
Network Working Group B. Volz
Request for Comments: 3074 Ericsson
Category: Standards Track S. Gonczi
 Network Engines, Inc.
 T. Lemon
 Internet Engines, Inc.
 R. Stevens
 Join Systems, Inc.
 February 2001

DHC Load Balancing Algorithm

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document proposes a method of algorithmic load balancing. It
 enables multiple, cooperating servers to decide which one should
 service a client, without exchanging any information beyond initial
 configuration.

 The server selection is based on the servers hashing client Media
 Access Control (MAC) addresses when multiple Dynamic Host
 Configuration Protocol (DHCP) servers are available to service DHCP
 clients. The proposed technique provides for efficient server
 selection when multiple DHCP servers offer services on a network
 without requiring any changes to existing DHCP clients. The same
 method is proposed to select the target server of a forwarding agent
 such as a Bootstrap Protocol (BOOTP) relay.

1. Introduction

 This protocol was originally devised to support a specific load
 balancing optimization of the DHCP Failover Protocol [FAILOVR]. The
 authors later realized that it could be used to optimize the behavior
 of cooperating DHCP servers and the BOOTP relay agents that forward
 packets to them. The proposal makes it possible to set up each

Volz, et al. Standards Track [Page 1]

RFC 3074 DHC Load Balancing Algorithm February 2001

 participating server to accept a preconfigured (approximate)
 percentage of the client load. This is done using a deterministic
 hashing algorithm, that could easily be applied to other protocols
 having similar characteristics.

2. Terminology

 This section discusses both the generic requirements terminology
 common to many IETF protocol specifications, and also terminology
 introduced by this document.

2.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC 2119].

2.2. Load Balancing Terminology

 This document introduces the following terms:

 Service Delay, SD
 A load balancing parameter, allowing delayed service of a client
 by a server participating in the load-balancing scheme, instead of
 ignoring the client.

 Hash Bucket Assignments, HBA
 A configuration directive that assigns a set of hash bucket values
 to a server participating in the load-balancing scheme.

 Server ID, SID
 An identifier that can be used to designate one of the
 participating Servers. In the context of DHCP, the SID is the IP
 address or DNS name of the server.

 Service Transaction, ST
 A set of client-server exchanges that lead to a server providing
 or denying some service to a client. Example: the DISCOVER/OFFER/
 REQUEST/ACK message exchange between a DHCP server and client is a
 service transaction.

 Service Transaction ID, STID
 An attribute of the individual client requests used for load-
 balancing.

https://datatracker.ietf.org/doc/html/rfc3074
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Volz, et al. Standards Track [Page 2]

RFC 3074 DHC Load Balancing Algorithm February 2001

3. Background and External Requirements

 Because DHCP clients use UDP broadcasts to contact DHCP servers, a
 client DHCPDISCOVER message may be received by more than one server.
 All servers receiving such a broadcast may respond to the client,
 letting the client choose which server it will use.

 When a BOOTP relay agent is used, it typically forwards or
 rebroadcasts client broadcasts to all configured servers, so a
 similar inefficiency is present.

 The optimization described allows a server to be chosen for each such
 transaction by performing a "serve" / "do not serve" computation. A
 forwarding agent can perform the same computation to choose a
 forwarding destination.

 In either case, the choice of server can be computed, without the
 participants having to negotiate who is to respond.

 The approach is probabilistic in nature, because it is nearly
 impossible to foresee which client will request service next. For
 short periods of time, the actual percentage of clients served by a
 given server will likely deviate from the desired percentage. As the
 number of requests grows, the actual percentage of the load being
 handled by each server will approximate the configured percentage.

4. Overview

 DHCP servers MUST use the Client Identifier option as the STID if it
 is present. If no Client Identifier option is present, the hlen
 field of the DHCP packet MUST be used as the length of the data to be
 hashed, and the contents of the chaddr MUST be the data to be hashed.
 At most the first sixteen bytes of the Client Identifier or chaddr
 are used.

 The proposal maps the STID into a hash value using the function in
section 6. The resulting hash value can then be used to decide who

 should respond to the request, or who the forwarding target should
 be.

 The provided hash function generates hash values 0 to 255, and yields
 a fairly even hash bucket distribution for random STID-s, and also
 for STID sequences that have some pattern. Resource allocation is
 accomplished by assigning a set of specific hash values to each
 participating server.

 A server will only service a request if the STID hash of the request
 matches one of its assigned hash values.

https://datatracker.ietf.org/doc/html/rfc3074

Volz, et al. Standards Track [Page 3]

RFC 3074 DHC Load Balancing Algorithm February 2001

 Any hash buckets not assigned to servers will result in some client
 ST-s being entirely ignored. (In some scenarios, this may be a
 desirable outcome.) STID-s need not be unique, but should have
 sufficient variety to distribute load to each server.

 HBA-s MAY be transmitted as messages, encapsulated in messages of
 some other protocol, e.g., e-mail, or DHCP Failover Protocol option.

 DHCP server implementations may optionally be configurable to handle
 a case where load balancing is being done but the server that is
 supposed to respond is not available, or is out of suitable
 addresses.

 DHCP server implementations that provide this capability SHOULD set
 the DS (Delayed Service) configuration parameter to the number of
 seconds to wait after the client's first request has been sent before
 responding to a client, where the hash would not normally permit the
 client to be served.

 A DHCP server providing this capability SHOULD use the value in the
 secs field of the client request if its value is not zero. Because
 some clients may not correctly implement the secs field, a DHCP
 server MAY keep track of the first instance of a client transaction
 to which it would not normally respond. If the server receives a
 request from a client that has the same transaction ID as a
 previously recorded request, and if the secs field in the second
 packet is zero, the DHCP server MAY use the elapsed time (seconds)
 between the first and subsequent client request, instead of the secs
 field.

5. Operation

5.1 Configuration

 The configuration step consists of assigning hash values to available
 servers. This is accomplished by providing one or more Hash Bucket
 Assignments (HBA-s). These may come from a configuration file, the
 Windows NT registry, EEPROM, etc. Alternatively, the hash bucket
 values could be assigned using some agreed upon algorithm. E.g.,
 "Every odd value is serviced by server A and every even value is
 serviced by server B".

5.2 HBA Intended for a Server

 When configuring one specific server, an HBA in the form of a simple
 bit map of 32 octet values SHOULD be used.

https://datatracker.ietf.org/doc/html/rfc3074

Volz, et al. Standards Track [Page 4]

RFC 3074 DHC Load Balancing Algorithm February 2001

 The first octet in the HBA bitmap represents HBA values 0-7, the next
 byte values 8-15, and so on, with the thirty-second octet
 representing values 248-255. In each octet, the least significant
 bit in that octet represents the smallest HBA value in that octet.

 Each bit of the HBA is associated with one possible hash value. If a
 bit is set in the map, it means the recipient server MUST service
 each client request, where the STID yields the corresponding hash
 value.

 For example, if a server is configured with an HBA of the following
 32 octets:

 FF FF FF FF FF FF 00 00 (0 - 63)
 FF FF FF FF FF FF FF FF (64 - 127)
 00 00 00 00 00 00 00 00 (128 - 191)
 00 00 00 00 00 00 00 00 (192 - 255)

 then it MUST service any client requests where the STID hashes into
 the bucket values of 0 through 47 and 64 through 127.

5.3 Delayed Service Parameter

 The Delayed Service parameter is optional.

 If the parameter is not configured, the HBA sets up a strict Serve/Do
 not serve policy.

 If the parameter is configured, the server that is not supposed to
 serve a specific request (based on the HBA and the STID hash), is
 allowed to respond, after S seconds have elapsed since the client
 first attempted to get service. A server MAY use the secs field in
 the BOOTP header for determining the time since the client has been
 trying to get service, or it MAY track repeated requests some other
 way.

5.4 HBA Intended for a Forwarder

 When configuring a forwarding agent, (e.g., BOOTP relay) HBA-s
 consisting of pairs of Server-ID / Hash Bucket values MAY be used.

 Here, the Server ID (SID) designates the server responsible for the
 specified Hash Bucket. The forwarding agent forwards each client
 request, where the STID yields the specified hash value, to the
 server designated by the SID.

https://datatracker.ietf.org/doc/html/rfc3074

Volz, et al. Standards Track [Page 5]

RFC 3074 DHC Load Balancing Algorithm February 2001

 The Server ID may be any unique server attribute, (e.g., IP address,
 DNS name, etc.) that is meaningful in the context of the relay agent
 operation.

 A forwarder may be configured to forward a given packet to more than
 one server. For example, a BOOTP relay could be set up to split the
 load between 2 primary-backup server pairs, each pair running the
 DHCP Failover Protocol [FAILOVR]. In this case, a packet that is
 intended for a server pair Will have to be forwarded to both the
 primary, and the secondary server of the pair.

 A possible configuration file for a forwarding agent (e.g., BOOTP
 relay) may look like this:

 192.33.43.11 192.33.43.12: 0..24;
 192.33.43.13: 25..55;
 192.33.43.15: 56..128;
 192.33.43.16: 129 130 131 200..202;

 The above configuration consists of 4 HBA-s. The first HBA example
 reads: "Any Client request, where the STID yields a hash value 0 to
 24, will be forwarded to both server 192.33.43.11 and 192.33.43.12".

 The 4th HBA example states: "Any Client request, where the STID
 yields a hash value 129,139,131,200,201 or 202, will be forwarded to
 server 192.33.43.16.

6. Hash Function for Load Balancing

 The following hash function is a C language implementation of the
 algorithm known as "Pearson's hash". The Pearson's hash algorithm
 was originally published in [PEARSON].

 The hash function is computationally inexpensive, requires an array
 lookup and xor operation for each key byte. To make this proposal
 work, all interoperable implementations MUST use this hash function,
 with the set of mixing table values given below:

/* A "mixing table" of 256 distinct values, in pseudo-random order. */

unsigned char loadb_mx_tbl[256] ={
251, 175, 119, 215, 81, 14, 79, 191, 103, 49, 181, 143, 186, 157, 0,
232, 31, 32, 55, 60, 152, 58, 17, 237, 174, 70, 160, 144, 220, 90, 57,
223, 59, 3, 18, 140, 111, 166, 203, 196, 134, 243, 124, 95, 222, 179,
197, 65, 180, 48, 36, 15, 107, 46, 233, 130, 165, 30, 123, 161, 209, 23,
97, 16, 40, 91, 219, 61, 100, 10, 210, 109, 250, 127, 22, 138, 29, 108,
244, 67, 207, 9, 178, 204, 74, 98, 126, 249, 167, 116, 34, 77, 193,
200, 121, 5, 20, 113, 71, 35, 128, 13, 182, 94, 25, 226, 227, 199, 75,

https://datatracker.ietf.org/doc/html/rfc3074

Volz, et al. Standards Track [Page 6]

RFC 3074 DHC Load Balancing Algorithm February 2001

27, 41, 245, 230, 224, 43, 225, 177, 26, 155, 150, 212, 142, 218, 115,
241, 73, 88, 105, 39, 114, 62, 255, 192, 201, 145, 214, 168, 158, 221,
148, 154, 122, 12, 84, 82, 163, 44, 139, 228, 236, 205, 242, 217, 11,
187, 146, 159, 64, 86, 239, 195, 42, 106, 198, 118, 112, 184, 172, 87,
2, 173, 117, 176, 229, 247, 253, 137, 185, 99, 164, 102, 147, 45, 66,
231, 52, 141, 211, 194, 206, 246, 238, 56, 110, 78, 248, 63, 240, 189,
93, 92, 51, 53, 183, 19, 171, 72, 50, 33, 104, 101, 69, 8, 252, 83, 120,
76, 135, 85, 54, 202, 125, 188, 213, 96, 235, 136, 208, 162, 129, 190,
132, 156, 38, 47, 1, 7, 254, 24, 4, 216, 131, 89, 21, 28, 133, 37, 153,
149, 80, 170, 68, 6, 169, 234, 151
};

unsigned char loadb_p_hash(
 const unsigned char *key, /* The key to be hashed */
 const int len) /* Key length in bytes */
{
unsigned char hash = len;
int i;

 for (i=len ; i > 0 ;)
 hash = loadb_mx_tbl [hash ^ key[--i]];

 return(hash);
}

int accept_service_request(
 const unsigned char HBA[32], /* The hash bucket bitmap */
 const unsigned char *key, /* The service transaction id
*/
 const int len) /* length of the above */
{
unsigned char hash = loadb_p_hash(key,len);
int index = (hash >> 3) & 31;
int bitmask = 1 << (hash & 7);

 /* return 1 if we should service this transaction */
 return((HBA[index] & bitmask) != 0);
}

7. Security Considerations

 This proposal in and by itself provides no security, nor does it
 impact existing security. Servers using this algorithm are
 responsible for ensuring that if the contents of the HBA are
 transmitted over the network as part of the process of configuring
 any server, that message be secured against tampering, since
 tampering with the HBA could result in denial of service for some or
 all clients.

https://datatracker.ietf.org/doc/html/rfc3074

Volz, et al. Standards Track [Page 7]

RFC 3074 DHC Load Balancing Algorithm February 2001

8. References

 [FAILOVR] Kinnear, K,, Droms, R., Rabil, G., Dooley, M., Kapur, A.,
 Gonczi, S. and B. Volz, "DHCP Failover Protocol", Work in
 Progress.

 [PEARSON] The Communications of the ACM Vol.33, No. 6 (June 1990),
 pp. 677-680.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
2131, March 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels," BCP 14, RFC 2119, March 1997.

9. Acknowledgements

 Special thanks to Peter K. Pearson, the author of Pearson's hash who
 has kindly granted his permission to use his algorithm, free of any
 encumbrances.

 This proposal stems from the original idea of hashing MAC addresses
 to a single bit by Ted Lemon, during a Failover Protocol discussion
 held at CISCO Systems in February, 1999. Rob Stevens suggested the
 potential use of this algorithm for purposes beyond those of the
 Failover Protocol.

 Many thanks to Ralph Droms, Kim Kinnear, Mark Stapp, Glenn Waters,
 Greg Rabil and Jack Wong for their comments during the ongoing
 discussions.

https://datatracker.ietf.org/doc/html/rfc3074
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Volz, et al. Standards Track [Page 8]

RFC 3074 DHC Load Balancing Algorithm February 2001

10. Authors' Addresses

 Bernie Volz
 Ericsson
 959 Concord Street
 Framingham, MA 01701

 Phone: +1-617-513-9060
 EMail: bernie.volz@ericsson.com

 Steve Gonczi
 Network Engines, Inc.
 25 Dan Road Canton, MA 02021-2817

 Phone: 781-332-1165
 EMail: steve.gonczi@networkengines.com

 Ted Lemon
 950 Charter Street
 Redwood City, CA 94043

 EMail: ted.lemon@nominum.com

 Rob Stevens
 Join Systems, Inc.
 1032 Elwell Ct Ste 243 Palo Alto CA 94203

 Phone: (650)-968-4470
 EMail: robs@join.com

https://datatracker.ietf.org/doc/html/rfc3074

Volz, et al. Standards Track [Page 9]

RFC 3074 DHC Load Balancing Algorithm February 2001

11. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/rfc3074

Volz, et al. Standards Track [Page 10]

