Value (decimal)
 ! 33
 " 34
 # 35
 $ 36
 % 37
 & 38
 * 42
 ; 59
 < 60
 = 61
 > 62
 @ 64
 [91
] 93
 ^ 94
 _ 95
 ' 96
 { 123
 | 124
 } 125

 Rationale. The characters "\" and "~" are omitted because they are
 often redefined in variants of ASCII.

 Set B (Modified Base 64) is the set of characters in the Base64
 alphabet defined in RFC 2045, excluding the pad character "="
 (decimal value 61).

https://datatracker.ietf.org/doc/html/rfc2152
https://datatracker.ietf.org/doc/html/rfc2045

Goldsmith & Davis Informational [Page 3]

RFC 2152 UTF-7 May 1997

 Rationale. The pad character = is excluded because UTF-7 is designed
 for use within header fields as set forth in RFC 2047. Since the only
 readable encoding in RFC 2047 is "Q" (based on RFC 2045's Quoted-
 Printable), the "=" character is not available for use (without a lot
 of escape sequences). This was very unfortunate but unavoidable. The
 "=" character could otherwise have been used as the UTF-7 escape
 character as well (rather than using "+").

 Note that all characters in US-ASCII have the same value in Unicode
 when zero-extended to 16 bits.

UTF-7 Definition

 A UTF-7 stream represents 16-bit Unicode characters using 7-bit US-
 ASCII octets as follows:

 Rule 1: (direct encoding) Unicode characters in set D above may be
 encoded directly as their ASCII equivalents. Unicode characters in
 Set O may optionally be encoded directly as their ASCII
 equivalents, bearing in mind that many of these characters are
 illegal in header fields, or may not pass correctly through some
 mail gateways.

 Rule 2: (Unicode shifted encoding) Any Unicode character sequence
 may be encoded using a sequence of characters in set B, when
 preceded by the shift character "+" (US-ASCII character value
 decimal 43). The "+" signals that subsequent octets are to be
 interpreted as elements of the Modified Base64 alphabet until a
 character not in that alphabet is encountered. Such characters
 include control characters such as carriage returns and line
 feeds; thus, a Unicode shifted sequence always terminates at the
 of a line. As a special case, if the sequence terminates with the
 character "-" (US-ASCII decimal 45) then that character is
 absorbed; other terminating characters are not absorbed and are
 processed normally.

 Note that if the first character after the shifted sequence is "-"
 then an extra "-" must be present to terminate the shifted
 sequence so that the actual "-" is not itself absorbed.

 Rationale. A terminating character is necessary for cases where
 the next character after the Modified Base64 sequence is part of
 character set B or is itself the terminating character. It can
 also enhance readability by delimiting encoded sequences.

https://datatracker.ietf.org/doc/html/rfc2152
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2045

Goldsmith & Davis Informational [Page 4]

RFC 2152 UTF-7 May 1997

 Also as a special case, the sequence "+-" may be used to encode
 the character "+". A "+" character followed immediately by any
 character other than members of set B or "-" is an ill-formed
 sequence.

 Unicode is encoded using Modified Base64 by first converting
 Unicode 16-bit quantities to an octet stream (with the most
 significant octet first). Surrogate pairs (UTF-16) are converted
 by treating each half of the pair as a separate 16 bit quantity
 (i.e., no special treatment). Text with an odd number of octets is
 ill-formed. ISO 10646 characters outside the range addressable via
 surrogate pairs cannot be encoded.

 Rationale. ISO/IEC 10646-1:1993(E) specifies that when characters
 the UCS-2 form are serialized as octets, that the most significant
 octet appear first. This is also in keeping with common network
 practice of choosing a canonical format for transmission.

 Rationale. The policy for code point allocation within ISO 10646
 and Unicode is that the repertoires be kept synchronized. No code
 points will be allocated in ISO 10646 outside the range
 addressable by surrogate pairs.

 Next, the octet stream is encoded by applying the Base64 content
 transfer encoding algorithm as defined in RFC 2045, modified to
 omit the "=" pad character. Instead, when encoding, zero bits are
 added to pad to a Base64 character boundary. When decoding, any
 bits at the end of the Modified Base64 sequence that do not
 constitute a complete 16-bit Unicode character are discarded. If
 such discarded bits are non-zero the sequence is ill-formed.

 Rationale. The pad character "=" is not used when encoding
 Modified Base64 because of the conflict with its use as an escape
 character for the Q content transfer encoding in RFC 2047 header
 fields, as mentioned above.

 Rule 3: The space (decimal 32), tab (decimal 9), carriage return
 (decimal 13), and line feed (decimal 10) characters may be
 directly represented by their ASCII equivalents. However, note
 that MIME content transfer encodings have rules concerning the use
 of such characters. Usage that does not conform to the
 restrictions of RFC 822, for example, would have to be encoded
 using MIME content transfer encodings other than 7bit or 8bit,
 such as quoted-printable, binary, or base64.

 Given this set of rules, Unicode characters which may be encoded via
 rules 1 or 3 take one octet per character, and other Unicode
 characters are encoded on average with 2 2/3 octets per character

https://datatracker.ietf.org/doc/html/rfc2152
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc822

Goldsmith & Davis Informational [Page 5]

RFC 2152 UTF-7 May 1997

 plus one octet to switch into Modified Base64 and an optional octet
 to switch out.

 Example. The Unicode sequence "A<NOT IDENTICAL TO><ALPHA>."
 (hexadecimal 0041,2262,0391,002E) may be encoded as follows:

 A+ImIDkQ.

 Example. The Unicode sequence "Hi Mom -<WHITE SMILING FACE>-!"
 (hexadecimal 0048, 0069, 0020, 004D, 006F, 006D, 0020, 002D, 263A,
 002D, 0021) may be encoded as follows:

 Hi Mom -+Jjo--!

 Example. The Unicode sequence representing the Han characters for
 the Japanese word "nihongo" (hexadecimal 65E5,672C,8A9E) may be
 encoded as follows:

 +ZeVnLIqe-

Use of Character Set UTF-7 Within MIME

 Character set UTF-7 is safe for mail transmission and therefore may
 be used with any content transfer encoding in MIME (except where line
 length and line break restrictions are violated). Specifically, the 7
 bit encoding for bodies and the Q encoding for headers are both
 acceptable. The MIME character set tag is UTF-7. This signifies any
 version of Unicode equal to or greater than 2.0.

 Example. Here is a text portion of a MIME message containing the
 Unicode sequence "Hi Mom <WHITE SMILING FACE>!" (hexadecimal 0048,
 0069, 0020, 004D, 006F, 006D, 0020, 263A, 0021).

 Content-Type: text/plain; charset=UTF-7

 Hi Mom +Jjo-!

 Example. Here is a text portion of a MIME message containing the
 Unicode sequence representing the Han characters for the Japanese
 word "nihongo" (hexadecimal 65E5,672C,8A9E).

 Content-Type: text/plain; charset=UTF-7

 +ZeVnLIqe-

 Example. Here is a text portion of a MIME message containing the
 Unicode sequence "A<NOT IDENTICAL TO><ALPHA>." (hexadecimal
 0041,2262,0391,002E).

https://datatracker.ietf.org/doc/html/rfc2152

Goldsmith & Davis Informational [Page 6]

RFC 2152 UTF-7 May 1997

 Content-Type: text/plain; charset=utf-7

 A+ImIDkQ.

 Example. Here is a text portion of a MIME message containing the
 Unicode sequence "Item 3 is <POUND SIGN>1." (hexadecimal 0049,
 0074, 0065, 006D, 0020, 0033, 0020, 0069, 0073, 0020, 00A3, 0031,
 002E).

 Content-Type: text/plain; charset=UTF-7

 Item 3 is +AKM-1.

 Note that to achieve the best interoperability with systems that may
 not support Unicode or MIME, when preparing text for mail
 transmission line breaks should follow Internet conventions. This
 means that lines should be short and terminated with the proper SMTP
 CRLF sequence. Unicode LINE SEPARATOR (hexadecimal 2028) and
 PARAGRAPH SEPARATOR (hexadecimal 2029) should be converted to SMTP
 line breaks. Ideally, this would be handled transparently by a
 Unicode-aware user agent.

 This preparation is not absolutely necessary, since UTF-7 and the
 appropriate MIME content transfer encoding can handle text that does
 not follow Internet conventions, but readability by systems without
 Unicode or MIME will be impaired. See RFC 2045 for a discussion of
 mail interoperability issues.

 Lines should never be broken in the middle of a UTF-7 shifted
 sequence, since such sequences may not cross line breaks. Therefore,
 UTF-7 encoding should take place after line breaking. If a line
 containing a shifted sequence is too long after encoding, a MIME
 content transfer encoding such as Quoted Printable can be used to
 encode the text. Another possibility is to perform line breaking and
 UTF-7 encoding at the same time, so that lines containing shifted
 sequences already conform to length restrictions.

Discussion

 In this section we will motivate the introduction of UTF-7 as opposed
 to the alternative of using the existing transformation formats of
 Unicode (e.g., UTF-8) with MIME's content transfer encodings. Before
 discussing this, it will be useful to list some assumptions about
 character frequency within typical natural language text strings that
 we use to estimate typical storage requirements:

 1. Most Western European languages use roughly 7/8 of their letters
 from US-ASCII and 1/8 from Latin 1 (ISO-8859-1).

https://datatracker.ietf.org/doc/html/rfc2152
https://datatracker.ietf.org/doc/html/rfc2045

Goldsmith & Davis Informational [Page 7]

RFC 2152 UTF-7 May 1997

 2. Most non-Roman alphabet-based languages (e.g., Greek) use about
 1/6 of their letters from ASCII (since white space is in the 7-bit
 area) and the rest from their alphabets.

 3. East Asian ideographic-based languages (including Japanese) use
 essentially all of their characters from the Han or CJK syllabary
 area.

 4. Non-directly encoded punctuation characters do not occur
 frequently enough to affect the results.

 Notice that current 8 bit standards, such as ISO-8859-x, require use
 of a content transfer encoding. For comparison with the subsequent
 discussion, the costs break down as follows (note that many of these
 figures are approximate since they depend on the exact composition of
 the text):

 8859-x in Base64

 Text type Average octets/character
 All 1.33

 8859-x in Quoted Printable

 Text type Average octets/character
 US-ASCII 1
 Western European 1.25
 Other 2.67

 Note also that Unicode encoded in Base64 takes a constant 2.67 octets
 per character. For purposes of comparison, we will look at UTF-8 in
 Base64 and Quoted Printable, and UTF-7. Also note that fixed overhead
 for long strings is relative to 1/n, where n is the encoded string
 length in octets.

 UTF-8 in Base64

 Text type Average octets/character
 US-ASCII 1.33
 Western European 1.5
 Some Alphabetics 2.44
 All others 4

https://datatracker.ietf.org/doc/html/rfc2152

Goldsmith & Davis Informational [Page 8]

RFC 2152 UTF-7 May 1997

 UTF-8 in Quoted Printable

 Text type Average octets/character
 US-ASCII 1
 Western European 1.63
 Some Alphabetics 5.17
 All others 7-9

 UTF-7

 Text type Average octets/character
 Most US-ASCII 1
 Western European 1.5
 All others 2.67+2/n

 We feel that the UTF-8 in Quoted Printable option is not viable due
 to the very large expansion of all text except Western European. This
 would only be viable in texts consisting of large expanses of US-
 ASCII or Latin characters with occasional other characters
 interspersed. We would prefer to introduce one encoding that works
 reasonably well for all users.

 We also feel that UTF-8 in Base64 has high expansion for non-
 Western-European users, and is less desirable because it cannot be
 read directly, even when the content is largely US-ASCII. The base
 encoding of UTF-7 gives competitive results and is readable for ASCII
 text.

 UTF-7 gives results competitive with ISO-8859-x, with access to all
 of the Unicode character set. We believe this justifies the
 introduction of a new transformation format of Unicode.

https://datatracker.ietf.org/doc/html/rfc2152

Goldsmith & Davis Informational [Page 9]

RFC 2152 UTF-7 May 1997

 As an alternative to use of UTF-7, it might be possible to intermix
 Unicode characters with other character sets using an existing MIME
 mechanism, the multipart/mixed content type, ignoring for the moment
 the issues with line breaks (thanks to Nathaniel Borenstein for
 suggesting this). For instance (repeating an earlier example):

 Content-type: multipart/mixed; boundary=foo
 Content-Disposition: inline

 --foo
 Content-type: text/plain; charset=us-ascii

 Hi Mom
 --foo
 Content-type: text/plain; charset=UNICODE-2-0
 Content-transfer-encoding: base64

 Jjo=
 --foo
 Content-type: text/plain; charset=us-ascii

 !
 --foo--

 Theoretically, this removes the need for UTF-7 in message bodies
 (multipart may not be used in header fields). However, we feel that
 as use of the Unicode character set becomes more widespread,
 intermittent use of specialized Unicode characters (such as dingbats
 and mathematical symbols) will occur, and that text will also
 typically include small snippets from other scripts, such as
 Cyrillic, Greek, or East Asian languages (anything in the Roman
 script is already handled adequately by existing MIME character
 sets). Although the multipart technique works well for large chunks
 of text in alternating character sets, we feel it does not adequately
 support the kinds of uses just discussed, and so we still believe the
 introduction of UTF-7 is justified.

Summary

 The UTF-7 encoding allows Unicode characters to be encoded within the
 US-ASCII 7 bit character set. It is most effective for Unicode
 sequences which contain relatively long strings of US-ASCII
 characters interspersed with either single Unicode characters or
 strings of Unicode characters, as it allows the US-ASCII portions to
 be read on systems without direct Unicode support.

 UTF-7 should only be used with 7 bit transports such as mail. In
 other contexts, use of straight Unicode or UTF-8 is preferred.

https://datatracker.ietf.org/doc/html/rfc2152

Goldsmith & Davis Informational [Page 10]

RFC 2152 UTF-7 May 1997

Acknowledgements

 Many thanks to the following people for their contributions,
 comments, and suggestions. If we have omitted anyone it was through
 oversight and not intentionally.

 Glenn Adams
 Harald T. Alvestrand
 Nathaniel Borenstein
 Lee Collins
 Jim Conklin
 Dave Crocker
 Steve Dorner
 Dana S. Emery
 Ned Freed
 Kari E. Hurtta
 John H. Jenkins
 John C. Klensin
 Valdis Kletnieks
 Keith Moore
 Masataka Ohta
 Einar Stefferud
 Erik M. van der Poel

https://datatracker.ietf.org/doc/html/rfc2152

Goldsmith & Davis Informational [Page 11]

RFC 2152 UTF-7 May 1997

Appendix A -- Examples

 Here is a longer example, taken from a document originally in Big5
 code. It has been condensed for brevity. There are two versions: the
 first uses optional characters from set O (and so may not pass
 through some mail gateways), and the second does not.

 Content-type: text/plain; charset=utf-7

 Below is the full Chinese text of the Analects (+itaKng-).

 The sources for the text are:

 "The sayings of Confucius," James R. Ware, trans. +U/BTFw-:
 +ZYeB9FH6ckh5Pg-, 1980. (Chinese text with English translation)

 +Vttm+E6UfZM-, +W4tRQ066bOg-, +UxdOrA-: +Ti1XC2b4Xpc-, 1990.

 "The Chinese Classics with a Translation, Critical and Exegetical
 Notes, Prolegomena, and Copius Indexes," James Legge, trans., Taipei:
 Southern Materials Center Publishing, Inc., 1991. (Chinese text with
 English translation)

 Big Five and GB versions of the text are being made available
 separately.

 Neither the Big Five nor GB contain all the characters used in this
 text. Missing characters have been indicated using their Unicode/ISO
 10646 code points. "U+-" followed by four hexadecimal digits
 indicates a Unicode/10646 code (e.g., U+-9F08). There is no good
 solution to the problem of the small size of the Big Five/GB
 character sets; this represents the solution I find personally most
 satisfactory.

 (omitted...)

 I have tried to minimize this problem by using variant characters
 where they were available and the character actually in the text was
 not. Only variants listed as such in the +XrdxmVtXUXg- were used.

 (omitted...)

 John H. Jenkins +TpVPXGBG- jenkins@apple.com 5 January 1993
 (omitted...)

 Content-type: text/plain; charset=utf-7

 Below is the full Chinese text of the Analects (+itaKng-).

https://datatracker.ietf.org/doc/html/rfc2152

Goldsmith & Davis Informational [Page 12]

RFC 2152 UTF-7 May 1997

 The sources for the text are:

 +ACI-The sayings of Confucius,+ACI- James R. Ware, trans. +U/BTFw-:
 +ZYeB9FH6ckh5Pg-, 1980. (Chinese text with English translation)

 +Vttm+E6UfZM-, +W4tRQ066bOg-, +UxdOrA-: +Ti1XC2b4Xpc-, 1990.

 +ACI-The Chinese Classics with a Translation, Critical and Exegetical
 Notes, Prolegomena, and Copius Indexes,+ACI- James Legge, trans.,
 Taipei: Southern Materials Center Publishing, Inc., 1991. (Chinese
 text with English translation)

 Big Five and GB versions of the text are being made available
 separately.

 Neither the Big Five nor GB contain all the characters used in this
 text. Missing characters have been indicated using their Unicode/ISO
 10646 code points. +ACI-U+-+ACI- followed by four hexadecimal digits
 indicates a Unicode/10646 code (e.g., U+-9F08). There is no good
 solution to the problem of the small size of the Big Five/GB
 character sets+ADs- this represents the solution I find personally
 most satisfactory.

 (omitted...)

 I have tried to minimize this problem by using variant characters
 where they were available and the character actually in the text was
 not. Only variants listed as such in the +XrdxmVtXUXg- were used.
 (omitted...)

 John H. Jenkins +TpVPXGBG- jenkins+AEA-apple.com 5 January 1993
 (omitted...)

https://datatracker.ietf.org/doc/html/rfc2152

Goldsmith & Davis Informational [Page 13]

RFC 2152 UTF-7 May 1997

Security Considerations

 Security issues are not discussed in this memo.

References

[UNICODE 2.0] "The Unicode Standard, Version 2.0", The Unicode
 Consortium, Addison-Wesley, 1996. ISBN 0-201-48345-9.

[ISO 10646] ISO/IEC 10646-1:1993(E) Information Technology--Universal
 Multiple-octet Coded Character Set (UCS). See also
 amendments 1 through 7, plus editorial corrections.

[RFC-1641] Goldsmith, D., and M. Davis, "Using Unicode with MIME",
RFC 1641, Taligent, Inc., July 1994.

[US-ASCII] Coded Character Set--7-bit American Standard Code for
 Information Interchange, ANSI X3.4-1986.

[ISO-8859] Information Processing -- 8-bit Single-Byte Coded Graphic
 Character Sets -- Part 1: Latin Alphabet No. 1, ISO
 8859-1:1987. Part 2: Latin alphabet No. 2, ISO 8859-2,
 1987. Part 3: Latin alphabet No. 3, ISO 8859-3, 1988.
 Part 4: Latin alphabet No. 4, ISO 8859-4, 1988. Part 5:
 Latin/Cyrillic alphabet, ISO 8859-5, 1988. Part 6:
 Latin/Arabic alphabet, ISO 8859-6, 1987. Part 7:
 Latin/Greek alphabet, ISO 8859-7, 1987. Part 8:
 Latin/Hebrew alphabet, ISO 8859-8, 1988. Part 9: Latin
 alphabet No. 5, ISO 8859-9, 1990.

[RFC822] Crocker, D., "Standard for the Format of ARPA Internet
 Text Messages", STD 11, RFC 822, UDEL, August 1982.

[MIME] Borenstein N., N. Freed, K. Moore, J. Klensin, and J.
 Postel, "MIME (Multipurpose Internet Mail Extensions)
 Parts One through Five", RFC 2045, 2046, 2047, 2048, and
 2049, November 1996.

Authors' Addresses

 David Goldsmith
 Apple Computer, Inc.
 2 Infinite Loop, MS: 302-2IS
 Cupertino, CA 95014

 Phone: 408-974-1957
 Fax: 408-862-4566
 EMail: goldsmith@apple.com

https://datatracker.ietf.org/doc/html/rfc2152
https://datatracker.ietf.org/doc/html/rfc1641
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc2045

Goldsmith & Davis Informational [Page 14]

RFC 2152 UTF-7 May 1997

 Mark Davis
 Taligent, Inc.
 10201 N. DeAnza Blvd.
 Cupertino, CA 95014-2233

 Phone: 408-777-5116
 Fax: 408-777-5081
 EMail: mark_davis@taligent.com

Goldsmith & Davis Informational [Page 15]

https://datatracker.ietf.org/doc/html/rfc2152

