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Stream Control Transmission Protocol (SCTP) Checksum Change

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

   Stream Control Transmission Protocol (SCTP) currently uses an Adler-
   32 checksum.  For small packets Adler-32 provides weak detection of
   errors.  This document changes that checksum and updates SCTP to use
   a 32 bit CRC checksum.
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1 Introduction

   A fundamental weakness has been detected in SCTP's current Adler-32
   checksum algorithm [STONE].  This document updates and replaces the
   Adler-32 checksum definition in [RFC 2960].  Note that there is no
   graceful transition mechanism for migrating to the new checksum.
   Implementations are expected to immediately switch to the new
   algorithm; use of the old algorithm is deprecated.

   One requirement of an effective checksum is that it evenly and
   smoothly spreads its input packets over the available check bits.

   From an email from Jonathan Stone, who analyzed the Adler-32 as part
   of his doctoral thesis:

   "Briefly, the problem is that, for very short packets, Adler32 is
   guaranteed to give poor coverage of the available bits.  Don't take
   my word for it, ask Mark Adler.  :-)

   Adler-32 uses two 16-bit counters, s1 and s2.  s1 is the sum of the
   input, taken as 8-bit bytes.  s2 is a running sum of each value of
   s1.  Both s1 and s2 are computed mod-65521 (the largest prime less
   than 2^16).  Consider a packet of 128 bytes.  The *most* that each
   byte can be is 255.  There are only 128 bytes of input, so the
   greatest value which the s1 accumulator can have is 255 * 128 =
   32640.  So, for 128-byte packets, s1 never wraps.  That is critical.
   Why?

   The key is to consider the distribution of the s1 values, over some
   distribution of the values of the individual input bytes in each
   packet.  Because s1 never wraps, s1 is simply the sum of the
   individual input bytes.  (Even Doug's trick of adding 0x5555 doesn't
   help here, and an even larger value doesn't really help: we can get
   at most one mod-65521 reduction.)

   Given the further assumption that the input bytes are drawn
   independently from some distribution (they probably aren't: for file
   system data, it's even worse than that!), the Central Limit Theorem
   tells us that that s1 will tend to have a normal distribution.
   That's bad: it tells us that the value of s1 will have hot-spots at
   around 128 times the mean of the input distribution: around 16k,
   assuming a uniform distribution.  That's bad.  We want the
   accumulator to wrap as many times as possible, so that the resulting
   sum has as close to a uniform distribution as possible.  (I call this
   "fairness".)

https://datatracker.ietf.org/doc/html/rfc3309
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   So, for short packets, the Adler-32 s1 sum is guaranteed to be
   unfair.  Why is that bad?  It's bad because the space of valid
   packets -- input data, plus checksum values -- is also small.  If all
   packets have checksum values very close to 32640, then the likelihood
   of even a 'small' error leaving a damaged packet with a valid
   checksum is higher than if all checksum values are equally likely."

   Due to this inherent weakness, exacerbated by the fact that SCTP will
   first be used as a signaling transport protocol where signaling
   messages are usually less than 128 bytes, a new checksum algorithm is
   specified by this document, replacing the current Adler-32 algorithm
   with CRC-32c.

1.1 Conventions

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
   SHOULD,SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL,
   when they appear in this document, are to be interpreted as described
   in [RFC2119].

   Bit number order is defined in [RFC1700].

2 Checksum Procedures

   The procedures described in section 2.1 of this document MUST be
   followed, replacing the current checksum defined in [RFC2960].

   Furthermore any references within [RFC2960] to Adler-32 MUST be
   treated as a reference to CRC-32c.  Section 2.1 of this document
   describes the new calculation and verification procedures that MUST
   be followed.

2.1 Checksum Calculation

   When sending an SCTP packet, the endpoint MUST strengthen the data
   integrity of the transmission by including the CRC-32c checksum value
   calculated on the packet, as described below.

   After the packet is constructed (containing the SCTP common header
   and one or more control or DATA chunks), the transmitter shall:

   1) Fill in the proper Verification Tag in the SCTP common header and
      initialize the Checksum field to 0's.

   2) Calculate the CRC-32c of the whole packet, including the SCTP
      common header and all the chunks.

https://datatracker.ietf.org/doc/html/rfc3309
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   3) Put the resulting value into the Checksum field in the common
      header, and leave the rest of the bits unchanged.

   When an SCTP packet is received, the receiver MUST first check the
   CRC-32c checksum:

   1) Store the received CRC-32c value,

   2) Replace the 32 bits of the Checksum field in the received SCTP
      packet with all '0's and calculate a CRC-32c value of the whole
      received packet.  And,

   3) Verify that the calculated CRC-32c value is the same as the
      received CRC-32c value.  If not, the receiver MUST treat the
      packet as an invalid SCTP packet.

   The default procedure for handling invalid SCTP packets is to
   silently discard them.

   Any hardware implementation SHOULD be done in a way that is
   verifiable by the software.

   We define a 'reflected value' as one that is the opposite of the
   normal bit order of the machine.  The 32 bit CRC is calculated as
   described for CRC-32c and uses the polynomial code 0x11EDC6F41
   (Castagnoli93) or x^32+x^28+x^27+x^26+x^25
   +x^23+x^22+x^20+x^19+x^18+x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0.  The
   CRC is computed using a procedure similar to ETHERNET CRC [ITU32],
   modified to reflect transport level usage.

   CRC computation uses polynomial division.  A message bit-string M is
   transformed to a polynomial, M(X), and the CRC is calculated from
   M(X) using polynomial arithmetic [Peterson 72].

   When CRCs are used at the link layer, the polynomial is derived from
   on-the-wire bit ordering: the first bit 'on the wire' is the high-
   order coefficient.  Since SCTP is a transport-level protocol, it
   cannot know the actual serial-media bit ordering.  Moreover,
   different links in the path between SCTP endpoints may use different
   link-level bit orders.

   A convention must therefore be established for mapping SCTP transport
   messages to polynomials for purposes of CRC computation.  The bit-
   ordering for mapping SCTP messages to polynomials is that bytes are
   taken most-significant first; but within each byte, bits are taken
   least-significant first.  The first byte of the message provides the
   eight highest coefficients.  Within each byte, the least-significant
   SCTP bit gives the most significant polynomial coefficient within
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   that byte, and the most-significant SCTP bit is the least significant
   polynomial coefficient in that byte.  (This bit ordering is sometimes
   called 'mirrored' or 'reflected' [Williams93].)  CRC polynomials are
   to be transformed back into SCTP transport-level byte values, using a
   consistent mapping.

   The SCTP transport-level CRC value should be calculated as follows:

      -  CRC input data are assigned to a byte stream, numbered from 0
         to N-1.

      -  the transport-level byte-stream is mapped to a polynomial
         value.  An N-byte PDU with j bytes numbered 0 to N-1, is
         considered as coefficients of a polynomial M(x) of order 8N-1,
         with bit 0 of byte j being coefficient x^(8(N-j)-8), bit 7 of
         byte j being coefficient x^(8(N-j)-1).

      -  the CRC remainder register is initialized with all 1s and the
         CRC is computed with an algorithm that simultaneously
         multiplies by x^32 and divides by the CRC polynomial.

      -  the polynomial is multiplied by x^32 and divided by G(x), the
         generator polynomial, producing a remainder R(x) of degree less
         than or equal to 31.

      -  the coefficients of R(x) are considered a 32 bit sequence.

      -  the bit sequence is complemented.  The result is the CRC
         polynomial.

      -  The CRC polynomial is mapped back into SCTP transport-level
         bytes.  Coefficient of x^31 gives the value of bit 7 of SCTP
         byte 0, the coefficient of x^24 gives the value of bit 0 of
         byte 0.  The coefficient of x^7 gives bit 7 of byte 3 and the
         coefficient of x^0 gives bit 0 of byte 3.  The resulting four-
         byte transport-level sequence is the 32-bit SCTP checksum
         value.

   IMPLEMENTATION NOTE: Standards documents, textbooks, and vendor
   literature on CRCs often follow an alternative formulation, in which
   the register used to hold the remainder of the long-division
   algorithm is initialized to zero rather than all-1s, and instead the
   first 32 bits of the message are complemented.  The long-division
   algorithm used in our formulation is specified, such that the the
   initial multiplication by 2^32 and the long-division are combined
   into one simultaneous operation.  For such algorithms, and for
   messages longer than 64 bits, the two specifications are precisely
   equivalent.  That equivalence is the intent of this document.
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   Implementors of SCTP are warned that both specifications are to be
   found in the literature, sometimes with no restriction on the long-
   division algorithm.  The choice of formulation in this document is to
   permit non-SCTP usage, where the same CRC algorithm may be used to
   protect messages shorter than 64 bits.

   If SCTP could follow link level CRC use, the CRC would be computed
   over the link-level bit-stream.  The first bit on the link mapping to
   the highest-order coefficient, and so on, down to the last link-level
   bit as the lowest-order coefficient.  The CRC value would be
   transmitted immediately after the input message as a link-level
   'trailer'.  The resulting link-level bit-stream would be (M(X)x) *
   x^32) + (M(X)*x^32))/ G(x), which is divisible by G(X).  There would
   thus be a constant CRC remainder for 'good' packets.  However, given
   that implementations of RFC 2960 have already proliferated, the IETF
   discussions considered that the benefit of a 'trailer' CRC did not
   outweigh the cost of making a very large change in the protocol
   processing.  Further, packets accepted by the SCTP 'header' CRC are
   in one-to-one correspondence with packets accepted by a modified
   procedure using a 'trailer' CRC value, and where the SCTP common
   checksum header is set to zero on transmission and is received as
   zero.

   There may be a computational advantage in validating the Association
   against the Verification Tag, prior to performing a checksum, as
   invalid tags will result in the same action as a bad checksum in most
   cases.  The exceptions for this technique would be INIT and some
   SHUTDOWN-COMPLETE exchanges, as well as a stale COOKIE-ECHO.  These
   special case exchanges must represent small packets and will minimize
   the effect of the checksum calculation.

3 Security Considerations

   In general, the security considerations of RFC 2960 apply to the
   protocol with the new checksum as well.

4 IANA Considerations

   There are no IANA considerations required in this document.

https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960


Stone, et. al.              Standards Track                     [Page 6]



RFC 3309                  SCTP Checksum Change            September 2002

5 Acknowledgments

   The authors would like to thank the following people that have
   provided comments and input on the checksum issue:

   Mark Adler, Ran Atkinson, Stephen Bailey, David Black, Scott Bradner,
   Mikael Degermark, Laurent Glaude, Klaus Gradischnig, Alf Heidermark,
   Jacob Heitz, Gareth Kiely, David Lehmann, Allision Mankin, Lyndon
   Ong, Craig Partridge, Vern Paxson, Kacheong Poon, Michael Ramalho,
   David Reed, Ian Rytina, Hanns Juergen Schwarzbauer, Chip Sharp, Bill
   Sommerfeld, Michael Tuexen, Jim Williams, Jim Wendt, Michael Welzl,
   Jonathan Wood, Lloyd Wood, Qiaobing Xie, La Monte Yarroll.

   Special thanks to Dafna Scheinwald, Julian Satran, Pat Thaler, Matt
   Wakeley, and Vince Cavanna, for selection criteria of polynomials and
   examination of CRC polynomials, particularly CRC-32c [Castagnoli93].

   Special thanks to Mr. Ross Williams and his document [Williams93].
   This non-formal perspective on software aspects of CRCs furthered
   understanding of authors previously unfamiliar with CRC computation.
   More formal treatments of [Blahut 94] or [Peterson 72], was also
   essential.

6 References

   [Castagnoli93]  G. Castagnoli, S. Braeuer and M. Herrman,
                   "Optimization of Cyclic Redundancy-Check Codes with
                   24 and 32 Parity Bits", IEEE Transactions on
                   Communications, Vol. 41, No. 6, June 1993

   [McKee75]       H. McKee, "Improved {CRC} techniques detects
                   erroneous leading and trailing 0's in transmitted
                   data blocks", Computer Design Volume 14 Number 10
                   Pages 102-4,106, October 1975

   [RFC1700]       Reynolds, J. and J. Postel, "ASSIGNED NUMBERS", RFC
1700, October 1994.

   [RFC2026]       Bradner, S., "The Internet Standards Process --
                   Revision 3", BCP 9, RFC 2026, October 1996.

   [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate
                   Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2960]       Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
                   Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
                   Zhang, L. and V. Paxson, "Stream Control Transmission
                   Protocol," RFC 2960, October 2000.

https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2960


Stone, et. al.              Standards Track                     [Page 7]



RFC 3309                  SCTP Checksum Change            September 2002

   [ITU32]         ITU-T Recommendation V.42, "Error-correcting
                   procedures for DCEs using asynchronous-to-synchronous
                   conversion", section 8.1.1.6.2, October 1996.

7.1 Informative References

   [STONE]         Stone, J.,  "Checksums in the Internet", Doctoral
                   dissertation - August 2001.

   [Williams93]    Williams, R., "A PAINLESS GUIDE TO CRC ERROR
                   DETECTION ALGORITHMS" - Internet publication, August
                   1993,

http://www.geocities.com/SiliconValley/Pines/
8659/crc.htm.

   [Blahut 1994]   R.E. Blahut, Theory and Practice of Error Control
                   Codes, Addison-Wesley, 1994.

   [Easics 2001]   http://www.easics.be/webtools/crctool.  Online tools
                   for synthesis of CRC Verilog and VHDL.

   [Feldmeier 95]  David C. Feldmeier, Fast software implementation of
                   error detection codes, IEEE Transactions on
                   Networking, vol 3 no 6, pp 640-651, December, 1995.

   [Glaise 1997]   R.  J. Glaise, A two-step computation of cyclic
                   redundancy code CRC-32 for ATM networks, IBM Journal
                   of Research and Development} vol 41 no 6, 1997.

http://www.research.ibm.com/journal/rd/416/
glaise.html.

   [Prange 1957]   E. Prange, Cyclic Error-Correcting codes in two
                   symbols, Technical report AFCRC-TN-57-103, Air Force
                   Cambridge Research Center, Cambridge, Mass. 1957.

   [Peterson 1972] W. W. Peterson and E.J Weldon, Error Correcting
                   Codes, 2nd. edition, MIT Press, Cambridge,
                   Massachusetts.

   [Shie2001]      Ming-Der Shieh et. al, A Systematic Approach for
                   Parallel CRC Computations. Journal of Information
                   Science and Engineering, Vol.17 No.3, pp.445-461

   [Sprachman2001] Michael Sprachman, Automatic Generation of Parallel
                   CRC Circuits, IEEE Design & Test May-June 2001

https://datatracker.ietf.org/doc/html/rfc3309
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm
http://www.easics.be/webtools/crctool
http://www.research.ibm.com/journal/rd/416/glaise.html
http://www.research.ibm.com/journal/rd/416/glaise.html


Stone, et. al.              Standards Track                     [Page 8]



RFC 3309                  SCTP Checksum Change            September 2002

Appendix

   This appendix is for information only and is NOT part of the
   standard.

   The anticipated deployment of SCTP ranges over several orders of
   magnitude of link speed: from cellular-power telephony devices at
   tens of kilobits, to local links at tens of gigabits.  Implementors
   of SCTP should consider their link speed and choose, from the wide
   range of CRC implementations, one which matches their own design
   point for size, cost, and throughput.  Many techniques for computing
   CRCs are known.  This Appendix surveys just a few, to give a feel for
   the range of techniques available.

   CRCs are derived from early work by Prange in the 1950s [Prange 57].
   The theory underlying CRCs and choice of generator polynomial can be
   introduced by either the theory of Galois fields [Blahut 94] or as
   ideals of an algebra over cyclic codes [cite Peterson 72].

   One of the simplest techniques is direct bit-serial hardware
   implementations, using the generator polynomial as the taps of a
   linear feedback shift register (LSFR).  LSFR computation follows
   directly from the mathematics, and is generally attributed to Prange.
   Tools exist which, a CRC generator polynomial, will produce
   synthesizable Verilog code for CRC hardware [Easics 2001].

   Since LSFRs do not scale well in speed, a variety of other techniques
   have been explored.  One technique exploits the fact that the divisor
   of the polynomial long-division, G, is known in advance.  It is thus
   possible to pre-compute lookup tables giving the polynomial remainder
   of multiple input bits --- typically 2, 4, or 8 bits of input at a
   time.  This technique can be used either in software or in hardware.
   Software to compute lookup tables yielding 2, 4, or 8 bits of result
   is freely available. [Williams93]

   For multi-gigabit links, the above techniques may still not be fast
   enough.  One technique for computing CRCS at OC-48 rates is 'two-
   stage' CRC computation [Glaise 1997].  Here, some multiple of G(x),
   G(x)H(x), is chosen so as to minimize the number of nonzero
   coefficients, or weight, of the product G(x)H(x).  The low weight of
   the product polynomial makes it susceptible to efficient hardware
   divide-by-constant implementations.  This first stage gives M(x)/
   (G(x)H(x)), as its result.  The second stage then divides the result
   of the first stage by H(x), yielding (M(x)/(G(x)H(x)))/H(x).  If H(x)
   is also relatively prime to G(x), this gives M(x)/G(x).  Further
   developments on this approach can be found in [Shie2001] and
   [Sprachman2001].
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   The literature also includes a variety of software CRC
   implementations.  One approach is to use a carefully-tuned assembly
   code for direct polynomial division.  [Feldmeier 95] reports that for
   low-weight polynomials, tuned polynomial arithmetic gives higher
   throughput than table-lookup algorithms.  Even within table-lookup
   algorithms, the size of the table can be tuned, either for total
   cache footprint, or (for space-restricted environments) to minimize
   total size.

   Implementors should keep in mind, the bit ordering described in
Section 2: the ordering of bits within bytes for computing CRCs in

   SCTP is the least significant bit of each byte is the most-
   significant polynomial coefficient(and vice-versa).  This 'reflected'
   SCTP CRC bit ordering matches on-the-wire bit order for Ethernet and
   other serial media, but is the reverse of traditional Internet bit
   ordering.

   One technique to accommodate this bit-reversal can be explained as
   follows: sketch out a hardware implementation, assuming the bits are
   in CRC bit order; then perform a left-to-right inversion (mirror
   image) on the entire algorithm.  (We defer, for a moment, the issue
   of byte order within words.)  Then compute that "mirror image" in
   software.  The CRC from the "mirror image" algorithm will be the
   bit-reversal of a correct hardware implementation.  When the link-
   level media sends each byte, the byte is sent in the reverse of the
   host CPU bit-order.  Serialization of each byte of the "reflected"
   CRC value re-reverses the bit order, so in the end, each byte will be
   transmitted on-the-wire in the specified bit order.

   The following non-normative sample code is taken from an open-source
   CRC generator [Williams93], using the "mirroring" technique and
   yielding a lookup table for SCTP CRC32-c with 256 entries, each 32
   bits wide.  While neither especially slow nor especially fast, as
   software table-lookup CRCs go, it has the advantage of working on
   both big-endian and little-endian CPUs, using the same (host-order)
   lookup tables, and using only the pre-defined ntohl() and htonl()
   operations.  The code is somewhat modified from [Williams93], to
   ensure portability between big-endian and little-endian
   architectures.  (Note that if the byte endian-ness of the target
   architecture is known to be little-endian the final bit-reversal and
   byte-reversal steps can be folded into a single operation.)
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/*************************************************************/
/* Note Definition for Ross Williams table generator would   */
/* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE        */
/* For Mr. Williams direct calculation code use the settings */
/* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF,      */
/* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000        */
/*************************************************************/

/* Example of the crc table file */
#ifndef __crc32cr_table_h__
#define __crc32cr_table_h__

#define CRC32C_POLY 0x1EDC6F41
#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

unsigned long  crc_c[256] =
{
0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,
0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,
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0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,
0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L,
};

#endif

 /* Example of table build routine */

#include <stdio.h>
#include <stdlib.h>

#define OUTPUT_FILE   "crc32cr.h"
#define CRC32C_POLY    0x1EDC6F41L
FILE *tf;
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unsigned long
reflect_32 (unsigned long b)
{
  int i;
  unsigned long rw = 0L;

  for (i = 0; i < 32; i++){
      if (b & 1)
        rw |= 1 << (31 - i);
      b >>= 1;
  }
  return (rw);
}

unsigned long
build_crc_table (int index)
{
  int i;
  unsigned long rb;

  rb = reflect_32 (index);

  for (i = 0; i < 8; i++){
      if (rb & 0x80000000L)
       rb = (rb << 1) ^ CRC32C_POLY;
      else
       rb <<= 1;
  }
  return (reflect_32 (rb));
}

main ()
{
  int i;

  printf ("\nGenerating CRC-32c table file <%s>\n", OUTPUT_FILE);
  if ((tf = fopen (OUTPUT_FILE, "w")) == NULL){
      printf ("Unable to open %s\n", OUTPUT_FILE);
      exit (1);
  }
  fprintf (tf, "#ifndef __crc32cr_table_h__\n");
  fprintf (tf, "#define __crc32cr_table_h__\n\n");
  fprintf (tf, "#define CRC32C_POLY 0x%08lX\n", CRC32C_POLY);
  fprintf (tf, "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
  fprintf (tf, "\nunsigned long  crc_c[256] =\n{\n");
  for (i = 0; i < 256; i++){
      fprintf (tf, "0x%08lXL, ", build_crc_table (i));
      if ((i & 3) == 3)
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        fprintf (tf, "\n");
  }
   fprintf (tf, "};\n\n#endif\n");

  if (fclose (tf) != 0)
    printf ("Unable to close <%s>." OUTPUT_FILE);
  else
    printf ("\nThe CRC-32c table has been written to <%s>.\n",
      OUTPUT_FILE);
}

/* Example of crc insertion */

#include "crc32cr.h"

unsigned long
generate_crc32c(unsigned char *buffer, unsigned int length)
{
  unsigned int i;
  unsigned long crc32 = ~0L;
  unsigned long result;
  unsigned char byte0,byte1,byte2,byte3;

  for (i = 0; i < length; i++){
      CRC32C(crc32, buffer[i]);
  }
  result = ~crc32;

  /*  result  now holds the negated polynomial remainder;
   *  since the table and algorithm is "reflected" [williams95].
   *  That is,  result has the same value as if we mapped the message
   *  to a polynomial, computed the host-bit-order polynomial
   *  remainder, performed final negation, then did an end-for-end
   *  bit-reversal.
   *  Note that a 32-bit bit-reversal is identical to four inplace
   *  8-bit reversals followed by an end-for-end byteswap.
   *  In other words, the bytes of each bit are in the right order,
   *  but the bytes have been byteswapped.  So we now do an explicit
   *  byteswap.  On a little-endian machine, this byteswap and
   *  the final ntohl cancel out and could be elided.
   */

  byte0 = result & 0xff;
  byte1 = (result>>8) & 0xff;
  byte2 = (result>>16) & 0xff;
  byte3 = (result>>24) & 0xff;
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  crc32 = ((byte0 << 24) |
           (byte1 << 16) |
           (byte2 << 8)  |
           byte3);
  return ( crc32 );
}

int
insert_crc32(unsigned char *buffer, unsigned int length)
{
  SCTP_message *message;
  unsigned long crc32;
  message = (SCTP_message *) buffer;
  message->common_header.checksum = 0L;
  crc32 = generate_crc32c(buffer,length);
  /* and insert it into the message */
  message->common_header.checksum = htonl(crc32);
  return 1;
}

int
validate_crc32(unsigned char *buffer, unsigned int length)
{
  SCTP_message *message;
  unsigned int i;
  unsigned long original_crc32;
  unsigned long crc32 = ~0L;

  /* save and zero checksum */
  message = (SCTP_message *) buffer;
  original_crc32 = ntohl(message->common_header.checksum);
  message->common_header.checksum = 0L;
  crc32 = generate_crc32c(buffer,length);
  return ((original_crc32 == crc32)? 1 : -1);
}
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