
Network Working Group Y. Ohba
Request for Comments: 3063 Y. Katsube
Category: Experimental Toshiba
 E. Rosen
 Cisco Systems
 P. Doolan
 Ennovate Networks
 February 2001

MPLS Loop Prevention Mechanism

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This paper presents a simple mechanism, based on "threads", which can
 be used to prevent Multiprotocol Label Switching (MPLS) from setting
 up label switched path (LSPs) which have loops. The mechanism is
 compatible with, but does not require, VC merge. The mechanism can
 be used with either the ordered downstream-on-demand allocation or
 ordered downstream allocation. The amount of information that must
 be passed in a protocol message is tightly bounded (i.e., no path-
 vector is used). When a node needs to change its next hop, a
 distributed procedure is executed, but only nodes which are
 downstream of the change are involved.

Ohba, et al. Experimental [Page 1]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

Table of Contents

1 Introduction .. 2
2 Basic definitions 3
3 Thread basics ... 5
3.1 Thread attributes 5
3.2 Thread loop ... 7
3.3 Primitive thread actions 7
3.4 Examples of primitive thread actions 10
4 Thread algorithm 14
5 Applicability of the algorithm 14
5.1 LSP Loop prevention/detection 15
5.2 Using old path while looping on new path 15
5.3 How to deal with ordered downstream allocation 15
5.4 How to realize load splitting 15
6 Why this works .. 16
6.1 Why a thread with unknown hop count is extended 16
6.2 Why a rewound thread cannot contain a loop 17
6.2.1 Case1: LSP with known link hop counts 17
6.2.1 Case2: LSP with unknown link hop counts 17
6.3 Why L3 loop is detected 17
6.4 Why L3 loop is not mis-detected 17

 6.5 How a stalled thread automatically recovers from loop . 18
 6.6 Why different colored threads do not chase each other . 18

7 Loop prevention examples 19
7.1 First example ... 19
7.2 Second example .. 23
8 Thread control block 24
8.1 Finite state machine 25
9 Comparison with path-vector/diffusion method 28
10 Security Considerations 29
11 Intellectual Property Considerations 29
12 Acknowledgments 29
13 Authors' Addresses 30
14 References .. 30
Appendix A Further discussion of the algorithm 31

 Full Copyright Statement 44

1. Introduction

 This paper presents a simple mechanism, based on "threads", which can
 be used to prevent MPLS from setting up label switched paths (LSPs)
 which have loops.

 When an LSR finds that it has a new next hop for a particular FEC
 (Forwarding Equivalence Class) [1], it creates a thread and extends
 it downstream. Each such thread is assigned a unique "color", such
 that no two threads in the network can have the same color.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 2]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 For a given LSP, once a thread is extended to a particular next hop,
 no other thread is extended to that next hop unless there is a change
 in the hop count from the furthest upstream node. The only state
 information that needs to be associated with a particular next hop
 for a particular LSP is the thread color and hop count.

 If there is a loop, then some thread will arrive back at an LSR
 through which it has already passed. This is easily detected, since
 each thread has a unique color.

Section 3 and 4 provide procedures for determining that there is no
 loop. When this is determined, the threads are "rewound" back to the
 point of creation. As they are rewound, labels get assigned. Thus
 labels are NOT assigned until loop freedom is guaranteed.

 While a thread is extended, the LSRs through which it passes must
 remember its color and hop count, but when the thread has been
 rewound, they need only remember its hop count.

 The thread mechanism works if some, all, or none of the LSRs in the
 LSP support VC-merge. It can also be used with either the ordered
 downstream on-demand label allocation or ordered downstream
 unsolicited label allocation [2,3]. The mechanism can also be
 applicable to loop detection, old path retention, and load-splitting.

 The state information which must be carried in protocol messages, and
 which must be maintained internally in state tables, is of fixed
 size, independent of the network size. Thus the thread mechanism is
 more scalable than alternatives which require that path-vectors be
 carried.

 To set up a new LSP after a routing change, the thread mechanism
 requires communication only between nodes which are downstream of the
 point of change. There is no need to communicate with nodes that are
 upstream of the point of change. Thus the thread mechanism is more
 robust than alternatives which require that a diffusion computation
 be performed (see section 9).

2. Basic definitions

 LSP

 We will use the term LSP to refer to a multipoint-to-point tree
 whose root is the egress node. See section 3.5 of [3].

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 3]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 In the following, we speak as if there were only a single LSP
 being set up in the network. This allows us to talk of incoming
 and outgoing links without constantly saying something like "for
 the same LSP.

 Incoming Link, Upstream Link
 Outgoing Link, Downstream Link

 At a given node, a given LSP will have one or more incoming, or
 upstream links, and one outgoing or downstream link. A "link" is
 really an abstract relationship with an "adjacent" LSR; it is an
 "edge" in the "tree", and not necessarily a particular concrete
 entity like an "interface".

 Leaf Node, Ingress Node

 A node which has no upstream links.

 Eligible Leaf Node

 A node which is capable of being a leaf node. For example, a node
 is not an eligible leaf node if it is not allowed to directly
 inject L3 packets created or received at the node into its
 outgoing link.

 Link Hop Count

 Every link is labeled with a "link hop count". This is the number
 of hops between the given link and the leaf node which is furthest
 upstream of the given link. At any node, the link hop count for
 the downstream link is one more than the largest of the hop counts
 associated with the upstream links.

 We define the quantity "Hmax" at a given node to be the maximum of
 all the incoming link hop counts. Note that, the link hop count
 of the downstream link is equal to Hmax+1. At a leaf node, Hmax
 is set to be zero.

 An an example of link hop counts is shown in Fig.1.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 4]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 1 2
 A---B---C K
 | |
 |3 |1
 | |
 | 4 5 | 6 7
 D---G---H---I---J
 |
 |2
 1 |
 E---F

 Fig.1 Example of link hop counts

 Next Hop Acquisition

 Node N thought that FEC F was unreachable, but now has a next hop
 for it.

 Next Hop Loss

 Node N thought that node A was the next hop for FEC F, but now no
 longer has the next hop for FEC F. A node loses a next hop
 whenever the next hop goes down.

 Next Hop Change

 At node N, the next hop for FEC F changes from node A to node B,
 where A is different than B. A next hop change event can be seen
 as a combination of a next hop loss event on the old next hop and
 a next hop acquisition event on the new next hop.

3. Thread basics

 A thread is a sequence of messages used to set up an LSP, in the
 "ordered downstream-on-demand" (ingress-initiated ordered control)
 style.

3.1. Thread attributes

 There are three attributes related to threads. They may be encoded
 into a single thread object as:

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 5]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + Color +
 | |
 +-+
 | Hop Count | TTL | Reserved |
 +-+

 Thread Color

 Every time a path control message is initiated by a node, the node
 assigns a unique "color" to it. This color is to be unique in
 both time and space: its encoding consists of an IP address of the
 node concatenated with a unique event identifier from a numbering
 space maintained by the node. The path setup messages that the
 node sends downstream will contain this color. Also, when the
 node sends such a message downstream, it will remember the color,
 and this color becomes the color of the downstream link.

 When a colored message is received, its color becomes the color of
 the incoming link. The thread which consists of messages of a
 certain color will be known as a thread of that color.

 special color value "transparent"(=all 0's) is reserved.

 One possible method for unique color assignment is, starting the
 event identifier from its initial value, and incrementing it by
 one (modulo its maximum value) each time a color is assigned. In
 this method, the initial event identifier is either selected at
 random or assigned to be larger than the largest event identifier
 used on the previous system incarnation.

 Thread Hop Count

 In order to maintain link hop counts, we need to carry hop counts
 in the path control messages. For instance, a leaf node would
 assign a hop count of 1 to its downstream link, and would store
 that value into a path setup message it sends downstream. When a
 path setup message is sent downstream, a node would assign a hop
 count which is one more than the largest of the incoming link hop
 counts, to its downstream link, and would store that value into a
 path setup message it sends downstream. Once the value is stored
 in a path control message, we may refer to it has a "thread hop
 count".

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 6]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 A special hop count value "unknown"(=0xff), which is larger than
 any other known value, is used when a loop is found. Once the
 thread hop count is "unknown", it is not increased any more as the
 thread is extended.

 Thread TTL

 To avoid infinite looping of control messages in some cases, a
 thread TTL is used. When a node creates a path control message
 and sends it downstream, it sets a TTL to the message, and the TTL
 is decremented at each hop. When the TTL reaches 0, the message
 is not forwarded any more. Unlike the thread hop counts and the
 thread colors, the thread TTLs do not needs to be stored in
 incoming links.

3.2. Thread loop

 When the same colored thread is received on multiple incoming links,
 or the received thread color was assigned by the receiving node, it
 is said that the thread forms a loop. A thread creator can tell
 whether it assigned the received thread color by checking the IP
 address part of the received thread color.

3.3. Primitive thread actions

 Five primitive actions are defined in order to prevent LSP loops by
 using threads: "extending", "rewinding", "withdrawing", "merging",
 and "stalling". This section describes only each primitive action
 and does not describe how these primitive actions are combined and
 how the algorithm totally works. The main body of the algorithm is
 described in section 4.

 Thread Extending

 When a node starts to send a path setup message to its next hop
 with a set of thread attributes, it is said that "the node creates
 a thread and extends it downstream". When a node receives a path
 setup message from an upstream node with a set of thread
 attributes and forwards it downstream, it is said that "the node
 receives a thread and extends it downstream". The color and hop
 count of the thread become the color and hop count of the outgoing
 link. Whenever a thread is received on a particular link, the
 color and hop count of that thread become the color and hop count
 of that incoming link, replacing any color and hop count that the
 link may have had previously.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 7]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 For example, when an ingress node initiates a path setup, it
 creates a thread and extends it downstream by sending a path setup
 message. The thread hop count is set to be 1, and the thread
 color is set to be the ingress node's address with an appropriate
 event identifier, and the thread TTL is set to be its maximum
 value.

 When a node receives a thread and extends it downstream, the node
 either (i) extends the thread without changing color, or (ii)
 extend the thread with changing color. The received thread is
 extended with changing color if it is received on a new incoming
 link and extended on an already existing outgoing link, otherwise,
 it is extended without changing color. When a thread is extended
 with changing color, a new colored thread is created and extended.

 Thread creation does not occur only at leaf nodes. If an
 intermediate node has an incoming link, it will create and extend
 a new thread whenever it acquires a new next hop.

 When a node notifies a next hop node of a decrease of the link hop
 count, if it is not extending a colored thread, a transparent
 thread is extended.

 Thread Merging

 When a node which has a colored outgoing link receives a new
 thread, it does not necessarily extend the new thread. It may
 instead 'merge' the new threads into the existing outgoing thread.
 In this case, no messages are sent downstream. Also, if a new
 incoming thread is extended downstream, but there are already
 other incoming threads, these other incoming threads are
 considered to be merged into the new outgoing thread.

 Specifically, a received thread is merged if all the following
 conditions hold:

 o A colored thread is received by node N, AND
 o The thread does not form a loop, AND
 o N is not an egress node, AND
 o N's outgoing link is colored, AND
 o N's outgoing link hop count is at least one greater than the
 hop count of the newly received thread.

 When an outgoing thread rewinds (see below), any incoming threads
 which have been merged with it will rewind as well.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 8]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Thread Stalling

 When a colored thread is received, if the thread forms a loop, the
 received thread color and hop count are stored on the receiving
 link without being extended. This is the special case of thread
 merging applied only for threads forming a loop and referred to as
 the "thread stalling", and the incoming link storing the stalled
 thread is called "stalled incoming link". A distinction is made
 between stalled incoming links and unstalled incoming links.

 Thread Rewinding

 When a thread reaches a node which satisfies a particular loop-
 free condition, the node returns an acknowledgment message back to
 the message initiator in the reverse path on which the thread was
 extended. The transmission of the acknowledgment messages is the
 "rewinding" of the thread.

 The loop-free condition is:

 o A colored thread is received by the egress node, OR
 o All of the following conditions hold:
 (a) A colored thread is received by node N, AND
 (b) N's outgoing link is transparent, AND
 (c) N's outgoing link hop count is at least one greater than
 the hop count of the newly received thread.

 When a node rewinds a thread which was received on a particular
 link, it changes the color of that link to transparent.

 If there is a link from node M to node N, and M has extended a
 colored thread to N over that link, and M determines (by receiving
 a message from N) that N has rewound that thread, then M sets the
 color of its outgoing link to transparent. M then continues
 rewinding the thread, and in addition, rewinds any other incoming
 thread which had been merged with the thread being rewound,
 including stalled threads.

 Each node can start label switching after the thread colors in all
 incoming and outgoing links becomes transparent.

 Note that transparent threads are threads which have already been
 rewound; hence there is no such thing as rewinding a transparent
 thread.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 9]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Thread Withdrawing

 It is possible for a node to tear down a path. A node tears down
 the portion of the path downstream of itself by sending teardown
 messages to its next hop. This process is known as the "thread
 withdrawing".

 For example, suppose a node is trying to set up a path, and then
 experiences a next hop change or a next hop loss. It will
 withdraw the thread that it had extended down its old next hop.

 If node M has extended a thread to node N, and node M then
 withdraws that thread, N now has one less incoming link than it
 had before. If N now has no other unstalled incoming links and N
 is not an eligible leaf node, it must withdraw its outgoing
 thread. If N still has an unstalled incoming link or N is an
 eligible leaf node, it may (or may not) need to change the hop
 count of the outgoing link.

 N needs to change the outgoing hop count if:

 o The incoming link hop count that was just removed had a larger
 hop count than any of the remaining incoming links, AND
 o One of the following conditions holds:
 (a) The outgoing link is transparent, OR
 (b) The outgoing link has a known hop count.

 If the outgoing link is transparent, it remains transparent, but
 the new hop count needs to be sent downstream. If the outgoing
 link is colored, a new thread (with a new color) needs to be
 created and extended downstream.

3.4. Examples of primitive thread actions

 The following notations are used to illustrate examples of primitive
 actions defined for threads.

 A pair of thread attributes stored in each link is represented by
 "(C,H)", where C and H represent the thread color and thread hop
 count, respectively.

 A thread marked "+" indicates that it is created or received now. A
 thread marked "-" indicates that it is withdrawn now.

 A link labeled with squared brackets (e.g., "[a]") indicates that it
 is an unstalled link. A link labeled with braces (e.g., "{a}")
 indicates that it is a stalled link.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 10]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Fig. 2 shows an example in which a leaf node A creates a blue thread
 and extends it downstream.

 (bl,1)
 A---[o1]--->

 Fig.2 Thread extending at leaf node

 Fig.3 shows an example of thread extending without changing color at
 intermediate node. Assume that a node B has no incoming and outgoing
 link before receiving a blue thread. When node B receives the blue
 thread of hop count 1 on a new incoming link i1, it extends the
 thread downstream without changing color (Fig.3(a)). After the blue
 thread is extended, node B receives a red thread of hop count unknown
 on incoming link i1 again (Fig.3(b)). The red thread is also
 extended without changing its color, since both i1 and o1 already
 exists.

 (bl,1)+ (bl,2) (re,U)+ (re,U)
 ----[i1]--->B---[o1]----> ----[i1]--->B----[o1]--->

 Fig.3(a) Fig.3(b)

 Fig.3 Thread extending without changing color

 Fig.4 shows an example of thread extending with changing color.
 There are single incoming link i1 and single outgoing link o1 in
 Fig.4(a). Then a red thread of hop count 3 is received on a new
 incoming link i2. In this case, the received thread is extended with
 changing color, i.e., a new green thread is created and extended
 (Fig.4(b)), since o1 already exists.

 (bl,1) (bl,2) (bl,1) (gr,4)
 ----[i1]--->B----[o1]---> ----[i1]--->B----[o1]--->
 ^
 |
 ----[i2]----+
 (re,3)+

 Fig.4(a) Fig.4(b)

 Fig.4 Thread extending with changing color

 Fig.5 shows an example of thread merging. When a node B receives a
 red thread of hop count 3, the received thread is not extended since
 the outgoing link hop count is at least one greater than the received
 thread hop count. Both the red and blue threads will be rewound when
 the blue thread on outgoing link o1 is rewound.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 11]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 (bl,3) (bl,4)
 ----[i1]--->B----[o1]--->
 ^
 |
 ----[i2]----+
 (re,3)+

 Fig.5 Thread merging

 Figs 6 and 7 show examples of thread stalling. When a node B
 receives a blue thread of hop count 10 on incoming link i2 in Fig.6,
 it "stalls" the received thread since the blue thread forms a loop.
 In Fig.7, a leaf node A finds the loop of its own thread.

 (bl,3) (bl,4)
 ----[i1]--->B----[o1]--->
 ^
 |
 ----{i2}----+
 (bl,10)+

 Fig.6 Thread stalling (1)

 (bl,10)+ (bl,1)
 ----{i1}--->A----[o1]--->

 Fig.7 Thread stalling (2)

 Fig.8 shows an example of thread rewinding. When the yellow thread
 which is currently being extended is rewound (Fig.8(a)), the node
 changes all the incoming and outgoing thread color to transparent,
 and propagates thread rewinding to upstream nodes (Fig.8(b)).

 (bl,1) (ye,2) (tr,1) (tr,2)
 ----[i2]--->B----[o1]---> ----[i2]--->B----[o1]--->
 ^ ^
 | |
 ----[i3]----+ ----[i3]----+
 (ye,1) (tr,1)

 Fig.8(a) Fig.8(b)

 Fig.8 Thread rewinding

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 12]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Fig.9 shows an example of thread withdrawing. In Fig.9(a), the red
 thread on incoming link i2 is withdrawn. Then Hmax decreases from 3
 to 1, and node B creates a new green thread and extends it
 downstream, as shown in Fig.9(b).

 (bl,1) (re,4) (bl,1) (gr,2)+
 ----[i1]--->B---[o1]---> ----[i1]--->B----[o1]--->
 ^
 |
 ----[i2]----+
 (re,3)-

 Fig.9(a) Fig.9(b)

 Fig.9 Thread withdrawing (1)

 Fig.10 shows another example of thread withdrawing. In Fig.10(a),
 the red thread on incoming link i3 is withdrawn. In this case, Hmax
 decreases from unknown to 1, however, no thread is extended as shown
 in Fig.10(b), since the outgoing link has a colored thread and the
 hop count is unknown.

 (bl,1) (re,U) (bl,1) (re,U)
 ----[i2]--->B----[o1]---> ----[i2]--->B----[o1]--->
 ^
 |
 ----[i3]----+
 (re,U)-

 Fig.10(a) Fig.10(b)

 Fig.10 Thread withdrawing (2)

 Fig.11 shows another example of thread withdrawing. In Fig.11(a),
 the transparent thread on incoming link i3 is withdrawn. In this
 case, a transparent thread is extended (Fig.11(b)), since Hmax
 decreases and the outgoing link is transparent.

 (tr,1) (tr,U) (tr,1) (tr,2)+
 ----[i2]--->B----[o1]---> ----[i2]--->B----[o1]--->
 ^
 |
 ----[i3]----+
 (tr,U)-

 Fig.11(a) Fig.11(b)

 Fig.11 Thread withdrawing (3)

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 13]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

4. Thread algorithm

 The ordered downstream-on-demand allocation is assumed here, however,
 the algorithm can be adapted to the ordered downstream allocation, as
 shown in section 5.

 In the algorithm, a next hop change event will be separated into two
 events: a next hop loss event on the old next hop and a next hop
 acquisition event on the new next hop, in this order.

 The following notations are defined:

 Hmax: the largest incoming link hop count
 Ni: the number of unstalled incoming links

 The thread algorithm is described as follows.

 When a node acquires a new next hop, it creates a colored thread and
 extends it downstream.

 When a node loses a next hop to which it has extended a thread, it
 may withdraw that thread. As described in section 3, this may or may
 not cause the next hop to take some action. Among the actions the
 next hop may take are withdrawing the thread from its own next hop,
 or extending a new thread to its own next hop.

 A received colored thread is either stalled, merged, rewound, or
 extended. A thread with TTL zero is never extended.

 When a received thread is stalled at a node, if Ni=0 and the node is
 not an eligible leaf node, initiate a thread withdrawing. Otherwise,
 if Ni>0 and the received thread hop count is not unknown, a colored
 thread of hop count unknown is created and extended. If the received
 thread hop count is unknown, no thread is extended and no further
 action is taken.

 When a thread being extended is rewound, if the thread hop count is
 greater than one more than Hmax, a transparent thread of hop count
 (Hmax+1) is extended downstream.

 When a node that has an transparent outgoing link receives a
 transparent thread, if Hmax decreases the node extends it downstream
 without changing color.

5. Applicability of the algorithm

 The thread algorithm described in section 4 can be applied to various
 LSP management policies.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 14]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

5.1. LSP Loop prevention/detection

 The same thread algorithm is applicable to both LSP loop prevention
 and detection.

 In loop prevention mode, a node transmits a label mapping (including
 a thread object) for a particular LSP only when it rewinds the thread
 for that LSP. No mapping message is sent until the thread rewinds.

 On the other hand, if a node operates in loop detection mode, it
 returns a label mapping message without a thread object immediately
 after receiving a colored thread. A node which receives a label
 mapping message that does not have a thread object will not rewind
 the thread.

5.2. Using old path while looping on new path

 When a route changes, one might want to continue to use the old path
 if the new route is looping. This is achieved simply by holding the
 label assigned to the downstream link on the old path until the
 thread being extended on the new route gets rewound. This is an
 implementation choice.

5.3. How to deal with ordered downstream allocation

 The thread mechanism can be also adapted to ordered downstream
 allocation mode (or the egress-initiated ordered control) by
 regarding the event of newly receiving of a label mapping message [4]
 from the next hop as a next hop acquisition event.

 Note that a node which doesn't yet have an incoming link behaves as a
 leaf. In the case where the tree is being initially built up (e.g.,
 the egress node has just come up), each node in turn will behave as a
 leaf for a short period of time.

5.4. How to realize load splitting

 A leaf node can easily perform load splitting by setting up two
 different LSPs for the same FEC. The downstream links for the two
 LSPs are simply assigned different colors. The thread algorithm now
 prevents a loop in either path, but also allows the two paths to have
 a common downstream node.

 If some intermediate node wants to do load splitting, the following
 modification is made. Assume that there are multiple next hops for
 the same FEC. If there are n next hops for a particular FEC, the set
 of incoming links for that FEC's LSP can be partitioned into n
 subsets, where each subset can be mapped to a distinct outgoing link.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 15]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 This provides n LSPs for the FEC. Each such LSP uses a distinct
 color for its outgoing link. The thread algorithm now prevents a
 loop in any of the paths, but also allows two or more of the paths to
 have a common downstream node.

 In this case, an interesting situation may happen. Let's say that in
 Fig.12, node B has two incoming links, i1 and i2, and two outgoing
 links, o1 and o2, such that i1 is mapped to o1, while i2 is mapped to
 o2.

 If a blue thread received on i1 and extended on o1 is again received
 at node B on i2, the blue thread is not regarded as forming a loop,
 since i1 and i2 are regarded as belonging to different subsets.
 Instead, the blue thread received on i2 is extended on o2. If the
 thread extended on o2 is rewound, a single loop-free LSP which
 traverses node B twice is established.

 +------------------...--------------------+
 . (bl,3) (bl,4) |
 . ----[i1]---+ +--[o1]---> --+
 . \ /
 . v /
 | B
 |
 +-----------[i2]--->B----[o2]--->
 (bl,10)+ (bl,11)

 Fig.12 Load splitting at intermediate node

 There is another type of load splitting, in which packets arrived at
 single incoming link can be label switched to any one of multiple
 outgoing links. This case does not seem to be a good load-splitting
 scheme, since the packet order in the same FEC is not preserved.
 Thus, this document does not focus on this case.

 Whether that's a good type of load splitting or not, the fact remains
 that ATM-LSRs cannot load split like this because ATM switches just
 don't have the capability to make forwarding decisions on a per-
 packet basis.

6. Why this works

6.1. Why a thread with unknown hop count is extended

 In the algorithm, a thread of unknown hop count is extended when a
 thread loop is detected. This reduces the number of loop prevention

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 16]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 messages by merging threads (of known hop count) that are flowing
 inside or outside the loop. See Appendix A.12.

6.2. Why a rewound thread cannot contain a loop

6.2.1. Case1: LSP with known link hop counts

 How can we be sure that an established path does not contain a loop
 when the outgoing link hop count is NOT "unknown"?

 Consider a sequence of LSRs <R1, ..., Rn>, such that there is a loop
 traversing the LSRs in the sequence. (I.e., packets from R1 go to
 R2, then to R3, etc., then to Rn, and then from Rn to R1.)

 Suppose that the thread hop count of the link between R1 and R2 is k.
 Then by the above procedures, the hop counts between Rn and R1 must
 be k+n-1. But the algorithm also ensures that if a node has an
 incoming hop count of j, its outgoing link hop count must be at least
 of j+1. Hence, if we assume that the LSP established as a result of
 thread rewinding contains a loop, the hop counts between R1 and R2
 must be at least k+n. From this we may derive the absurd conclusion
 that n=0, and we may therefore conclude that there is no such
 sequence of LSRs.

6.2.1. Case2: LSP with unknown link hop counts

 An established path does not contain a loop as well, when the
 outgoing link hop count is "unknown". This is because a colored
 thread of unknown hop count is never rewound unless it reaches
 egress.

6.3. Why L3 loop is detected

 Regardless of whether the thread hop count is known or unknown, if
 there is a loop, then some node in the loop will be the last node to
 receive a thread over a new incoming link. This thread will always
 arrive back at that node, without its color having changed. Hence
 the loop will always be detected by at least one of the nodes in the
 loop.

6.4. Why L3 loop is not mis-detected

 Since no node ever extends the same colored thread downstream twice,
 a thread loop is not detected unless there actually is an L3 routing
 loop.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 17]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

6.5. How a stalled thread automatically recovers from loop

 Once a thread is stalled in a loop, the thread (or the path setup
 request) effectively remains in the loop, so that a path
 reconfiguration (i.e., thread withdrawing on the old path and thread
 extending on the new path) can be issued from any node that may
 receive a route change event so as to break the loop.

6.6. Why different colored threads do not chase each other

 In the algorithm, multiple thread color and/or hop count updates may
 happen if several leaf nodes start extending threads at the same
 time. How can we prevent multiple threads from looping unlimitedly?

 First, when a node finds that a thread forms a loop, it creates a new
 thread of hop count "unknown". All the looping threads of a known
 hop count which later arrive at the node would be merged into this
 thread. Such a thread behaves like a thread absorber.

 Second, the "thread extending with changing color" prevents two
 threads from chasing each other.

 Suppose that a received thread were always extended without changing
 color. Then we would encounter the following situation.

 G Y
 | |
 v v
 R1------>R2
 ^ |
 | v
 R4<------R3

 Fig.13 Example of thread chasing

 In Fig.13, (1) node G acquires R1 as a next hop, and starts to extend
 a green thread of hop count 1, (2) node Y acquires R2 as a next hop,
 and starts to extend a yellow thread of hop count 1, and (3) both
 node G and node Y withdraws their threads before these threads go
 round.

 In this case, the yellow and green threads would go round and get
 back to R2 and R1, respectively. When the threads get back to R2 and
 R1, however, the incoming links that store the yellow and green
 colors no longer exist. As a result, the yellow and green threads
 would chase each other forever in the loop.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 18]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 However, since we have the "extending with changing color" mechanism,
 this does not actually happen. When a green thread is received at
 R2, R2 extends the thread with changing color, i.e., creates a new
 red thread and extends it. Similarly, when a yellow thread is
 received at R1, R1 creates a new purple thread and extends it. Thus,
 the thread loop is detected even after node G and node Y withdraw
 threads. This ensures that a thread is extended around the loop
 which has a color assigned by some node that is in the loop.

 There is at least one case even the "extending with changing color"
 mechanism cannot treat, that is, the "self-chasing" in which thread
 extending and thread withdrawing with regard to the same thread chase
 each other in a loop. This case would happen when a node withdraw a
 thread immediately after extending it into an L3 loop.

 A heuristics for self-chasing is to delay the execution of thread
 withdrawing at an initiating node of the thread withdrawing. Anyway,
 the thread TTL mechanism can eliminate any kind of thread looping.

7. Loop prevention examples

 In this section, we show two examples to show how the algorithm can
 prevent LSP loops in given networks.

 We assume that the ordered downstream-on-demand allocation is
 employed, that all the LSPs are with regard to the same FEC, and that
 all nodes are VC-merge capable.

7.1. First example

 Consider an MPLS network shown in Fig.14 in which an L3 loop exists.
 Each directed link represents the current next hop of the FEC at each
 node. Now leaf nodes R1 and R6 initiate creation of an LSP.

 R11 ------- R10 <-------------------- R9
 | | ^
 | | |
 | | |
 v v |
 R1 -------> R2 --------> R3 --------> R4 --------- R5
 [leaf] ^
 |
 |
 |
 R6 -------> R7 --------> R8
 [leaf]

 Fig. 14 Example MPLS network (1)

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 19]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Assume that R1 and R6 send a label request message at the same time,
 and that the initial thread TTL is 255. First we show an example of
 how to prevent LSP loops.

 A set of thread attributes is represented by (color, hop count, TTL).

 The request from R1 and R6 contains (re,1,255) and (bl,1,255),
 respectively.

 Assume that R3 receives the request originated from R1 before
 receiving the request originated from R6. When R3 receives the first
 request with red thread, R3 forwards it with (re,3,253) without
 changing thread color, since both the receiving incoming link and the
 outgoing link are newly created. Then R3 receives the second request
 with blue thread. In this time, the outgoing link is already exists.
 Thus, R3 performs thread extending with changing color, i.e., creates
 a new brown thread and forwards the request with (br,4,255).

 When R2 receives the request from R10 with (re,6,250), it finds that
 the red thread forms a loop, and stalls the red thread. Then, R2
 creates a purple thread of hop count unknown and extends it
 downstream by sending a request with (pu,U,255) to R3, where "U"
 represents "unknown".

 After that, R2 receives another request from R10 with (br,7,252).
 The brown thread is merged into purple thread. R2 sends no request
 to R3.

 On the other hand, the purple thread goes round without changing
 color through existing links, and R2 finds the thread loop and stalls
 the purple thread. Since the received thread hop count is unknown,
 no thread is created any more. In this case no thread rewinding
 occurs. The current state of the network is shown in Fig.15.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 20]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 *: location of thread stalling

 (pu,U)
 R11 ------- R10 <-------------------- R9
 | | ^
 | |(pu,U)* |
 | | |(pu,U)
 v v |
 R1 -------> R2 --------> R3 --------> R4 --------- R5
 [leaf] (re,1) (pu,U) ^ (pu,U)
 |
 | (bl,3)
 |
 R6 -------> R7 --------> R8
 [leaf] (bl,1) (bl,2)

 Fig.15 The network state

 Then R10 changes its next hop from R2 to R11.

 Since R10 has a purple thread on the old downstream link, it first
 sends a path teardown message to the old next hop R2 for withdrawing
 the purple thread. Next, it creates a green thread of hop count
 unknown and sends a request with (gr,U,255) to R11.

 When R2 receives the teardown message from R10, R2 removes the
 stalled incoming link between R10 and R2.

 On the other hand, the green thread reaches R1 and Hmax is updated
 from zero to unknown. In this case, R1 performs thread extending
 with changing color since the thread is received on a new incoming
 link but extended on the already existing outgoing link. As a
 result, R1 creates an orange thread of hop count unknown and extend
 it to R2.

 The orange thread goes round through existing links without changing
 color, and finally it is stalled at R1.

 The state of the network is now shown in Fig.16.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 21]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 *: location of thread stalling

 (or,U) (or,U)
 R11 <------ R10 <-------------------- R9
 | | ^
 |(or,U)* | |
 | | |(or,U)
 v | |
 R1 -------> R2 --------> R3 --------> R4 --------- R5
 [leaf] (or,U) (or,U) ^ (or,U)
 |
 | (bl,3)
 |
 R6 -------> R7 --------> R8
 [leaf] (bl,1) (bl,2)

 Fig.16 The network state

 Then R4 changes its next hop from R9 to R5.

 Since R4 is extending an orange thread, it first sends a teardown
 message to the old next hop R9 to withdraw the orange thread on the
 old route. Next, it creates a yellow thread of hop count unknown,
 and sends a request message with (ye,U,255) to R5.

 Since R5 is the egress node, the yellow thread rewinding starts. R5
 returns a label mapping message. The thread rewinding procedure is
 performed at each node, as the label mapping message is returned
 upstream hop-by-hop.

 If R1 receives a label mapping message before receiving the orange
 thread's withdrawal from R11, R1 returns a label mapping message to
 R11. On receiving the orange thread's withdrawal, R1 will create a
 transparent thread and extend it by sending an update message with
 (tr,1,255) in order to notify downstream of the known hop count.

 Otherwise, if R1 receives the orange thread's withdrawal before
 receiving a label mapping message, R1 removes the stalled incoming
 orange link and waits for rewinding of the outgoing orange thread.
 Finally, when R1 receives a label mapping message from R2, it creates
 a transparent thread (tr,1,255) and extend it downstream.

 In both cases, a merged LSP ((R1->R2),(R6->R7->R8))->R3->R4->R5) is
 established and every node obtains the correct link hop count. The
 final network state is shown in Fig.17.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 22]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 R11 <------ R10 <-------------------- R9
 | | |
 | | |
 | | |
 v | |
 R1 -------> R2 --------> R3 --------> R4 --------> R5
 [leaf] (tr,1) (tr,2) ^ (tr,4) (tr,5)
 |
 | (tr,3)
 |
 R6 -------> R7 --------> R8
 [leaf] (tr,1) (tr,2)

 Fig.17 The final network state

7.2. Second example

 +----- R6----> R7-----+
 | |
 | v
 R1---->R2 R4----->R5
 | ^
 | |
 +--------->R3---------+

 Fig.18 Example MPLS network (2)

 Assume that in Fig.18, there is an established LSP R1->R2->R3->R4-
 >R5, and the next hop changes at R2 from R3 to R6. R2 sends a
 request to R6 with a red thread (re,2,255). When the request with
 (re,4,253) reaches R4, it extends the thread to R5 with changing
 color. Thus, a new green thread is created at R4 and extended to R5
 by sending an update message with (gr,5,255).

 When R5 receives the update, it updates the incoming link hop count
 to 5 and returns an ack (or a notification message with a success
 code) for the update. When R4 receives the ack for the update, it
 returns a label mapping message to R7.

 When R2 receives the label mapping message on the new route, it sends
 a teardown message to R3. When R4 receives the teardown message, it
 does not sends an update to R5 since Hmax does not change. Now an
 established LSP R1->R2->R6->R7->R4->R5 is obtained.

 Then, the next hop changes again at R2 from R6 to R3.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 23]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 R2 sends a request with a blue thread (bl,2,255) to R3. R3 forwards
 the request with (bl,3,254) to R4.

 When R4 receives the request, it immediately returns a label mapping
 message to R3 since Hmax does not change.

 When R2 receives the label mapping message on the new route, it sends
 a teardown message to R6. The teardown message reaches R4,
 triggering an update message with a transparent thread (tr,4,255) to
 R5, since Hmax decreases from 4 to 3. R5 updates the incoming link
 hop count to 4 without returning an ack.

8. Thread control block

 A thread control block (TCB) is maintained per LSP at each node and
 may contain the following information:

 - FEC
 - State
 - Incoming links
 Each incoming link has the following attributes:
 o neighbor: upstream neighbor node address
 o color: received thread color
 o hop count: received thread hop count
 o label
 o S-flag: indicates a stalled link
 - Outgoing links
 Each outgoing link has the following attributes:
 o neighbor: downstream neighbor node address
 o color: received thread color
 o hop count: received thread hop count
 o label
 o C-flag: indicates the link to the current next hop

 If a transparent thread is received on an incoming link for which no
 label is assigned yet or a non-transparent color is stored, discard
 the thread without entering the FSM. An error message may be
 returned to the sender.

 Whenever a thread is received on an incoming link, the following
 actions are taken before entering the FSM: (1) Store the received
 thread color and hop count on the link, replacing the old thread
 color and hop count, and (2) set the following flags that are used
 for an event switch within "Recv thread" event (see section 8.1).

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 24]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 o Color flag (CL-flag):
 Set if the received thread is colored.
 o Loop flag (LP-flag):
 Set if the received thread forms a loop.
 o Arrived on new link flag (NL-flag):
 Set if the received thread arrives on a new incoming link.

 If LP-flag is set, there must be an incoming link L, other than the
 receiving link, which stores the same thread color as the received
 one. The TCB to which link L belongs is referred to as the
 "detecting TCB". If the receiving LSR is VC-merge capable, the
 detecting TCB and the receiving TCB is the same, otherwise, the two
 TCBs are different.

 Before performing a thread extending, the thread TTL is decremented
 by one. If the resulting TTL becomes zero, the thread is not
 extended but silently discarded. Otherwise, the thread is extended
 and the extended thread hop count and color are stored into the
 outgoing link.

 When a node receives a thread rewinding event, if the received thread
 color and the extending thread color are different, it discards the
 event without entering the FSM.

8.1. Finite state machine

 An event which is "scheduled" by an action in an FSM must be passed
 immediately after the completion of the action.

 The following variables are used in the FSM:

 o Ni: number of unstalled incoming links
 o Hmax: largest incoming hop count
 o Hout: hop count of the outgoing link for the current next hop
 o Hrec: hop count of the received thread

 In the FSM, if Hmax=unknown, the value for (Hmax+1) becomes the value
 reserved for unknown hop count plus 1. For example, if
 Hmax=unknown=255, the value (Hmax+1) becomes 256.

 A TCB has three states; Null, Colored, and Transparent. When a TCB
 is in state Null, there is no outgoing link and Ni=0. The state
 Colored means that the node is extending a colored thread on the
 outgoing link for the current next hop. The state Transparent means
 that the node is the egress node or the outgoing link is transparent.

 The flag value "1" represents the flag is set, "0" represents the
 flag is not set, and "*" means the flag value is either 1 or 0.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 25]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 The FSM allows to have one transparent outgoing link on the old next
 hop and one colored outgoing link on the current next hop. However,
 it is not allowed to have a colored outgoing link on the old next
 hop.

 State Null:

 Event Action New state
 Recv thread
 Flags
 CL LP NL
 0 * * Do nothing. No change
 1 0 * If the node is egress, start thread rewinding Transparent
 and change the color of the receiving link to
 transparent.
 Otherwise, extend the received thread without Colored
 changing color.
 1 1 * Stall the received thread; if Hrec<unknown, No change
 schedule "Reset to unknown" event for the
 detecting TCB.

 Next hop If eligible-leaf, create a colored thread and Colored
 acquisition extend it.

 Others Silently ignore the event. No change

State Colored:

 Event Action New state
 Recv thread
 Flags
 CL LP NL
 0 * * If Hmax+1<Hout<unknown, create a colored No change
 thread and extend it. Otherwise, do nothing.
 1 0 * If Hmax<Hout, merge the received thread. No change
 Otherwise, extend the thread with (if NL=1)
 or without (if NL=0) changing color.
 1 1 * Stall the received thread.
 If Ni=0 and the node is not an eligible leaf, Null
 initiate thread withdrawing.
 If Ni>0 and Hrec<unknown, schedule "Reset to No change
 unknown" event for the detecting TCB.
 Otherwise, do nothing. No change

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 26]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Rewound Propagate thread rewinding to previous hops Transparent
 that are extending a colored thread; change
 the colors stored in all incoming and outgoing
 links to transparent; if Hmax+1<Hout, extend
 transparent thread. Withdraw the thread on
 the outgoing link for which C-flag=0.

 Withdrawn Remove the corresponding incoming link.
 If Ni=0 and the node is not an eligible leaf, Null
 propagate thread withdrawing to all next hops.
 Otherwise, if Hmax+1<Hout<unknown, create No change
 a colored thread and extend it.
 Otherwise, do nothing. No change

 Next hop If there is already an outgoing link for the Transparent
 acquisition next hop, do nothing. (This case happens only
 when the node retains the old path.)
 Otherwise, create a colored thread and extend No change
 it.

 Next hop If the outgoing link is transparent and the No change
 loss node is allowed to retain the link and the
 next hop is alive, do nothing.
 Otherwise, take the following actions.
 Initiate thread withdrawing for the next hop;
 if the node becomes a new egress, schedule
 "Rewound" event for this TCB.
 If Ni=0, move to Null. Null
 Otherwise, do nothing. No change

 Reset to Create a colored thread of hop count unknown No change
 unknown and extend it.

 Others Silently ignore the event. No change

State Transparent:

 Event Action New state
 Recv thread
 Flags
 CL LP NL
 0 * * If Hmax+1<Hout, extend a transparent thread. No change
 1 0 * If the node is egress or if Hmax<Hout, change No change
 the color of the receiving link to transparent
 and start thread rewinding.
 Otherwise, extend the thread with (if NL=1) Colored
 or without (if NL=0) changing color.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 27]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Withdrawn Remove the corresponding incoming link.
 If Ni=0 and the node is not an eligible leaf, Null
 propagate thread withdrawing to next hops.
 Otherwise, if Hmax+1<Hout, create No change
 a transparent thread and extend it.
 Otherwise, do nothing. No change

 Next hop Create a colored thread and extend it. Colored
 acquisition

 Next hop If the node is allowed to retain the outgoing No change
 loss link and the next hop is alive, do nothing.
 Otherwise, take the following actions.
 Initiate thread withdrawing.
 If Ni=0, move to Null. Null
 Otherwise, do nothing. No change

 Others Silently ignore the event. No change

9. Comparison with path-vector/diffusion method

 o Whereas the size of the path-vector increases with the length of
 the LSP, the sizes of the threads are constant. Thus the size
 of messages used by the thread algorithm are unaffected by the
 network size or topology. In addition, the thread merging
 capability reduces the number of outstanding messages. These
 lead to improved scalability.

 o In the thread algorithm, a node which is changing its next hop
 for a particular LSP must interact only with nodes that are
 between it and the LSP egress on the new path. In the
 path-vector algorithm, however, it is necessary for the node to
 initiate a diffusion computation that involves nodes which do
 not lie between it and the LSP egress.

 This characteristic makes the thread algorithm more robust. If
 a diffusion computation is used, misbehaving nodes which aren't
 even in the path can delay the path setup. In the thread
 algorithm, the only nodes which can delay the path setup are
 those nodes which are actually in the path.

 o The thread algorithm is well suited for use with both the
 ordered downstream-on-demand allocation and ordered downstream
 allocation. The path-vector/diffusion algorithm, however, is
 tightly coupled with the ordered downstream allocation.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 28]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 o The thread algorithm is retry-free, achieving quick path
 (re)configuration. The diffusion algorithm tends to delay the
 path reconfiguration time, since a node at the route change
 point must to consult all its upstream nodes.

 o In the thread algorithm, the node can continue to use the old
 path if there is an L3 loop on the new path, as in the
 path-vector algorithm.

10. Security Considerations

 The use of the procedures specified in this document does not have
 any security impact other than that which may generally be present
 in the use of any MPLS procedures.

11. Intellectual Property Considerations

 Toshiba and/or Cisco may seek patent or other intellectual property
 protection for some of the technologies disclosed in this document.
 If any standards arising from this document are or become protected
 by one or more patents assigned to Toshiba and/or Cisco, Toshiba
 and/or Cisco intend to disclose those patents and license them on
 reasonable and non-discriminatory terms.

12. Acknowledgments

 We would like to thank Hiroshi Esaki, Bob Thomas, Eric Gray, and
 Joel Halpern for their comments.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 29]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

13. Authors' Addresses

 Yoshihiro Ohba
 Toshiba Corporation
 1, Komukai-Toshiba-cho, Saiwai-ku
 Kawasaki 210-8582, Japan

 EMail: yoshihiro.ohba@toshiba.co.jp

 Yasuhiro Katsube
 Toshiba Corporation
 1, Toshiba-cho, Fuchu-shi,
 Tokyo, 183-8511, Japan

 EMail: yasuhiro.katsube@toshiba.co.jp

 Eric Rosen
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA, 01824

 EMail: erosen@cisco.com

 Paul Doolan
 Ennovate Networks
 330 Codman Hill Rd
 Marlborough MA 01719

 EMail: pdoolan@ennovatenetworks.com

14. References

 [1] Callon, R., et al., "A Framework for Multiprotocol Label
 Switching", Work in Progress.

 [2] Davie, B., Lawrence, J., McCloghrie, K., Rosen, E., Swallow, G.,
 Rekhter, Y. and P. Doolan, "MPLS using LDP and ATM VC Switching",

RFC 3035, January 2001.

 [3] Rosen, E., et al., "A Proposed Architecture for MPLS", Work in
 Progress.

 [4] Andersson, L., Doolan, P., Feldman, N., Fredette, A. and B.
 Thomas, "LDP Specification", RFC 3036, January 2001.

https://datatracker.ietf.org/doc/html/rfc3063
https://datatracker.ietf.org/doc/html/rfc3035
https://datatracker.ietf.org/doc/html/rfc3036

Ohba, et al. Experimental [Page 30]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

Appendix A - Further discussion of the algorithm

 The purpose of this appendix is to give a more informal and tutorial
 presentation of the algorithm, and to provide some of the motivation
 for it. For the precise specification of the algorithm, the FSM
 should be taken as authoritative.

 As in the body of the document, we speak as if there is only one LSP;
 otherwise we would always be saying "... of the same LSP". We also
 consider only the case where the algorithm is used for loop
 prevention, rather than loop detection.

A.1. Loop Prevention the Brute Force Way

 As a starting point, let's consider an algorithm which we might call
 "loop prevention by brute force". In this algorithm, every path
 setup attempt must go all the way to the egress and back in order for
 the path to be setup. This algorithm is obviously loop-free, by
 virtue of the fact that the setup messages actually made it to the
 egress and back.

 Consider, for example, an existing LSP B-C-D-E to egress node E. Now
 node A attempts to join the LSP. In this algorithm, A must send a
 message to B, B to C, C to D, D to E. Then messages are sent from E
 back to A. The final message, from B to A, contains a label binding,
 and A can now join the LSP, knowing that the path is loop-free.

 Using our terminology, we say that A created a thread and extended it
 downstream. The thread reached the egress, and then rewound.

 We needn't assume, in the above example, that A is an ingress node.
 It can be any node which acquires or changes its next hop for the LSP
 in question, and there may be nodes upstream of it which are also
 trying to join the LSP.

 It is clear that if there is a loop, the thread never reaches the
 egress, so it does not rewind. What does happen? The path setup
 messages just keep traveling around the loop. If one keeps a hop
 count in them, one can ensure that they stop traveling around the
 loop when the hop count reaches a certain maximum value. That is,
 when one receives a path setup message with that the maximum hop
 count value, one doesn't send a path setup message downstream.

 How does one recover from this situation of a looping thread? In
 order for L3 routing to break the loop, some node in the loop MUST
 experience a next hop change. This node will withdraw the thread

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 31]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 from its old next hop, and extend a thread down its new next hop. If
 there is no longer a loop, this thread now reaches the egress, and
 gets rewound.

A.2. What's Wrong with the Brute Force Method?

 Consider this example:

 A
 |
 B--D--E
 |
 C

 If A and C both attempt to join the established B-D-E path, then B
 and D must keep state for both path setup attempts, the one from A
 and the one from C. That is, D must keep track of two threads, the
 A-thread and the C-thread. In general, there may be many more nodes
 upstream of B who are attempting to join the established path, and D
 would need to keep track of them all.

 If VC merge is not being used, this isn't actually so bad. Without
 VC merge, D really must support one LSP for each upstream node
 anyway. If VC merge is being used, however, supporting an LSP
 requires only that one keep state for each upstream link. It would
 be advantageous if the loop prevention technique also required that
 the amount of state kept by a node be proportional to the number of
 upstream links which thenode has, rather than to the number of nodes
 which are upstream in the LSP.

 Another problem is that if there is a loop, the setup messages keep
 looping. Even though a thread has traversed some node twice, the
 node has no way to tell that a setup message it is currently
 receiving is part of the same thread as some setup message it
 received in the past.

 Can we modify this brute force scheme to eliminate these two
 problems? We can. To show how to do this, we introduce two notions:
 thread hop count, and thread color.

A.3. Thread Hop Count

 Suppose every link in an LSP tree is labeled with the number of hops
 you would traverse if you were to travel backwards (upstream) from
 that link to the leaf node which is furthest upstream of the link.

 For example, the following tree would have its links labeled as
 follows:

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 32]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 1 2
 A---B---C K
 | |
 |3 |1
 | |
 | 4 5 | 6 7
 D---G---H---I---J
 |
 |2
 1 |
 E---F

 Call these the "link hop counts".

 Links AB, EF, KH are labeled one, because you can go only one hop
 upstream from these links. Links BC, and FD are labeled 2, because
 you can go 2 hops upstream from these links. Link DG is labeled 4,
 because it is possible to travel 4 hops upstream from this link, etc.

 Note that at any node, the hop count associated with the downstream
 link is one more than the largest of the hop counts associated with
 the upstream links.

 Let's look at a way to maintain these hop counts.

 In order to maintain the link hop counts, we need to carry hop counts
 in the path setup messages. For instance, a node which has no
 upstream links would assign a hop count of 1 to its downstream link,
 and would store that value into the path setup messages it sends
 downstream. Once the value is stored in a path setup message, we may
 refer to it has a "thread hop count".

 When a path setup message is received, the thread hop count is stored
 as the link hop count of the upstream link over which the message was
 received.

 When a path setup message is sent downstream, the downstream link's
 hop count (and the thread hop count) is set to be one more than the
 largest of the incoming link hop counts.

 Suppose a node N has some incoming links and an outgoing link, with
 hop counts all set properly, and N now acquires a new incoming link.
 If, and only if, the link hop count of the new incoming link is
 greater than that of all of the existing incoming links, the
 downstream link hop count must be changed. In this case, control
 messages must be sent downstream carrying the new, larger thread hop
 count.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 33]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 If, on the other hand, N acquires a new incoming link with a link hop
 count that is less than or equal to the link hop count of all
 existing incoming links, the downstream link hop count remains
 unchanged, and no messages need be sent downstream.

 Suppose N loses the incoming link whose hop count was the largest of
 any of the incoming links. In this case, the downstream link hop
 count must be made smaller, and messages need to be sent downstream
 to indicate this.

 Suppose we were not concerned with loop prevention, but only with the
 maintenance of the hop counts. Then we would adopt the following
 rules to be used by merge points:

A.3.1 When a new incoming thread is received, extend it downstream if
 and only if its hop count is the largest of all incoming threads.

A.3.2 Otherwise, rewind the thread.

A.3.3 An egress node would, of course, always rewind the thread.

A.4. Thread Color

 Nodes create new threads as a result of next hop changes or next hop
 acquisitions. Let's suppose that every time a thread is created by a
 node, the node assigns a unique "color" to it. This color is to be
 unique in both time and space: its encoding consists of an IP address
 of the node concatenated with a unique event identifier from a
 numbering space maintained by the node. The path setup messages that
 the node sends downstream will contain this color. Also, when the
 node sends such a message downstream, it will remember the color, and
 this color becomes the color of the downstream link.

 When a colored message is received, its color becomes the color of
 the incoming link. The thread which consists of messages of a
 certain color will be known as a thread of that color.

 When a thread is rewound (and a path set up), the color is removed.
 The links become transparent, and we will sometimes speak of an
 established LSP as being a "transparent thread".

 Note that packets cannot be forwarded on a colored link, but only on
 a transparent link.

 Note that if a thread loops, some node will see a message, over a
 particular incoming link, with a color that the node has already seen
 before. Either the node will have originated the thread of that
 color, or it will have a different incoming link which already has

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 34]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 that color. This fact can be used to prevent control messages from
 looping. However, the node would be required to remember the colors
 of all the threads passing through it which have not been rewound or
 withdrawn. (I.e., it would have to remember a color for each path
 setup in progress.)

A.5. The Relation between Color and Hop Count

 By combining the color mechanism and the hop count mechanism, we can
 prevent loops without requiring any node to remember more than one
 color and one hop count per link for each LSP.

 We have already stated that in order to maintain the hop counts, a
 node needs to extend only the thread which has the largest hop count
 of any incoming thread. Now we add the following rule:

A.5.1 When extending an incoming thread downstream, that thread's
 color is also passed downstream (I.e., the downstream link's color
 will be the same as the color of the upstream link with largest hop
 count.)

 Note that at a given node, the downstream link is either transparent
 or it has one and only one color.

A.5.2 If a link changes color, there is no need to remember the old
 color.

 We now define the concept of "thread merging":

A.5.2 Suppose a colored thread arrives at a node over an incoming
 link, the node already has an incoming thread with the same or larger
 hop count, and the node has an outgoing colored thread. In this
 case, we may say that the new incoming thread is "merged" into the
 outgoing thread.

 Note that when an incoming thread is merged into an outgoing thread,
 no messages are sent downstream.

A.6. Detecting Thread Loops

 It can now be shown that if there is a loop, there will always either
 be some node which gets two incoming threads of the same color, or
 the colored thread will return to its initiator. In this section, we
 give several examples that may provide an intuitive understanding of
 how the thread loops are detected.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 35]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 1 2
 A---B---C K
 | |
 |3 |1
 | |
 | 4 5 | 6 7
 D---G---H---I---J
 |
 |2
 1 |
 E---F

 Returning to our previous example, let's set what would happen if H
 changed its next hop from I to E. H now creates a new thread, and
 assigns it a new color, say, red. Since H has two incoming link,
 with hop counts 1 and 5 respectively, it assigns hop count 6 to its
 new downstream link, and attempts a path setup through E.

 E now has an incoming red thread with hop count 6. Since E's
 downstream link hop count is now only 1, it must extend the red
 thread to F, with hop count 7. F then extends the red thread to D
 with hop count 8, D to G with hop count 9, and G to H with hop count
 10.

 The red thread has now returned to its initiator, and the loop is
 detected.

 Suppose though that before the red thread makes it back to H, G
 changes its next hop from H to E. Then G will extend the red thread
 to E. But E already has an incoming red link (from H), so the loop
 is detected.

 Let's now define the notion of a "stalled thread". A stalled thread
 is a thread which is merged into the outgoing thread, even though the
 outgoing thread has a smaller link hop count.

 When a thread loop is detected, the thread becomes stalled.

A.6.1 When a loop is detected due to a thread of a particular color
 traversing some node twice, we will say that the thread is "stalled"
 at the node. More precisely, it is the second appearance of the
 thread which is stalled. Note that we say that a thread is
 traversing a node twice if the thread is received by that node on an
 incoming link, but either there is another incoming link with the
 same color, or the color is one that was assigned by the node itself.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 36]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

A.7. Preventing the Setup of Looping LSPS

 The mechanism to be used for preventing the setup of looping LSPs
 should now be obvious. If node M is node N's next hop, and N wishes
 to set up an LSP (or to merge into an LSP which already exists at M),
 then N extends a thread to M.

 M first checks to see if the thread forms a loop (see Appendix A.6),
 and if so, the thread is stalled. If not, the following procedure is
 followed.

A.7.1 If M receives this thread, and M has a next hop, and either:

 - M has no outgoing thread

 - the incoming thread hop count is larger than the hop count of all
 other incoming threads,

 then M must extend the thread downstream.

A.7.2 On the other hand, if M receives this thread, and M has a next
 hop and there is another incoming thread with a larger hop count,
 then:

A.7.2.1 if the outgoing thread is transparent, M rewinds the new
 incoming thread.

A.7.2.2 if the outgoing thread is colored, M merges the new incoming
 thread into the outgoing thread, but does not send any messages
 downstream.

A.7.3 If M has not already assigned a label to N, it will assign one
 when, and only when, M rewinds the thread which N has extended to it.

A.7.4 If M merges the new thread into an existing colored outgoing
 thread, then the new incoming thread will rewind when, and only when,
 the outgoing thread rewinds.

A.8. Withdrawing Threads

A.8.1 If a particular node has a colored outgoing thread, and loses or
 changes its next hop, it withdraws the outgoing thread.

 Suppose that node N is immediately upstream of node M, and that N has
 extended a thread to M. Suppose further that N then withdraws the
 thread.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 37]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

A.8.2 If M has another incoming thread with a larger hop count, then M
 does not send any messages downstream.

A.8.3 However, if the withdrawn thread had the largest hop count of
 any incoming thread, then M's outgoing thread will no longer have the
 proper hop count and color. Therefore:

A.8.3.1 M must now extend downstream the incoming thread with the
 largest hop count. (This will cause it to forget the old downstream
 link hop count and color.)

A.8.3.2 The other incoming threads are considered to be merged into the
 thread which is extended.

A.8.4 When the last unstalled incoming thread is withdrawn, the
 outgoing thread must be withdrawn.

A.9. Modifying Hop Counts and Colors of Existing Threads

 We have seen the way in which the withdrawal of a thread may cause
 hop count and color changes downstream. Note that if the hop count
 and/or color of an outgoing thread changes, then the hop count and
 color of the corresponding incoming thread at the next hop will also
 change. This may result in a color and/or next hop change of the
 outgoing thread at that next hop.

A.9.1 Whenever there is a hop count change for any incoming thread, a
 node must determine whether the "largest hop count of any incoming
 thread" has changed as a result. If so, the outgoing thread's hop
 count, and possibly color, will change as well, causing messages to
 be sent downstream.

A.10. When There is No Next Hop

A.10.1 If a particular node has a colored incoming thread, but has no
 next hop (or loses its next hop), the incoming thread is stalled.

A.11. Next Hop Changes and Pre-existing Colored Incoming Threads

 It is possible that a node will experience a next hop change or a
 next hop acquisition at a time when it has colored incoming threads.
 This happens when routing changes before path setup is complete.

A.11.1 If a node has a next hop change or a next hop acquisition at a
 time when it has colored incoming threads, it will create a thread
 with a new color, but whose hop count is one more than the largest of
 the incoming link hop counts. It will then extend this thread
 downstream.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 38]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

A.11.2 When this new thread is created and extended downstream, all
 incoming threads are merged into it. Any incoming threads that were
 previously stalled are now considered to be "merged" rather than
 "stalled".

 That is, even though the outgoing thread has a different color than
 any of the incoming threads, the pre-existing incoming threads are
 all considered to have been merged into the new outgoing thread.
 This means that when the outgoing thread rewinds, the incoming
 threads will too.

 Note: it is still required to distinguish stalled incoming links from
 unstalled incoming links when thread withdrawing is performed.

A.12. How Many Threads Run Around a Loop?

 We have seen that when a loop is detected, the looping thread stalls.
 However, considering the following topology:

 X--->A----->B<---Y
 ^ |
 | v
 W--->D<-----C<---Z

 In this example, there is a loop A-B-C-D-A. However, there are also
 threads entering the loop from X, Y, Z, and W. Once the loop is
 detected, there really is no reason why any other thread should have
 to wrap around the loop. It would be better to simply mark presence
 of the loop in each node.

 To do this, we introduce the notion of the "unknown" hop count, U.
 This hop count value is regarded as being larger than any other hop
 count value. A thread with hop count U will be known as a "U-
 thread".

A.12.1 When an incoming thread with a known hop count stalls, and there
 is an outgoing thread, we assign the hop count U to the outgoing
 thread, and we assign a new color to the outgoing thread as well.

 As a result, the next hop will then have an incoming U-thread, with
 the newly assigned color. This causes its outgoing thread in turn to
 be assigned hop count U and the new color. The rules we have already
 given will then cause each link in the loop to be assigned the new
 color and the hop count U. When this thread either reaches its
 originator, or any other node which already has an incoming thread of
 the same color, it stalls.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 39]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 In our example above, this will cause the links AB, BC, CD, and DA to
 be given hop count U.

 Now let's add one more rule:

A.12.2 When a thread with a known hop count reaches a node that has a
 colored outgoing U-thread, the incoming thread merges into the
 outgoing thread. (Actually, this is just a consequence of a rule
 which has already been given, since U is greater than any known hop
 count.)

 Then if W, X, Y, or Z attempt to extend a thread to D, A, B, or C
 respectively, those threads will immediately stall. Once all the
 links are marked as being within a loop, no other threads are
 extended around the loop, i.e., no other setup messages will traverse
 the loop.

 Here is our example topology with the link hop counts that would
 exist during a loop:

 1 U 1
 X--->A----->B<---Y
 ^ |
 U | |U
 | v
 W--->D<-----C<---Z
 1 U 1

A.13. Some Special Rules for Hop Count U

 When a U-thread encounters a thread with known hop count, the usual
 rules apply, remembering that U is larger than any known hop count
 value.

 However, we need to add a couple of special rules for the case when a
 U-thread encounters a U-thread. Since we can't tell which of the two
 U-threads is really the longer, we need to make sure that each of the
 U-threads is extended.

A.13.1 If an incoming colored U-thread arrives at a node which already
 has an incoming U-thread of that color, or arrives at the node which
 created that U-thread, then the thread stalls.

 (Once a loop is detected, there is no need to further extend the
 thread.)

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 40]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

A.13.2 If an incoming colored U-thread arrives at a node which has a
 transparent outgoing U-thread to its next hop, the incoming thread is
 extended.

A.13.3 If an incoming colored U-thread arrives at a node which has a
 colored outgoing U-thread, and if the incoming link over which the
 thread was received was already an incoming link of the LSP, the
 thread is extended.

A.13.4 If an incoming colored U-thread arrives at a node which has a
 colored outgoing U-thread, and if the incoming link over which the
 thread was received was NOT already an incoming link of the LSP, a
 new U-thread is created and extended. All the incoming threads are
 merged into it. This is known in the main body of this document as
 "extending the thread with changing color".

 These rules ensure that an incoming U-thread is always extended (or
 merged into a new U-thread which then gets extended), unless it is
 already known to form a loop.

 What is the purpose of rule A.13.4? There are certain cases where a
 loop can form, but where the node which created the looping thread is
 not part of the loop. Rule A.13.4 ensures that when there is a loop,
 there will be a looping thread which was created by some node which
 is actually in the loop. This in turn ensures that the loop will be
 detected well before the thread TTL expires.

 The rule of "extending the thread with changing color" is also
 applied when extending a thread with a known hop count.

A.13.5 When a received colored thread with a known hop count is
 extended, if the node has an outgoing thread, and if the incoming
 link over which the thread was received was NOT already an incoming
 link of the LSP, a new thread is created and extended. All the
 incoming threads are merged into it. This is an exceptional case of
 A.5.1.

A.14. Recovering From a Loop

 Here is our example topology again, in the presence of a loop.

 1 U 1
 X--->A----->B<---Y
 ^ |
 U | |U
 | v
 W--->D<-----C<---Z
 1 U 1

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 41]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 Suppose now that C's next hop changes from D to some other node E,
 thereby breaking the loop. For simplicity, we will assume that E is
 the egress node.

 C will withdraw its outgoing U-thread from D (9.1). It will also
 create a new thread (12.1), assign it a new color, assign it hop
 count U (the largest hop count of C's incoming threads), merge its
 two other incoming threads into the new thread (12.2), and extend the
 new thread to E, resulting the following configuration:

 1 U 1
 X--->A----->B<---Y
 ^ |
 U | |U
 | v
 W--->D C<---Z
 1 | 1
 U|
 v
 E

 When the thread from C to E rewinds, the merged threads also rewind
 (8.4). This process of rewinding can now proceed all the way back to
 the leafs. While this is happening, of course, D will note that its
 outgoing thread hop count should be 2, not U, and will make this
 change (9.3). As a result, A will note that its outgoing hop count
 should be 3, not U, and will make this change. So at some time in
 the future, we might see the following:

 1 3 1
 X--->A----->B<---Y
 ^ |
 2 | |U
 | v
 W--->D C<---Z
 1 | 1
 U|
 v
 E

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 42]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

 After a short period, we see the following:

 1 3 1
 X--->A----->B<---Y
 ^ |
 2 | |4
 | v
 W--->D C<---Z
 1 | 1
 5|
 v
 E

 with all threads transparent, and we have a fully set up non-looping
 path.

A.15. Continuing to Use an Old Path

 Nothing in the above requires that any node withdraw a transparent
 thread. Existing transparent threads (established paths) can
 continue to be used, even while new paths are being set up.

 If this is done, then some node may have both a transparent outgoing
 thread (previous path) and a colored outgoing thread (new path being
 set up). This would happen only if the downstream links for the two
 threads are different. When the colored outgoing thread rewinds (and
 becomes transparent), the previous path should be withdrawn.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 43]

RFC 3063 MPLS Loop Prevention Mechanism February 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/rfc3063

Ohba, et al. Experimental [Page 44]

