
Network Working Group C. Ellison
Request for Comments: 2693 Intel
Category: Experimental B. Frantz
 Electric Communities
 B. Lampson
 Microsoft
 R. Rivest
 MIT Laboratory for Computer Science
 B. Thomas
 Southwestern Bell
 T. Ylonen
 SSH
 September 1999

SPKI Certificate Theory

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 The SPKI Working Group has developed a standard form for digital
 certificates whose main purpose is authorization rather than
 authentication. These structures bind either names or explicit
 authorizations to keys or other objects. The binding to a key can be
 directly to an explicit key, or indirectly through the hash of the
 key or a name for it. The name and authorization structures can be
 used separately or together. We use S-expressions as the standard
 format for these certificates and define a canonical form for those
 S-expressions. As part of this development, a mechanism for deriving
 authorization decisions from a mixture of certificate types was
 developed and is presented in this document.

 This document gives the theory behind SPKI certificates and ACLs
 without going into technical detail about those structures or their
 uses.

Ellison, et al. Experimental [Page 1]

RFC 2693 SPKI Certificate Theory September 1999

Table of Contents

1. Overview of Contents.......................................3
1.1 Glossary..4
2. Name Certification...5
2.1 First Definition of CERTIFICATE...........................6
2.2 The X.500 Plan and X.509..................................6
2.3 X.509, PEM and PGP..7
2.4 Rethinking Global Names...................................7
2.5 Inescapable Identifiers...................................9
2.6 Local Names..10
2.6.1 Basic SDSI Names.......................................10
2.6.2 Compound SDSI Names....................................10
2.7 Sources of Global Identifiers............................11
2.8 Fully Qualified SDSI Names...............................11
2.9 Fully Qualified X.509 Names..............................12
2.10 Group Names...12
3. Authorization...12
3.1 Attribute Certificates...................................13
3.2 X.509v3 Extensions.......................................13
3.3 SPKI Certificates..14
3.4 ACL Entries..15
4. Delegation..15
4.1 Depth of Delegation......................................15
4.1.1 No control...15
4.1.2 Boolean control..16
4.1.3 Integer control..16
4.1.4 The choice: boolean....................................16
4.2 May a Delegator Also Exercise the Permission?............17
4.3 Delegation of Authorization vs. ACLs.....................17
5. Validity Conditions.......................................18
5.1 Anti-matter CRLs...18
5.2 Timed CRLs...19
5.3 Timed Revalidations......................................20
5.4 Setting the Validity Interval............................20
5.5 One-time Revalidations...................................20
5.6 Short-lived Certificates.................................21
5.7 Other possibilities......................................21
5.7.1 Micali's Inexpensive On-line Results...................21
5.7.2 Rivest's Reversal of the CRL Logic.....................21
6. Tuple Reduction...22
6.1 5-tuple Defined..23
6.2 4-tuple Defined..24
6.3 5-tuple Reduction Rules..................................24
6.3.1 AIntersect...25
6.3.2 VIntersect...27
6.3.3 Threshold Subjects.....................................27
6.3.4 Certificate Path Discovery.............................28

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 2]

RFC 2693 SPKI Certificate Theory September 1999

6.4 4-tuple Reduction..28
6.4.1 4-tuple Threshold Subject Reduction....................29
6.4.2 4-tuple Validity Intersection..........................29
6.5 Certificate Translation..................................29
6.5.1 X.509v1..29
6.5.2 PGP..30
6.5.3 X.509v3..30
6.5.4 X9.57..30
6.5.5 SDSI 1.0...30
6.5.6 SPKI...31
6.5.7 SSL..31
6.6 Certificate Result Certificates..........................32
7. Key Management..33
7.1 Through Inescapable Names................................33
7.2 Through a Naming Authority...............................33
7.3 Through <name,key> Certificates..........................34
7.4 Increasing Key Lifetimes.................................34
7.5 One Root Per Individual..................................35
7.6 Key Revocation Service...................................36
7.7 Threshold ACL Subjects...................................36
8. Security Considerations...................................37

 References...38
 Acknowledgments..40
 Authors' Addresses...41
 Full Copyright Statement.....................................43

1. Overview of Contents

 This document contains the following sections:

Section 2: history of name certification, from 1976 on.

Section 3: discussion of authorization, rather than authentication,
 as the desired purpose of a certificate.

Section 4: discussion of delegation.

Section 5: discussion of validity conditions: date ranges, CRLs, re-
 validations and one-time on-line validity tests.

Section 6: definition of 5-tuples and their reduction.

Section 7: discussion of key management.

Section 8: security considerations.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 3]

RFC 2693 SPKI Certificate Theory September 1999

 The References section lists all documents referred to in the text as
 well as readings which might be of interest to anyone reading on this
 topic.

 The Acknowledgements section, including a list of contributors
 primarily from the start of the working group. [The archive of
 working group mail is a more accurate source of contributor
 information.]

 The Authors' Addresses section gives the addresses, telephone numbers
 and e-mail addresses of the authors.

1.1 Glossary

 We use some terms in the body of this document in ways that could be
 specific to SPKI:

 ACL: an Access Control List: a list of entries that anchors a
 certificate chain. Sometimes called a "list of root keys", the ACL
 is the source of empowerment for certificates. That is, a
 certificate communicates power from its issuer to its subject, but
 the ACL is the source of that power (since it theoretically has the
 owner of the resource it controls as its implicit issuer). An ACL
 entry has potentially the same content as a certificate body, but has
 no Issuer (and is not signed). There is most likely one ACL for each
 resource owner, if not for each controlled resource.

 CERTIFICATE: a signed instrument that empowers the Subject. It
 contains at least an Issuer and a Subject. It can contain validity
 conditions, authorization and delegation information. Certificates
 come in three categories: ID (mapping <name,key>), Attribute (mapping
 <authorization,name>), and Authorization (mapping
 <authorization,key>). An SPKI authorization or attribute certificate
 can pass along all the empowerment it has received from the Issuer or
 it can pass along only a portion of that empowerment.

 ISSUER: the signer of a certificate and the source of empowerment
 that the certificate is communicating to the Subject.

 KEYHOLDER: the person or other entity that owns and controls a given
 private key. This entity is said to be the keyholder of the keypair
 or just the public key, but control of the private key is assumed in
 all cases.

 PRINCIPAL: a cryptographic key, capable of generating a digital
 signature. We deal with public-key signatures in this document but
 any digital signature method should apply.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 4]

RFC 2693 SPKI Certificate Theory September 1999

 SPEAKING: A Principal is said to "speak" by means of a digital
 signature. The statement made is the signed object (often a
 certificate). The Principal is said to "speak for" the Keyholder.

 SUBJECT: the thing empowered by a certificate or ACL entry. This can
 be in the form of a key, a name (with the understanding that the name
 is mapped by certificate to some key or other object), a hash of some
 object, or a set of keys arranged in a threshold function.

 S-EXPRESSION: the data format chosen for SPKI/SDSI. This is a LISP-
 like parenthesized expression with the limitations that empty lists
 are not allowed and the first element in any S-expression must be a
 string, called the "type" of the expression.

 THRESHOLD SUBJECT: a Subject for an ACL entry or certificate that
 specifies K of N other Subjects. Conceptually, the power being
 transmitted to the Subject by the ACL entry or certificate is
 transmitted in (1/K) amount to each listed subordinate Subject. K of
 those subordinate Subjects must agree (by delegating their shares
 along to the same object or key) for that power to be passed along.
 This mechanism introduces fault tolerance and is especially useful in
 an ACL entry, providing fault tolerance for "root keys".

2. Name Certification

 Certificates were originally viewed as having one function: binding
 names to keys or keys to names. This thought can be traced back to
 the paper by Diffie and Hellman introducing public key cryptography
 in 1976. Prior to that time, key management was risky, involved and
 costly, sometimes employing special couriers with briefcases
 handcuffed to their wrists.

 Diffie and Hellman thought they had radically solved this problem.
 "Given a system of this kind, the problem of key distribution is
 vastly simplified. Each user generates a pair of inverse
 transformations, E and D, at his terminal. The deciphering
 transformation, D, must be kept secret but need never be communicated
 on any channel. The enciphering key, E, can be made public by
 placing it in a public directory along with the user's name and
 address. Anyone can then encrypt messages and send them to the user,
 but no one else can decipher messages intended for him." [DH]

 This modified telephone book, fully public, took the place of the
 trusted courier. This directory could be put on-line and therefore
 be available on demand, worldwide. In considering that prospect,
 Loren Kohnfelder, in his 1978 bachelor's thesis in electrical
 engineering from MIT [KOHNFELDER], noted: "Public-key communication
 works best when the encryption functions can reliably be shared among

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 5]

RFC 2693 SPKI Certificate Theory September 1999

 the communicants (by direct contact if possible). Yet when such a
 reliable exchange of functions is impossible the next best thing is
 to trust a third party. Diffie and Hellman introduce a central
 authority known as the Public File."

2.1 First Definition of CERTIFICATE

 Kohnfelder then noted, "Each individual has a name in the system by
 which he is referenced in the Public File. Once two communicants
 have gotten each other's keys from the Public File they can securely
 communicate. The Public File digitally signs all of its
 transmissions so that enemy impersonation of the Public File is
 precluded." In an effort to prevent performance problems, Kohnfelder
 invented a new construct: a digitally signed data record containing a
 name and a public key. He called this new construct a CERTIFICATE.
 Because it was digitally signed, such a certificate could be held by
 non-trusted parties and passed around from person to person,
 resolving the performance problems involved in a central directory.

2.2 The X.500 Plan and X.509

 Ten years after Kohnfelder's thesis, the ISO X.509 recommendation was
 published as part of X.500. X.500 was to be a global, distributed
 database of named entities: people, computers, printers, etc. In
 other words, it was to be a global, on-line telephone book. The
 organizations owning some portion of the name space would maintain
 that portion and possibly even provide the computers on which it was
 stored. X.509 certificates were defined to bind public keys to X.500
 path names (Distinguished Names) with the intention of noting which
 keyholder had permission to modify which X.500 directory nodes. In
 fact, the X.509 data record was originally designed to hold a
 password instead of a public key as the record-access authentication
 mechanism.

 The original X.500 plan is unlikely ever to come to fruition.
 Collections of directory entries (such as employee lists, customer
 lists, contact lists, etc.) are considered valuable or even
 confidential by those owning the lists and are not likely to be
 released to the world in the form of an X.500 directory sub-tree.
 For an extreme example, imagine the CIA adding its directory of
 agents to a world-wide X.500 pool.

 The X.500 idea of a distinguished name (a single, globally unique
 name that everyone could use when referring to an entity) is also not
 likely to occur. That idea requires a single, global naming
 discipline and there are too many entities already in the business of
 defining names not under a single discipline. Legacy therefore
 militates against such an idea.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 6]

RFC 2693 SPKI Certificate Theory September 1999

2.3 X.509, PEM and PGP

 The Privacy Enhanced Mail [PEM] effort of the Internet Engineering
 Task Force [RFC1114] adopted X.509 certificates, but with a different
 interpretation. Where X.509 was originally intended to mean "the
 keyholder may modify this portion of the X.500 database", PEM took
 the certificate to mean "the key speaks for the named person". What
 had been an access control instrument was now an identity instrument,
 along the lines envisioned by Diffie, Hellman and Kohnfelder.

 The insistence on X.509 certificates with a single global root
 delayed PEM's adoption past its window of viability. RIPEM, by Mark
 Riordan of MSU, was a version of PEM without X.509 certificates. It
 was distributed and used by a small community, but fell into disuse.
 MOSS (a MIME-enhanced version of PEM, produced by TIS (www.tis.com))
 made certificate use optional, but received little distribution.

 At about the same time, in 1991, Phil Zimmermann's PGP was introduced
 with a different certificate model. Instead of waiting for a single
 global root and the hierarchy of Certificate Authorities descending
 from that root, PGP allowed multiple, (hopefully) independent but not
 specially trusted individuals to sign a <name,key> association,
 attesting to its validity. The theory was that with enough such
 signatures, that association could be trusted because not all of
 these signer would be corrupt. This was known as the "web of trust"
 model. It differed from X.509 in the method of assuring trust in the
 <name,key> binding, but it still intended to bind a globally unique
 name to a key. With PEM and PGP, the intention was for a keyholder
 to be known to anyone in the world by this certified global name.

2.4 Rethinking Global Names

 The assumption that the job of a certificate was to bind a name to a
 key made sense when it was first published. In the 1970's, people
 operated in relatively small communities. Relationships formed face
 to face. Once you knew who someone was, you often knew enough to
 decide how to behave with that person. As a result, people have
 reduced this requirement to the simply stated: "know who you're
 dealing with".

 Names, in turn, are what we humans use as identifiers of persons. We
 learn this practice as infants. In the family environment names work
 as identifiers, even today. What we learn as infants is especially
 difficult to re-learn later in life. Therefore, it is natural for
 people to translate the need to know who the keyholder is into a need
 to know the keyholder's name.

https://datatracker.ietf.org/doc/html/rfc2693
https://datatracker.ietf.org/doc/html/rfc1114

Ellison, et al. Experimental [Page 7]

RFC 2693 SPKI Certificate Theory September 1999

 Computer applications need to make decisions about keyholders. These
 decisions are almost never made strictly on the basis of a
 keyholder's name. There is some other fact about the keyholder of
 interest to the application (or to the human being running the
 application). If a name functions at all for security purposes, it
 is as an index into some database (or human memory) of that other
 information. To serve in this role, the name must be unique, in
 order to serve as an index, and there must be some information to be
 indexed.

 The names we use to identify people are usually unique, within our
 local domain, but that is not true on a global scale. It is
 extremely unlikely that the name by which we know someone, a given
 name, would function as a unique identifier on the Internet. Given
 names continue to serve the social function of making the named
 person feel recognized when addressed by name but they are inadequate
 as the identifiers envisioned by Diffie, Hellman and Kohnfelder.

 In the 1970's and even through the early 1990's, relationships formed
 in person and one could assume having met the keyholder and therefore
 having acquired knowledge about that person. If a name could be
 found that was an adequate identifier of that keyholder, then one
 might use that name to index into memories about the keyholder and
 then be able to make the relevant decision.

 In the late 1990's, this is no longer true. With the explosion of
 the Internet, it is likely that one will encounter keyholders who are
 complete strangers in the physical world and will remain so. Contact
 will be made digitally and will remain digital for the duration of
 the relationship. Therefore, on first encounter there is no body of
 knowledge to be indexed by any identifier.

 One might consider building a global database of facts about all
 persons in the world and making that database available (perhaps for
 a fee). The name that indexes that database might also serve as a
 globally unique ID for the person referenced. The database entry
 under that name could contain all the information needed to allow
 someone to make a security decision. Since there are multiple
 decision-makers, each interested in specific information, the
 database would need to contain the union of multiple sets of
 information. However, that solution would constitute a massive
 privacy violation and would probably be rejected as politically
 impossible.

 A globally unique ID might even fail when dealing with people we do
 know. Few of us know the full given names of people with whom we
 deal. A globally unique name for a person would be larger than the
 full given name (and probably contain it, out of deference to a

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 8]

RFC 2693 SPKI Certificate Theory September 1999

 person's fondness for his or her own name). It would therefore not
 be a name by which we know the person, barring a radical change in
 human behavior.

 A globally unique ID that contains a person's given name poses a
 special danger. If a human being is part of the process (e.g.,
 scanning a database of global IDs in order to find the ID of a
 specific person for the purpose of issuing an attribute certificate),
 then it is likely that the human operator would pay attention to the
 familiar portion of the ID (the common name) and pay less attention
 to the rest. Since the common name is not an adequate ID, this can
 lead to mistakes. Where there can be mistakes, there is an avenue
 for attack.

 Where globally unique identifiers need to be used, perhaps the best
 ID is one that is uniform in appearance (such as a long number or
 random looking text string) so that it has no recognizable sub-field.
 It should also be large enough (from a sparse enough name space) that
 typographical errors would not yield another valid identifier.

2.5 Inescapable Identifiers

 Some people speak of global IDs as if they were inescapable
 identifiers, able to prevent someone from doing evil under one name,
 changing his name and starting over again. To make that scenario
 come true, one would have to have assignment of such identifiers
 (probably by governments, at birth) and some mechanism so that it is
 always possible to get from any flesh and blood person back to his or
 her identifier. Given that latter mechanism, any Certificate
 Authority desiring to issue a certificate to a given individual would
 presumably choose the same, inescapable name for that certificate. A
 full set of biometrics might suffice, for example, to look up a
 person without danger of false positive in a database of globally
 assigned ID numbers and with that procedure one could implement
 inescapable IDs.

 The use of an inescapable identifier might be possible in some
 countries, but in others (such as the US) it would meet strong
 political opposition. Some countries have government-assigned ID
 numbers for citizens but also have privacy regulations that prohibit
 the use of those numbers for routine business. In either of these
 latter cases, the inescapable ID would not be available for use in
 routine certificates.

 There was a concern that commercial Certificate Authorities might
 have been used to bring inescapable names into existence, bypassing
 the political process and the opposition to such names in those
 countries where such opposition is strong. As the (name,key)

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 9]

RFC 2693 SPKI Certificate Theory September 1999

 certificate business is evolving today, there are multiple competing
 CAs each creating disjoint Distinguished Name spaces. There is also
 no real block to the creation of new CAs. Therefore a person is able
 to drop one Distinguished Name and get another, by changing CA,
 making these names not inescapable.

2.6 Local Names

 Globally unique names may be politically undesirable and relatively
 useless, in the world of the Internet, but we use names all the time.

 The names we use are local names. These are the names we write in
 our personal address books or use as nicknames or aliases with e-mail
 agents. They can be IDs assigned by corporations (e.g., bank account
 numbers or employee numbers). Those names or IDs do not need to be
 globally unique. Rather, they need to be unique for the one entity
 that maintains that address book, e-mail alias file or list of
 accounts. More importantly, they need to be meaningful to the person
 who uses them as indexes.

 Ron Rivest and Butler Lampson showed with SDSI 1.0 [SDSI] that one
 can not only use local names locally, one can use local names
 globally. The clear security advantage and operational simplicity of
 SDSI names caused us in the SPKI group to adopt SDSI names as part of
 the SPKI standard.

2.6.1 Basic SDSI Names

 A basic SDSI 2.0 name is an S-expression with two elements: the word
 "name" and the chosen name. For example,

 george: (name fred)

 represents a basic SDSI name "fred" in the name space defined by
 george.

2.6.2 Compound SDSI Names

 If fred in turn defines a name, for example,

 fred: (name sam)

 then george can refer to this same entity as

 george: (name fred sam)

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 10]

RFC 2693 SPKI Certificate Theory September 1999

2.7 Sources of Global Identifiers

 Even though humans use local names, computer systems often need
 globally unique identifiers. Even in the examples of section 2.6.2
 above, we needed to make the local names more global and did so by
 specifying the name-space owner.

 If we are using public key cryptography, we have a ready source of
 globally unique identifiers.

 When one creates a key pair, for use in public key cryptography, the
 private key is bound to its owner by good key safeguarding practice.
 If that private key gets loose from its owner, then a basic premise
 of public key cryptography has been violated and that key is no
 longer of interest.

 The private key is also globally unique. If it were not, then the
 key generation process would be seriously flawed and we would have to
 abandon this public key system implementation.

 The private key must be kept secret, so it is not a possible
 identifier, but each public key corresponds to one private key and
 therefore to one keyholder. The public key, viewed as a byte string,
 is therefore an identifier for the keyholder.

 If there exists a collision-free hash function, then a collision-free
 hash of the public key is also a globally unique identifier for the
 keyholder, and probably a shorter one than the public key.

2.8 Fully Qualified SDSI Names

 SDSI local names are of great value to their definer. Each local
 name maps to one or more public keys and therefore to the
 corresponding keyholder(s). Through SDSI's name chaining, these
 local names become useful potentially to the whole world. [See

section 2.6.2 for an example of SDSI name chaining.]

 To a computer system making use of these names, the name string is
 not enough. One must identify the name space in which that byte
 string is defined. That name space can be identified globally by a
 public key.

 It is SDSI 1.0 convention, preserved in SPKI, that if a (local) SDSI
 name occurs within a certificate, then the public key of the issuer
 is the identifier of the name space in which that name is defined.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 11]

RFC 2693 SPKI Certificate Theory September 1999

 However, if a SDSI name is ever to occur outside of a certificate,
 the name space within which it is defined must be identified. This
 gives rise to the Fully Qualified SDSI Name. That name is a public
 key followed by one or more names relative to that key. If there are
 two or more names, then the string of names is a SDSI name chain.
 For example,

 (name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) jim therese)

 is a fully qualified SDSI name, using the SHA-1 hash of a public key
 as the global identifier defining the name space and anchoring this
 name string.

2.9 Fully Qualified X.509 Names

 An X.509 Distinguished Name can and sometimes must be expressed as a
 Fully Qualified Name. If the PEM or original X.500 vision of a
 single root for a global name space had come true, this wouldn't be
 necessary because all names would be relative to that same one root
 key. However, there is not now and is not likely ever to be a single
 root key. Therefore, every X.509 name should be expressed as the
 pair

 (name <root key> <leaf name>)

 if all leaf names descending from that root are unique. If
 uniqueness is enforced only within each individual CA, then one would
 build a Fully Qualified Name chain from an X.509 certificate chain,
 yielding the form

 (name <root key> <CA(1)> <CA(2)> ... <CA(k)> <leaf name>).

2.10 Group Names

 SPKI/SDSI does not claim to enforce one key per name. Therefore, a
 named group can be defined by issuing multiple (name,key)
 certificates with the same name -- one for each group member.

3. Authorization

 Fully qualified SDSI names represent globally unique names, but at
 every step of their construction the local name used is presumably
 meaningful to the issuer. Therefore, with SDSI name certificates one
 can identify the keyholder by a name relevant to someone.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 12]

RFC 2693 SPKI Certificate Theory September 1999

 However, what an application needs to do, when given a public key
 certificate or a set of them, is answer the question of whether the
 remote keyholder is permitted some access. That application must
 make a decision. The data needed for that decision is almost never
 the spelling of a keyholder's name.

 Instead, the application needs to know if the keyholder is authorized
 for some access. This is the primary job of a certificate, according
 to the members of the SPKI WG, and the SPKI certificate was designed
 to meet this need as simply and directly as possible.

 We realize that the world is not going to switch to SPKI certificates
 overnight. Therefore, we developed an authorization computation
 process that can use certificates in any format. That process is
 described below in section 6.

 The various methods of establishing authorization are documented
 below, briefly. (See also [UPKI])

3.1 Attribute Certificates

 An Attribute Certificate, as defined in X9.57, binds an attribute
 that could be an authorization to a Distinguished Name. For an
 application to use this information, it must combine an attribute
 certificate with an ID certificate, in order to get the full mapping:

 authorization -> name -> key

 Presumably the two certificates involved came from different issuers,
 one an authority on the authorization and the other an authority on
 names. However, if either of these issuers were subverted, then an
 attacker could obtain an authorization improperly. Therefore, both
 the issuers need to be trusted with the authorization decision.

3.2 X.509v3 Extensions

 X.509v3 permits general extensions. These extensions can be used to
 carry authorization information. This makes the certificate an
 instrument mapping both:

 authorization -> key

 and

 name -> key

 In this case, there is only one issuer, who must be an authority on
 both the authorization and the name.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 13]

RFC 2693 SPKI Certificate Theory September 1999

 Some propose issuing a master X.509v3 certificate to an individual
 and letting extensions hold all the attributes or authorizations the
 individual would need. This would require the issuer to be an
 authority on all of those authorizations. In addition, this
 aggregation of attributes would result in shortening the lifetime of
 the certificate, since each attribute would have its own lifetime.
 Finally, aggregation of attributes amounts to the building of a
 dossier and represents a potential privacy violation.

 For all of these reasons, it is desirable that authorizations be
 limited to one per certificate.

3.3 SPKI Certificates

 A basic SPKI certificate defines a straight authorization mapping:

 authorization -> key

 If someone wants access to a keyholder's name, for logging purposes
 or even for punishment after wrong-doing, then one can map from key
 to location information (name, address, phone, ...) to get:

 authorization -> key -> name

 This mapping has an apparent security advantage over the attribute
 certificate mapping. In the mapping above, only the

 authorization -> key

 mapping needs to be secure at the level required for the access
 control mechanism. The

 key -> name

 mapping (and the issuer of any certificates involved) needs to be
 secure enough to satisfy lawyers or private investigators, but a
 subversion of this mapping does not permit the attacker to defeat the
 access control. Presumably, therefore, the care with which these
 certificates (or database entries) are created is less critical than
 the care with which the authorization certificate is issued. It is
 also possible that the mapping to name need not be on-line or
 protected as certificates, since it would be used by human
 investigators only in unusual circumstances.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 14]

RFC 2693 SPKI Certificate Theory September 1999

3.4 ACL Entries

 SDSI 1.0 defined an ACL, granting authorization to names. It was
 then like an attribute certificate, except that it did not need to be
 signed or issued by any key. It was held in local memory and was
 assumed issued by the owner of the computer and therefore of the
 resource being controlled.

 In SPKI, an ACL entry is free to be implemented in any way the
 developer chooses, since it is never communicated and therefore does
 not need to be standardized. However, a sample implementation is
 documented, as a certificate body minus the issuer field. The ACL
 entry can have a name as a subject, as in SDSI 1.0, or it can have a
 key as a subject. Examples of the latter include the list of SSL
 root keys in an SSL capable browser or the file .ssh/authorized_keys
 in a user's home UNIX directory. Those ACLs are single-purpose, so
 the individual entries do not carry explicit authorizations, but SPKI
 uses explicit authorizations so that one can use common authorization
 computation code to deal with multiple applications.

4. Delegation

 One of the powers of an authorization certificate is the ability to
 delegate authorizations from one person to another without bothering
 the owner of the resource(s) involved. One might issue a simple
 permission (e.g., to read some file) or issue the permission to
 delegate that permission further.

 Two issues arose as we considered delegation: the desire to limit
 depth of delegation and the question of separating delegators from
 those who can exercise the delegated permission.

4.1 Depth of Delegation

 There were three camps in discussing depth of delegation: no control,
 boolean control and integer control. There remain camps in favor of
 each of these, but a decision was reached in favor of boolean
 control.

4.1.1 No control

 The argument in favor of no control is that if a keyholder is given
 permission to do something but not the permission to delegate it,
 then it is possible for that keyholder to loan out the empowered
 private key or to set up a proxy service, signing challenges or
 requests for the intended delegate. Therefore, the attempt to
 restrict the permission to delegate is ineffective and might back-
 fire, by leading to improper security practices.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 15]

RFC 2693 SPKI Certificate Theory September 1999

4.1.2 Boolean control

 The argument in favor of boolean control is that one might need to
 specify an inability to delegate. For example, one could imagine the
 US Commerce Department having a key that is authorized to declare a
 cryptographic software module exportable and also to delegate that
 authorization to others (e.g., manufacturers). It is reasonable to
 assume the Commerce Department would not issue permission to delegate
 this further. That is, it would want to have a direct legal
 agreement with each manufacturer and issue a certificate to that
 manufacturer only to reflect that the legal agreement is in place.

4.1.3 Integer control

 The argument in favor of integer control is that one might want to
 restrict the depth of delegation in order to control the
 proliferation of a delegated permission.

4.1.4 The choice: boolean

 Of these three, the group chose boolean control. The subject of a
 certificate or ACL entry may exercise any permission granted and, if
 delegation is TRUE, may also delegate that permission or some subset
 of it to others.

 The no control argument has logical appeal, but there remains the
 assumption that a user will value his or her private key enough not
 to loan it out or that the key will be locked in hardware where it
 can't be copied to any other user. This doesn't prevent the user
 from setting up a signing oracle, but lack of network connectivity
 might inhibit that mechanism.

 The integer control option was the original design and has appeal,
 but was defeated by the inability to predict the proper depth of
 delegation. One can always need to go one more level down, by
 creating a temporary signing key (e.g., for use in a laptop).
 Therefore, the initially predicted depth could be significantly off.

 As for controlling the proliferation of permissions, there is no
 control on the width of the delegation tree, so control on its depth
 is not a tight control on proliferation.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 16]

RFC 2693 SPKI Certificate Theory September 1999

4.2 May a Delegator Also Exercise the Permission?

 We decided that a delegator is free to create a new key pair, also
 controlled by it, and delegate the rights to that key to exercise the
 delegated permission. Therefore, there was no benefit from
 attempting to restrict the exercise of a permission by someone
 permitted to delegate it.

4.3 Delegation of Authorization vs. ACLs

 One concern with defining an authorization certificate is that the
 function can be performed by traditional <authorization,name> ACLs
 and <name,key> ID certificates defining groups. Such a mechanism was
 described in SDSI 1.0. A new mechanism needs to add value or it just
 complicates life for the developer.

 The argument for delegated authorization as opposed to ACLs can be
 seen in the following example.

 Imagine a firewall proxy permitting telnet and ftp access from the
 Internet into a network of US DoD machines. Because of the
 sensitivity of that destination network, strong access control would
 be desired. One could use public key authentication and public key
 certificates to establish who the individual keyholder was. Both the
 private key and the keyholder's certificates could be kept on a
 Fortezza card. That card holds X.509v1 certificates, so all that can
 be established is the name of the keyholder. It is then the job of
 the firewall to keep an ACL, listing named keyholders and the forms
 of access they are each permitted.

 Consider the ACL itself. Not only would it be potentially huge,
 demanding far more storage than the firewall would otherwise require,
 but it would also need its own ACL. One could not, for example, have
 someone in the Army have the power to decide whether someone in the
 Navy got access. In fact, the ACL would probably need not one level
 of its own ACL, but a nested set of ACLs, eventually reflecting the
 organization structure of the entire Defense Department.

 Without the ACLs, the firewall could be implemented in a device with
 no mass storage, residing in a sealed unit one could easily hold in
 one hand. With the ACLs, it would need a large mass storage device
 that would be accessed not only while making access control decisions
 but also for updating the ACLs.

 By contrast, let the access be controlled by authorization
 certificates. The firewall would have an ACL with one entry,
 granting a key belonging to the Secretary of Defense the right to
 delegate all access through the firewall. The Secretary would, in

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 17]

RFC 2693 SPKI Certificate Theory September 1999

 turn, issue certificates delegating this permission to delegate to
 each of his or her subordinates. This process would iterate, until
 some enlisted man would receive permission to penetrate that firewall
 for some specific one protocol, but not have permission to delegate
 that permission.

 The certificate structure generated would reflect the organization
 structure of the entire Defense Department, just as the nested ACLs
 would have, but the control of these certificates (via their issuance
 and revocation) is distributed and need not show up in that one
 firewall or be replicated in all firewalls. Each individual
 delegator of permission performs a simple task, well understood. The
 application software to allow that delegation is correspondingly
 simple.

5. Validity Conditions

 A certificate, or an ACL entry, has optional validity conditions.
 The traditional ones are validity dates: not-before and not-after.
 The SPKI group resolved, in discussion, that on-line tests of various
 kinds are also validity conditions. That is, they further refine the
 valid date range of a certificate. Three kinds of on-line tests are
 envisioned: CRL, re-validation and one-time.

 When validity confirmation is provided by some online test, then the
 issuer of those refinements need not be the issuer of the original
 certificate. In many cases, the business or security model for the
 two issuers is different. However, in SPKI, the certificate issuer
 must specify the issuer of validity confirmations.

5.1 Anti-matter CRLs

 An early form of CRL [Certificate Revocation List] was modeled after
 the news print book that used to be kept at supermarket checkout
 stands. Those books held lists of bad checking account numbers and,
 later, bad credit card numbers. If one's payment instrument wasn't
 listed in the book, then that instrument was considered good.

 These books would be issued periodically, and delivered by some means
 not necessarily taking a constant time. However, when a new book
 arrived, the clerk would replace the older edition with the new one
 and start using it. This design was suited to the constraints of the
 implementation: use of physical books, delivered by physical means.
 The book held bad account numbers rather than good ones because the
 list of bad accounts was smaller.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 18]

RFC 2693 SPKI Certificate Theory September 1999

 An early CRL design followed this model. It had a list of revoked
 certificate identifiers. It also had a sequence number, so that one
 could tell which of two CRLs was more recent. A newer CRL would
 replace an older one.

 This mode of operation is like wandering anti-matter. When the
 issuer wants to revoke a certificate, it is listed in the next CRL to
 go out. If the revocation is urgent, then that CRL can be released
 immediately. The CRL then follows some dissemination process
 unrelated to the needs of the consumers of the CRL. If the CRL
 encounters a certificate it has listed, it effectively annihilates
 that certificate. If it encounters an older CRL, it annihilates that
 CRL also, leaving a copies of itself at the verifiers it encounters.

 However, this process is non-deterministic. The result of the
 authorization computation is at least timing dependent. Given an
 active adversary, it can also be a security hole. That is, an
 adversary can prevent revocation of a given certificate by preventing
 the delivery of new CRLs. This does not require cryptographic level
 effort, merely network tampering.

 SPKI has ruled out the use of wandering anti-matter CRLs for its
 certificates. Every authorization computation is deterministic,
 under SPKI rules.

5.2 Timed CRLs

 SPKI permits use of timed CRLs. That is, if a certificate can be
 referenced in a CRL, then the CRL process is subject to three
 conditions.

 1. The certificate must list the key (or its hash) that will sign
 the CRL and may give one or more locations where that CRL might
 be fetched.

 2. The CRL must carry validity dates.

 3. CRL validity date ranges must not intersect. That is, one may
 not issue a new CRL to take effect before the expiration of the
 CRL currently deployed.

 Under these rules, no certificate that might use a CRL can be
 processed without a valid CRL and no CRL can be issued to show up as
 a surprise at the verifier. This yields a deterministic validity
 computation, independent of clock skew, although clock inaccuracies
 in the verifier may produce a result not desired by the issuer. The
 CRL in this case is a completion of the certificate, rather than a
 message to the world announcing a change of mind.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 19]

RFC 2693 SPKI Certificate Theory September 1999

 Since CRLs might get very large and since they tend to grow
 monotonically, one might want to issue changes to CRLs rather than
 full ones. That is, a CRL might be a full CRL followed by a sequence
 of delta-CRLs. That sequence of instruments is then treated as a
 current CRL and the combined CRL must follow the conditions listed
 above.

5.3 Timed Revalidations

 CRLs are negative statements. The positive version of a CRL is what
 we call a revalidation. Typically a revalidation would list only one
 certificate (the one of interest), although it might list a set of
 certificates (to save digital signature effort).

 As with the CRL, SPKI demands that this process be deterministic and
 therefore that the revalidation follow the same rules listed above
 (in section 5.2).

5.4 Setting the Validity Interval

 Both timed CRLs and timed revalidations have non-0 validity
 intervals. To set this validity interval, one must answer the
 question: "How long are you willing to let the world believe and act
 on a statement you know to be false?"

 That is, one must assume that the previous CRL or revalidation has
 just been signed and transmitted to at least one consumer, locking up
 a time slot. The next available time slot starts after this validity
 interval ends. That is the earliest one can revoke a certificate one
 learns to be false.

 The answer to that question comes from risk management. It will
 probably be based on expected monetary losses, at least in commercial
 cases.

5.5 One-time Revalidations

 Validity intervals of length zero are not possible. Since
 transmission takes time, by the time a CRL was received by the
 verifier, it would be out of date and unusable. That assumes perfect
 clock synchronization. If clock skew is taken into consideration,
 validity intervals need to be that much larger to be meaningful.

 For those who want to set the validity interval to zero, SPKI defines
 a one-time revalidation.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 20]

RFC 2693 SPKI Certificate Theory September 1999

 This form of revalidation has no lifetime beyond the current
 authorization computation. One applies for this on-line, one-time
 revalidation by submitting a request containing a nonce. That nonce
 gets returned in the signed revalidation instrument, in order to
 prevent replay attacks. This protocol takes the place of a validity
 date range and represents a validity interval of zero, starting and
 ending at the time the authorization computation completes.

5.6 Short-lived Certificates

 A performance analysis of the various methods of achieving fine-grain
 control over the validity interval of a certificate should consider
 the possibility of just making the original certificate short-lived,
 especially if the online test result is issued by the same key that
 issued the certificate. There are cases in which the short-lived
 certificate requires fewer signatures and less network traffic than
 the various online test options. The use of a short-lived
 certificate always requires fewer signature verifications than the
 use of certificate plus online test result.

 If one wants to issue short-lived certificates, SPKI defines a kind
 of online test statement to tell the user of the certificate where a
 replacement short-lived certificate might be fetched.

5.7 Other possibilities

 There are other possibilities to be considered when choosing a
 validity condition model to use.

5.7.1 Micali's Inexpensive On-line Results

 Silvio Micali has patented a mechanism for using hash chains to
 revalidate or revoke a certificate inexpensively. This mechanism
 changes the performance requirements of those models and might
 therefore change the conclusion from a performance analysis [ECR].

5.7.2 Rivest's Reversal of the CRL Logic

 Ron Rivest has written a paper [R98] suggesting that the whole
 validity condition model is flawed because it assumes that the issuer
 (or some entity to which it delegates this responsibility) decides
 the conditions under which a certificate is valid. That traditional
 model is consistent with a military key management model, in which
 there is some central authority responsible for key release and for
 determining key validity.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 21]

RFC 2693 SPKI Certificate Theory September 1999

 However, in the commercial space, it is the verifier and not the
 issuer who is taking a risk by accepting a certificate. It should
 therefore be the verifier who decides what level of assurance he
 needs before accepting a credential. That verifier needs information
 from the issuer, and the more recent that information the better, but
 the decision is the verifier's in the end.

 This line of thought deserves further consideration, but is not
 reflected in the SPKI structure definition. It might even be that
 both the issuer and the verifier have stakes in this decision, so
 that any replacement validity logic would have to include inputs from
 both.

6. Tuple Reduction

 The processing of certificates and related objects to yield an
 authorization result is the province of the developer of the
 application or system. The processing plan presented here is an
 example that may be followed, but its primary purpose is to clarify
 the semantics of an SPKI certificate and the way it and various other
 kinds of certificate might be used to yield an authorization result.

 There are three kinds of entity that might be input to the
 computation that yields an authorization result:

 1. <name,key> (as a certificate)

 2. <authorization,name> (as an attribute certificate or ACL entry)

 3. <authorization,key> (as an authorization certificate or ACL
 entry)

 These entities are processed in three stages.

 1. Individual certificates are verified by checking their
 signatures and possibly performing other work. They are then
 mapped to intermediate forms, called "tuples" here.

 The other work for SPKI or SDSI certificates might include
 processing of on-line test results (CRL, re-validation or one-
 time validation).

 The other work for PGP certificates may include a web-of-trust
 computation.

 The other work for X.509 certificates depends on the written
 documentation for that particular use of X.509 (typically tied
 to the root key from which the certificate descended) and could

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 22]

RFC 2693 SPKI Certificate Theory September 1999

 involve checking information in the parent certificate as well
 as additional information in extensions of the certificate in
 question. That is, some use X.509 certificates just to define
 names. Others use X.509 to communicate an authorization
 implicitly (e.g., SSL server certificates). Some might define
 extensions of X.509 to carry explicit authorizations. All of
 these interpretations are specified in written documentation
 associated with the certificate chain and therefore with the
 root from which the chain descends.

 If on-line tests are involved in the certificate processing,
 then the validity dates of those on-line test results are
 intersected by VIntersect() [defined in 6.3.2, below] with the
 validity dates of the certificate to yield the dates in the
 certificate's tuple(s).

 2. Uses of names are replaced with simple definitions (keys or
 hashes), based on the name definitions available from reducing
 name 4-tuples.

 3. Authorization 5-tuples are then reduced to a final authorization
 result.

6.1 5-tuple Defined

 The 5-tuple is an intermediate form, assumed to be held in trusted
 memory so that it doesn't need a digital signature for integrity. It
 is produced from certificates or other credentials via trusted
 software. Its contents are the same as the contents of an SPKI
 certificate body, but it might be derived from another form of
 certificate or from an ACL entry.

 The elements of a 5-tuple are:

 1. Issuer: a public key (or its hash), or the reserved word "Self".
 This identifies the entity speaking this intermediate result.

 2. Subject: a public key (or its hash), a name used to identify a
 public key, the hash of an object or a threshold function of
 subordinate subjects. This identifies the entity being spoken
 about in this intermediate result.

 3. Delegation: a boolean. If TRUE, then the Subject is permitted
 by the Issuer to further propagate the authorization in this
 intermediate result.

 4. Authorization: an S-expression. [Rules for combination of
 Authorizations are given below.]

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 23]

RFC 2693 SPKI Certificate Theory September 1999

 5. Validity dates: a not-before date and a not-after date, where
 "date" means date and time. If the not-before date is missing
 from the source credential then minus infinity is assumed. If
 the not-after date is missing then plus infinity is assumed.

6.2 4-tuple Defined

 A <name,key> certificate (such as X.509v1 or SDSI 1.0) carries no
 authorization field but does carry a name. Since it is qualitatively
 different from an authorization certificate, a separate intermediate
 form is defined for it.

 The elements of a Name 4-tuple are:

 1. Issuer: a public key (or its hash). This identifies the entity
 defining this name in its private name space.

 2. Name: a byte string

 3. Subject: a public key (or its hash), a name, or a threshold
 function of subordinate subjects. This defines the name.

 4. Validity dates: a not-before date and a not-after date, where
 "date" means date and time. If the not-before date is missing
 from the source credential then minus infinity is assumed. If
 the not-after date is missing then plus infinity is assumed.

6.3 5-tuple Reduction Rules

 The two 5-tuples:

 <I1,S1,D1,A1,V1> + <I2,S2,D2,A2,V2>

 yield

 <I1,S2,D2,AIntersect(A1,A2),VIntersect(V1,V2)>

 provided

 the two intersections succeed,

 S1 = I2

 and

 D1 = TRUE

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 24]

RFC 2693 SPKI Certificate Theory September 1999

 If S1 is a threshold subject, there is a slight modification to this
 rule, as described below in section 6.3.3.

6.3.1 AIntersect

 An authorization is a list of strings or sub-lists, of meaning to and
 probably defined by the application that will use this authorization
 for access control. Two authorizations intersect by matching,
 element for element. If one list is longer than the other but match
 at all elements where both lists have elements, then the longer list
 is the result of the intersection. This means that additional
 elements of a list must restrict the permission granted.

 Although actual authorization string definitions are application
 dependent, AIntersect provides rules for automatic intersection of
 these strings so that application developers can know the semantics
 of the strings they use. Special semantics would require special
 reduction software.

 For example, there might be an ftpd that allows public key access
 control, using authorization certificates. Under that service,

 (ftp (host ftp.clark.net))

 might imply that the keyholder would be allowed ftp access to all
 directories on ftp.clark.net, with all kinds of access (read, write,
 delete, ...). This is more general (allows more access) than

 (ftp (host ftp.clark.net) (dir /pub/cme))

 which would allow all kinds of access but only in the directory
 specified. The intersection of the two would be the second.

 Since the AIntersect rules imply position dependency, one could also
 define the previous authorization string as:

 (ftp ftp.clark.net /pub/cme)

 to keep the form compact.

 To allow for wild cards, there are a small number of special S-
 expressions defined, using "*" as the expression name.

 (*)
 stands for the set of all S-expressions and byte-strings.
 In other words, it will match anything. When intersected
 with anything, the result is that other thing. [The
 AIntersect rule about lists of different length treats a

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 25]

RFC 2693 SPKI Certificate Theory September 1999

 list as if it had enough (*) entries implicitly appended to
 it to match the length of another list with which it was
 being intersected.]

 (* set <tag-expr>*)
 stands for the set of elements listed in the *-form.

 (* prefix <byte-string>)
 stands for the set of all byte strings that start with the
 one given in the *-form.

 (* range <ordering> <lower-limit>? <upper-limit>?)
 stands for the set of all byte strings lexically (or
 numerically) between the two limits. The ordering
 parameter (alpha, numeric, time, binary, date) specifies
 the kind of strings allowed.

 AIntersect() is normal set intersection, when *-forms are defined as
 they are above and a normal list is taken to mean all lists that
 start with those elements. The following examples should give a more
 concrete explanation for those who prefer an explanation without
 reference to set operations.

 AIntersect((tag (ftp ftp.clark.net cme (* set read write))),
 (tag (*)))

 evaluates to (tag (ftp ftp.clark.net cme (* set read write)))

 AIntersect((tag (* set read write (foo bla) delete)),
 (tag (* set write read)))

 evaluates to (tag (* set read write))

 AIntersect((tag (* set read write (foo bla) delete)),
 (tag read))

 evaluates to (tag read)

 AIntersect((tag (* prefix http://www.clark.net/pub/)),
 (tag (* prefix http://www.clark.net/pub/cme/html/)))

 evaluates to (tag (* prefix http://www.clark.net/pub/cme/html/))

 AIntersect((tag (* range numeric ge #30# le #39#)), (tag #26#))

 fails to intersect.

https://datatracker.ietf.org/doc/html/rfc2693
http://www.clark.net/pub/
http://www.clark.net/pub/cme/html/
http://www.clark.net/pub/cme/html/

Ellison, et al. Experimental [Page 26]

RFC 2693 SPKI Certificate Theory September 1999

6.3.2 VIntersect

 Date range intersection is straight-forward.

 V = VIntersect(X, Y)

 is defined as

 Vmin = max(Xmin, Ymin)

 Vmax = min(Xmax, Ymax)

 and if Vmin > Vmax, then the intersection failed.

 These rules assume that daytimes are expressed in a monotonic form,
 as they are in SPKI.

 The full SPKI VIntersect() also deals with online tests. In the most
 straight-forward implementation, each online test to which a
 certificate is subject is evaluated. Each such test carries with it
 a validity interval, in terms of dates. That validity interval is
 intersected with any present in the certificate, to yield a new,
 current validity interval.

 It is possible for an implementation of VIntersect() to gather up
 online tests that are present in each certificate and include the
 union of all those tests in the accumulating tuples. In this case,
 the evaluation of those online tests is deferred until the end of the
 process. This might be appropriate if the tuple reduction is being
 performed not for answering an immediate authorization question but
 rather for generation of a summary certificate (Certificate Result
 Certificate) that one might hope would be useful for a long time.

6.3.3 Threshold Subjects

 A threshold subject is specified by two numbers, K and N [0<K<=N],
 and N subordinate subjects. A threshold subject is reduced to a
 single subject by selecting K of the N subjects and reducing each of
 those K to the same subject, through a sequence of certificates. The
 (N-K) unselected subordinate subjects are set to (null).

 The intermediate form for a threshold subject is a copy of the tuple
 in which the threshold subject appears, but with only one of the
 subordinate subjects. Those subordinate tuples are reduced
 individually until the list of subordinate tuples has (N-K) (null)
 entries and K entries with the same subject. At that point, those K
 tuples are validity-, authorization- and delegation- intersected to
 yield the single tuple that will replace the list of tuples.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 27]

RFC 2693 SPKI Certificate Theory September 1999

6.3.4 Certificate Path Discovery

 All reduction operations are in the order provided by the prover.
 That simplifies the job of the verifier, but leaves the job of
 finding the correct list of reductions to the prover.

 The general algorithm for finding the right certificate paths from a
 large set of unordered certificates has been solved[ELIEN], but might
 be used only rarely. Each keyholder who is granted some authority
 should receive a sequence of certificates delegating that authority.
 That keyholder may then want to delegate part of this authority on to
 some other keyholder. To do that, a single additional certificate is
 generated and appended to the sequence already available, yielding a
 sequence that can be used by the delegatee to prove access
 permission.

6.4 4-tuple Reduction

 There will be name 4-tuples in two different classes, those that
 define the name as a key and those that define the name as another
 name.

 1. [(name K1 N) -> K2]

 2. [(name K1 N) -> (name K2 N1 N2 ... Nk)]

 As with the 5-tuples discussed in the previous section, name
 definition 4-tuples should be delivered in the order needed by the
 prover. In that case, the rule for name reduction is to replace the
 name just defined by its definition. For example,

 (name K1 N N1 N2 N3) + [(name K1 N) -> K2]

 -> (name K2 N1 N2 N3)

 or, in case 2 above,

 (name K1 N Na Nb Nc) + [(name K1 N) -> (name K2 N1 N2 ... Nk)]

 -> (name K2 N1 N2 ... Nk Na Nb Nc)

 With the second form of name definition, one might have names that
 temporarily grow. If the prover is providing certificates in order,
 then the verifier need only do as it is told.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 28]

RFC 2693 SPKI Certificate Theory September 1999

 If the verifier is operating from an unordered pool of tuples, then a
 safe rule for name reduction is to apply only those 4-tuples that
 define a name as a key. Such applications should bring 4-tuples that
 started out in class (2) into class (1), and eventually reduce all
 names to keys. Any naming loops are avoided by this process.

6.4.1 4-tuple Threshold Subject Reduction

 Some of a threshold subject's subordinate subjects might be names.
 Those names must be reduced by application of 4-tuples. The name
 reduction process proceeds independently on each name in the
 subordinate subject as indicated in 6.3.3 above.

 One can reduce individual named subjects in a threshold subject and
 leave the subject in threshold form, if one desires. There is no
 delegation- or authorization-intersection involved, only a validity-
 intersection during name reduction. This might be used by a service
 that produces Certificate Result Certificates [see 6.7].

6.4.2 4-tuple Validity Intersection

 Whenever a 4-tuple is used to reduce the subject (or part of the
 subject) of another tuple, its validity interval is intersected with
 that of the tuple holding the subject being reduced and the
 intersection is used in the resulting tuple. Since a 4-tuple
 contains no delegation or authorization fields, the delegation
 permission and authorization of the tuple being acted upon does not
 change.

6.5 Certificate Translation

 Any certificate currently defined, as well as ACL entries and
 possibly other instruments, can be translated to 5-tuples (or name
 tuples) and therefore take part in an authorization computation. The
 specific rules for those are given below.

6.5.1 X.509v1

 The original X.509 certificate is a <name,key> certificate. It
 translates directly to a name tuple. The form

 [Kroot, (name <leaf-name>), K1, validity]

 is used if the rules for that particular X.509 hierarchy is that all
 leaf names are unique, under that root. If uniqueness of names
 applies only to individual CAs in the X.509 hierarchy, then one must
 generate

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 29]

RFC 2693 SPKI Certificate Theory September 1999

 [Kroot, (name CA1 CA2 ... CAk <leaf-name>), K1, validity]

 after verifying the certificate chain by the rules appropriate to
 that particular chain.

6.5.2 PGP

 A PGP certificate is a <name,key> certificate. It is verified by
 web-of-trust rules (as specified in the PGP documentation). Once
 verified, it yields name tuples of the form

 [Ki, name, K1, validity]

 where Ki is a key that signed that PGP (UserID,key) pair. There
 would be one tuple produced for each signature on the key, K1.

6.5.3 X.509v3

 An X.509v3 certificate may be used to declare a name. It might also
 declare explicit authorizations, by way of extensions. It might also
 declare an implicit authorization of the form (tag (*)). The actual
 set of tuples it yields depends on the documentation associated with
 that line of certificates. That documentation could conceptually be
 considered associated with the root key of the certificate chain. In
 addition, some X.509v3 certificates (such as those used for SET),
 have defined extra validity tests for certificate chains depending on
 custom extensions. As a result, it is likely that X.509v3 chains
 will have to be validated independently, by chain validation code
 specific to each root key. After that validation, that root-specific
 code can then generate the appropriate multiple tuples from the one
 certificate.

6.5.4 X9.57

 An X9.57 attribute certificate should yield one or more 5-tuples,
 with names as Subject. The code translating the attribute
 certificate will have to build a fully-qualified name to represent
 the Distinguished Name in the Subject. For any attribute
 certificates that refer to an ID certificate explicitly, the Subject
 of the 5-tuple can be the key in that ID certificate, bypassing the
 construction of name 4-tuples.

6.5.5 SDSI 1.0

 A SDSI 1.0 certificate maps directly to one 4-tuple.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 30]

RFC 2693 SPKI Certificate Theory September 1999

6.5.6 SPKI

 An SPKI certificate maps directly to one 4- or 5- tuple, depending
 respectively on whether it is a name certificate or carries an
 authorization.

6.5.7 SSL

 An SSL certificate carries a number of authorizations, some
 implicitly. The authorization:

 (tag (ssl))

 is implicit. In addition, the server certificate carries a DNS name
 parameter to be matched against the DNS name of the web page to which
 the connection is being made. That might be encoded as:

 (tag (dns <domain-name>))

 Meanwhile, there is the "global cert" permission -- the permission
 for a US-supplied browser to connect using full strength symmetric
 cryptography even though the server is outside the USA. This might
 be encoded as:

 (tag (us-crypto))

 There are other key usage attributes that would also be encoded as
 tag fields, but a full discussion of those fields is left to the
 examples document.

 An ACL entry for an SSL root key would have the tag:

 (tag (* set (ssl) (dns (*))))

 which by the rules of intersection is equivalent to:

 (tag (* set (ssl) (dns)))

 unless that root key also had the permission from the US Commerce
 Department to grant us-crypto permission, in which case the root key
 would have:

 (tag (* set (ssl) (dns) (us-crypto)))

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 31]

RFC 2693 SPKI Certificate Theory September 1999

 A CA certificate, used for SSL, would then need only to communicate
 down its certificate chain those permissions allocated in the ACL.
 Its tag might then translate to:

 (tag (*))

 A leaf server certificate for the Datafellows server might, for
 example, have a tag field of the form:

 (tag (* set (ssl) (dns www.datafellows.com)))

 showing that it was empowered to do SSL and to operate from the given
 domain name, but not to use US crypto with a US browser.

 The use of (* set) for the two attributes in this example could have
 been abbreviated as:

 (tag (ssl www.datafellows.com))

 while CA certificates might carry:

 (tag (ssl (*))) or just (tag (*))

 but separating them, via (* set), allows for a future enhancement of
 SSL in which the (ssl) permission is derived from one set of root
 keys (those of current CAs) while the (dns) permission is derived
 from another set of root keys (those empowered to speak in DNSSEC)
 while the (us-crypto) permission might be granted only to a root key
 belonging to the US Department of Commerce. The three separate tests
 in the verifying code (e.g., the browser) would then involve separate
 5-tuple reductions from separate root key ACL entries.

 The fact that these three kinds of permission are treated as if ANDed
 is derived from the logic of the code that interprets the permissions
 and is not expressed in the certificate. That decision is embodied
 in the authorization code executed by the verifying application.

6.6 Certificate Result Certificates

 Typically, one will reduce a chain of certificates to answer an
 authorization question in one of two forms:

 1. Is this Subject, S, allowed to do A, under this ACL and with
 this set of certificates?

 2. What is Subject S allowed to do, under this ACL and with this
 set of certificates?

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 32]

RFC 2693 SPKI Certificate Theory September 1999

 The answer to the second computation can be put into a new
 certificate issued by the entity doing the computation. That one
 certificate corresponds to the semantics of the underlying
 certificates and online test results. We call it a Certificate
 Result Certificate.

7. Key Management

 Cryptographic keys have limited lifetimes. Keys can be stolen. Keys
 might also be discovered through cryptanalysis. If the theft is
 noticed, then the key can be replaced as one would replace a credit
 card. More likely, the theft will not be noticed. To cover this
 case, keys are replaced routinely.

 The replacement of a key needs to be announced to those who would use
 the new key. It also needs to be accomplished smoothly, with a
 minimum of hassle.

 Rather than define a mechanism for declaring a key to be bad or
 replaced, SPKI defines a mechanism for giving certificates limited
 lifetimes so that they can be replaced. That is, under SPKI one does
 not declare a key to be bad but rather stops empowering it and
 instead empowers some other key. This limitation of a certificate's
 lifetime might be by limited lifetime at time of issuance or might be
 via the lifetime acquired through an on-line test (CRL, revalidation
 or one-time). Therefore, all key lifetime control becomes
 certificate lifetime control.

7.1 Through Inescapable Names

 If keyholders had inescapable names [see section 2.5, above], then
 one could refer to them by those names and define a certificate to
 map from an inescapable name to the person's current key. That
 certificate could be issued by any CA, since all CAs would use the
 inescapable name for the keyholder. The attribute certificates and
 ACLs that refer to the keyholder would all refer to this one
 inescapable name.

 However, there are no inescapable names for keyholders. [See section
2.5, above.]

7.2 Through a Naming Authority

 One could conceivably have a governmental body or other entity that
 would issue names voluntarily to a keyholder, strictly for the
 purpose of key management. One would then receive all authorizations
 through that name. There would have to be only one such authority,

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 33]

RFC 2693 SPKI Certificate Theory September 1999

 however. Otherwise, names would have to be composed of parts: an
 authority name and the individual's name. The authority name would,
 in turn, have to be granted by some single global authority.

 That authority then becomes able to create keys of its own and
 certificates to empower them as any individual, and through those
 false certificates acquire access rights of any individual in the
 world. Such power is not likely to be tolerated. Therefore, such a
 central authority is not likely to come to pass.

7.3 Through <name,key> Certificates

 Instead of inescapable names or single-root naming authorities, we
 have names assigned by some entity that issues a <name,key>
 certificate. As noted in sections 2.8 and 2.9, above, such names
 have no meaning by themselves. They must be fully qualified to have
 meaning.

 Therefore, in the construct:

 (name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) jim)

 the name is not

 "jim"

 but rather

 "(name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) jim)"

 This name includes a public key (through its hash, in the example
 above). That key has a lifetime like any other key, so this name has
 not achieved the kind of permanence (free from key lifetimes) that an
 inescapable name has. However, it appears to be our only
 alternative.

 This name could easily be issued by the named keyholder, for the
 purpose of key management only. In that case, there is no concern
 about access control being subverted by some third-party naming
 authority.

7.4 Increasing Key Lifetimes

 By the logic above, any name will hang off some public key. The job
 is then to increase the lifetime of that public key. Once a key
 lifetime exceeds the expected lifetime of any authorization granted
 through it, then a succession of new, long-lifetime keys can cover a
 keyholder forever.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 34]

RFC 2693 SPKI Certificate Theory September 1999

 For a key to have a long lifetime, it needs to be strong against
 cryptanalytic attack and against theft. It should be used only on a
 trusted machine, running trusted software. It should not be used on
 an on-line machine. It should be used very rarely, so that the
 attacker has few opportunities to find the key in the clear where it
 can be stolen.

 Different entities will approach this set of requirements in
 different ways. A private individual, making his own naming root key
 for this purpose, has the advantage of being too small to invite a
 well funded attack as compared to the attacks a commercial CA might
 face.

7.5 One Root Per Individual

 In the limit, one can have one highly protected naming root key for
 each individual. One might have more than one such key per
 individual, in order to frustrate attempts to build dossiers, but let
 us assume only one key for the immediate discussion.

 If there is only one name descending from such a key, then one can
 dispense with the name. Authorizations can be assigned to the key
 itself, in raw SPKI style, rather than to some name defined under
 that key. There is no loss of lifetime -- only a change in the
 subject of the certificate the authorizing key uses to delegate
 authority.

 However, there is one significant difference, under the SPKI
 structure. If one delegates some authorization to

 (name (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|) carl)

 and a different authorization to

 (hash sha1 |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|)

 directly, both without granting the permission to delegate, that key
 can delegate at will through <name,key> certificates in the former
 case and not delegate at all in the latter case.

 In the case of key management, we desire the ability to delegate from
 a long lived, rarely used key to a shorter lived, often used key --
 so in this case, the former mechanism (through a SDSI name) gives
 more freedom.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 35]

RFC 2693 SPKI Certificate Theory September 1999

7.6 Key Revocation Service

 In either of the models above, key |TLCgPLFlGTzgUbcaYLW8kGTEnUk=|
 will issue a certificate. In the first model, it will be a
 <name,key> certificate. In the second, it will be an authorization
 certificate delegating all rights through to the more temporary key.

 Either of those certificates might want an on-line validity test.
 Whether this test is in the form of a CRL, a re-validation or a one-
 time test, it will be supplied by some entity that is on-line.

 As the world moves to having all machines on-line all the time, this
 might be the user's machine. However, until then -- and maybe even
 after then -- the user might want to hire some service to perform
 this function. That service could run a 24x7 manned desk, to receive
 phone calls reporting loss of a key. That authority would not have
 the power to generate a new key for the user, only to revoke a
 current one.

 If, in the worst case, a user loses his master key, then the same
 process that occurs today with lost wallets would apply. All issuers
 of authorizations through that master key would need to issue new
 authorizations through the new master key and, if the old master key
 had been stolen, cancel all old authorizations through that key.

7.7 Threshold ACL Subjects

 One can take extraordinary measures to protect root keys and thus
 increase the lifetimes of those keys. The study of computer fault-
 tolerance teaches us that truly long lifetimes can be achieved only
 by redundancy and replacement. Both can be achieved by the use of
 threshold subjects [section 6.3.3], especially in ACL entries.

 If we use a threshold subject in place of a single key subject, in an
 ACL (or a certificate), then we achieve redundancy immediately. This
 can be redundancy not only of keys but also of algorithms. That is,
 the keys in a threshold subject do not need to have the same
 algorithm.

 Truly long lifetimes come from replacement, not just redundancy. As
 soon as a component fails (or a key is assumed compromised), it must
 be replaced.

 An ACL needs to be access-controlled itself. Assume that the ACL
 includes an entry with authorization

 (tag (acl-edit))

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 36]

RFC 2693 SPKI Certificate Theory September 1999

 Assume also that what might have been a single root authorization
 key, K1, is actually a threshold subject

 (k-of-n #03# #07# K1 K2 K3 K4 K5 K6 K7)

 used in any ACL entry granting a normal authorization.

 That same ACL could have the subject of an (acl-edit) entry be

 (k-of-n #05# #07# K1 K2 K3 K4 K5 K6 K7)

 This use of threshold subject would allow the set of root keys to
 elect new members to that set and retire old members. In this
 manner, replacement is achieved alongside redundancy and the proper
 choice of K and N should allow threshold subject key lifetimes
 approaching infinity.

8. Security Considerations

 There are three classes of information that can be bound together by
 public key certificates: key, name and authorization. There are
 therefore three general kinds of certificate, depending on what pair
 of items the certificate ties together. If one considers the
 direction of mapping between items, there are six classes: name->key,
 key->name, authorization->name, name->authorization, authorization-
 >key, key->authorization.

 The SPKI working group concluded that the most important use for
 certificates was access control. Given the various kinds of mapping
 possible, there are at least two ways to implement access control.
 One can use a straight authorization certificate:

 (authorization->key)

 or one can use an attribute certificate and an ID certificate:

 (authorization->name) + (name->key)

 There are at least two ways in which the former is more secure than
 the latter.

 1. Each certificate has an issuer. If that issuer is subverted,
 then the attacker can gain access. In the former case, there is
 only one issuer to trust. In the latter case, there are two.

 2. In the second case, linkage between the certificates is by name.
 If the name space of the issuer of the ID certificate is
 different from the name space of the issuer of the attribute

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 37]

RFC 2693 SPKI Certificate Theory September 1999

 certificate, then one of the two issuers must use a foreign name
 space. The process of choosing the appropriate name from a
 foreign name space is more complex than string matching and
 might even involve a human guess. It is subject to mistakes.
 Such a mistake can be made by accident or be guided by an
 attacker.

 This is not to say that one must never use the second construct. If
 the two certificates come from the same issuer, and therefore with
 the same name space, then both of the security differentiators above
 are canceled.

References

 [Ab97] Abadi, Martin, "On SDSI's Linked Local Name Spaces",
 Proceedings of the 10th IEEE Computer Security
 Foundations Workshop (June 1997).

 [BFL] Matt Blaze, Joan Feigenbaum and Jack Lacy, "Distributed
 Trust Management", Proceedings 1996 IEEE Symposium on
 Security and Privacy.

 [CHAUM] D. Chaum, "Blind Signatures for Untraceable Payments",
 Advances in Cryptology -- CRYPTO '82, 1983.

 [DH] Whitfield Diffie and Martin Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 November 1976, pp. 644-654.

 [DvH] J. B. Dennis and E. C. Van Horn, "Programming Semantics
 for Multiprogrammed Computations", Communications of the
 ACM 9(3), March 1966.

 [ECR] Silvio Micali, "Efficient Certificate Revocation",
 manuscript, MIT LCS.

 [ELIEN] Jean-Emile Elien, "Certificate Discovery Using SPKI/SDSI
 2.0 Certificates", Masters Thesis, MIT LCS, May 1998,
 <http://theory.lcs.mit.edu/~cis/theses/elien-masters.ps>
 [also .pdf and

 [HARDY] Hardy, Norman, "THE KeyKOS Architecture", Operating
 Systems Review, v.19 n.4, October 1985. pp 8-25.

 [IDENT] Carl Ellison, "Establishing Identity Without
 Certification Authorities", USENIX Security Symposium,
 July 1996.

https://datatracker.ietf.org/doc/html/rfc2693
http://theory.lcs.mit.edu/~cis/theses/elien-masters.ps

Ellison, et al. Experimental [Page 38]

RFC 2693 SPKI Certificate Theory September 1999

 [IWG] McConnell and Appel, "Enabling Privacy, Commerce,
 Security and Public Safety in the Global Information
 Infrastructure", report of the Interagency Working Group
 on Cryptography Policy, May 12, 1996; (quote from
 paragraph 5 of the Introduction).

 [KEYKOS] Bomberger, Alan, et al., "The KeyKOS(r) Nanokernel
 Architecture", Proceedings of the USENIX Workshop on
 Micro-Kernels and Other Kernel Architectures, USENIX
 Association, April 1992. pp 95-112 (In addition, there
 are KeyKOS papers on the net available through
 <http://www.cis.upenn.edu/~KeyKOS/#bibliography>).

 [KOHNFELDER] Kohnfelder, Loren M., "Towards a Practical Public-key
 Cryptosystem", MIT S.B. Thesis, May. 1978.

 [LAMPSON] B. Lampson, M. Abadi, M. Burrows, and E. Wobber,
 "Authentication in distributed systems: Theory and
 practice", ACM Trans. Computer Systems 10, 4 (Nov.
 1992), pp 265-310.

 [LANDAU] Landau, Charles, "Security in a Secure Capability-Based
 System", Operating Systems Review, Oct 1989 pp 2-4.

 [LEVY] Henry M. Levy, "Capability-Based Computer Systems",
 Digital Press, 12 Crosby Dr., Bedford MA 01730, 1984.

 [LINDEN] T. A. Linden, "Operating System Structures to Support
 Security and Reliable Software", Computing Surveys 8(4),
 December 1976.

 [PKCS1] PKCS #1: RSA Encryption Standard, RSA Data Security,
 Inc., 3 June 1991, Version 1.4.

 [PKLOGIN] David Kemp, "The Public Key Login Protocol", Work in
 Progress.

 [R98] R. Rivest, "Can We Eliminate Revocation Lists?", to
 appear in the Proceedings of Financial Cryptography
 1998, <http://theory.lcs.mit.edu/~rivest/revocation.ps>.

 [RFC1114] Kent, S. and J. Linn, "Privacy Enhancement for Internet
 Electronic Mail: Part II -- Certificate-Based Key
 Management", RFC 1114, August 1989.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC
1321, April 1992.

https://datatracker.ietf.org/doc/html/rfc2693
http://www.cis.upenn.edu/~KeyKOS/#bibliography
http://theory.lcs.mit.edu/~rivest/revocation.ps
https://datatracker.ietf.org/doc/html/rfc1114
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321

Ellison, et al. Experimental [Page 39]

RFC 2693 SPKI Certificate Theory September 1999

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, December 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 December 1996.

 [RFC2047] K. Moore, "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII
 Text", RFC 2047, December 1996.

 [RFC2065] Eastlake, D. and C. Kaufman, "Proposed Standard for DNS
 Security", RFC 2065, January 1997.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [SDSI] Ron Rivest and Butler Lampson, "SDSI - A Simple
 Distributed Security Infrastructure [SDSI]",
 <http://theory.lcs.mit.edu/~cis/sdsi.html>.

 [SET] Secure Electronic Transactions -- a protocol designed by
 VISA, MasterCard and others, including a certificate
 structure covering all participants. See
 <http://www.visa.com/>.

 [SEXP] Ron Rivest, code and description of S-expressions,
 <http://theory.lcs.mit.edu/~rivest/sexp.html>.

 [SRC-070] Abadi, Burrows, Lampson and Plotkin, "A Calculus for
 Access Control in Distributed Systems", DEC SRC-070,
 revised August 28, 1991.

 [UPKI] C. Ellison, "The nature of a useable PKI", Computer
 Networks 31 (1999) pp. 823-830.

 [WEBSTER] "Webster's Ninth New Collegiate Dictionary", Merriam-
 Webster, Inc., 1991.

Acknowledgments

 Several independent contributions, published elsewhere on the net or
 in print, worked in synergy with our effort. Especially important to
 our work were: [SDSI], [BFL] and [RFC2065]. The inspiration we
 received from the notion of CAPABILITY in its various forms (SDS-940,
 Kerberos, DEC DSSA, [SRC-070], KeyKOS [HARDY]) can not be over-rated.

https://datatracker.ietf.org/doc/html/rfc2693
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2065
https://datatracker.ietf.org/doc/html/rfc2104
http://theory.lcs.mit.edu/~cis/sdsi.html
http://www.visa.com/
http://theory.lcs.mit.edu/~rivest/sexp.html
https://datatracker.ietf.org/doc/html/rfc2065

Ellison, et al. Experimental [Page 40]

RFC 2693 SPKI Certificate Theory September 1999

 Significant contributions to this effort by the members of the SPKI
 mailing list and especially the following persons (listed in
 alphabetic order) are gratefully acknowledged: Steve Bellovin, Mark
 Feldman, John Gilmore, Phill Hallam-Baker, Bob Jueneman, David Kemp,
 Angelos D. Keromytis, Paul Lambert, Jon Lasser, Jeff Parrett, Bill
 Sommerfeld, Simon Spero.

Authors' Addresses

 Carl M. Ellison
 Intel Corporation
 2111 NE 25th Ave M/S JF3-212
 Hillsboro OR 97124-5961 USA

 Phone: +1-503-264-2900
 Fax: +1-503-264-6225
 EMail: carl.m.ellison@intel.com
 cme@alum.mit.edu
 Web: http://www.pobox.com/~cme

 Bill Frantz
 Electric Communities
 10101 De Anza Blvd.
 Cupertino CA 95014

 Phone: +1 408-342-9576
 EMail: frantz@netcom.com

 Butler Lampson
 Microsoft
 180 Lake View Ave
 Cambridge MA 02138

 Phone: +1 617-547-9580 (voice + FAX)
 EMail: blampson@microsoft.com

https://datatracker.ietf.org/doc/html/rfc2693
http://www.pobox.com/~cme

Ellison, et al. Experimental [Page 41]

RFC 2693 SPKI Certificate Theory September 1999

 Ron Rivest
 Room 324, MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge MA 02139

 Phone: +1-617-253-5880
 Fax: +1-617-258-9738
 EMail: rivest@theory.lcs.mit.edu
 Web: http://theory.lcs.mit.edu/~rivest

 Brian Thomas
 Southwestern Bell
 One Bell Center, Room 34G3
 St. Louis MO 63101 USA

 Phone: +1 314-235-3141
 Fax: +1 314-235-0162
 EMail: bt0008@sbc.com

 Tatu Ylonen
 SSH Communications Security Ltd.
 Tekniikantie 12
 FIN-02150 ESPOO
 Finland

 EMail: ylo@ssh.fi

https://datatracker.ietf.org/doc/html/rfc2693
http://theory.lcs.mit.edu/~rivest

Ellison, et al. Experimental [Page 42]

RFC 2693 SPKI Certificate Theory September 1999

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/rfc2693

Ellison, et al. Experimental [Page 43]

