
Network Working Group J. Stone
Request for Comments: 3309 Stanford
Updates: 2960 R. Stewart
Category: Standards Cisco Systems
 D. Otis
 SANlight
 September 2002

Stream Control Transmission Protocol (SCTP) Checksum Change

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 Stream Control Transmission Protocol (SCTP) currently uses an Adler-
 32 checksum. For small packets Adler-32 provides weak detection of
 errors. This document changes that checksum and updates SCTP to use
 a 32 bit CRC checksum.

Table of Contents

1 Introduction ... 2
2 Checksum Procedures .. 3
3 Security Considerations... 6
4 IANA Considerations... 6
5 Acknowledgments .. 6
6 References ... 7

 Appendix ... 9
 Authors' Addresses ... 16
 Full Copyright Statement ... 17

Stone, et. al. Standards Track [Page 1]

https://datatracker.ietf.org/doc/html/rfc2960

RFC 3309 SCTP Checksum Change September 2002

1 Introduction

 A fundamental weakness has been detected in SCTP's current Adler-32
 checksum algorithm [STONE]. This document updates and replaces the
 Adler-32 checksum definition in [RFC 2960]. Note that there is no
 graceful transition mechanism for migrating to the new checksum.
 Implementations are expected to immediately switch to the new
 algorithm; use of the old algorithm is deprecated.

 One requirement of an effective checksum is that it evenly and
 smoothly spreads its input packets over the available check bits.

 From an email from Jonathan Stone, who analyzed the Adler-32 as part
 of his doctoral thesis:

 "Briefly, the problem is that, for very short packets, Adler32 is
 guaranteed to give poor coverage of the available bits. Don't take
 my word for it, ask Mark Adler. :-)

 Adler-32 uses two 16-bit counters, s1 and s2. s1 is the sum of the
 input, taken as 8-bit bytes. s2 is a running sum of each value of
 s1. Both s1 and s2 are computed mod-65521 (the largest prime less
 than 2^16). Consider a packet of 128 bytes. The *most* that each
 byte can be is 255. There are only 128 bytes of input, so the
 greatest value which the s1 accumulator can have is 255 * 128 =
 32640. So, for 128-byte packets, s1 never wraps. That is critical.
 Why?

 The key is to consider the distribution of the s1 values, over some
 distribution of the values of the individual input bytes in each
 packet. Because s1 never wraps, s1 is simply the sum of the
 individual input bytes. (Even Doug's trick of adding 0x5555 doesn't
 help here, and an even larger value doesn't really help: we can get
 at most one mod-65521 reduction.)

 Given the further assumption that the input bytes are drawn
 independently from some distribution (they probably aren't: for file
 system data, it's even worse than that!), the Central Limit Theorem
 tells us that that s1 will tend to have a normal distribution.
 That's bad: it tells us that the value of s1 will have hot-spots at
 around 128 times the mean of the input distribution: around 16k,
 assuming a uniform distribution. That's bad. We want the
 accumulator to wrap as many times as possible, so that the resulting
 sum has as close to a uniform distribution as possible. (I call this
 "fairness".)

https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc2960

Stone, et. al. Standards Track [Page 2]

RFC 3309 SCTP Checksum Change September 2002

 So, for short packets, the Adler-32 s1 sum is guaranteed to be
 unfair. Why is that bad? It's bad because the space of valid
 packets -- input data, plus checksum values -- is also small. If all
 packets have checksum values very close to 32640, then the likelihood
 of even a 'small' error leaving a damaged packet with a valid
 checksum is higher than if all checksum values are equally likely."

 Due to this inherent weakness, exacerbated by the fact that SCTP will
 first be used as a signaling transport protocol where signaling
 messages are usually less than 128 bytes, a new checksum algorithm is
 specified by this document, replacing the current Adler-32 algorithm
 with CRC-32c.

1.1 Conventions

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
 SHOULD,SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL,
 when they appear in this document, are to be interpreted as described
 in [RFC2119].

 Bit number order is defined in [RFC1700].

2 Checksum Procedures

 The procedures described in section 2.1 of this document MUST be
 followed, replacing the current checksum defined in [RFC2960].

 Furthermore any references within [RFC2960] to Adler-32 MUST be
 treated as a reference to CRC-32c. Section 2.1 of this document
 describes the new calculation and verification procedures that MUST
 be followed.

2.1 Checksum Calculation

 When sending an SCTP packet, the endpoint MUST strengthen the data
 integrity of the transmission by including the CRC-32c checksum value
 calculated on the packet, as described below.

 After the packet is constructed (containing the SCTP common header
 and one or more control or DATA chunks), the transmitter shall:

 1) Fill in the proper Verification Tag in the SCTP common header and
 initialize the Checksum field to 0's.

 2) Calculate the CRC-32c of the whole packet, including the SCTP
 common header and all the chunks.

https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960

Stone, et. al. Standards Track [Page 3]

RFC 3309 SCTP Checksum Change September 2002

 3) Put the resulting value into the Checksum field in the common
 header, and leave the rest of the bits unchanged.

 When an SCTP packet is received, the receiver MUST first check the
 CRC-32c checksum:

 1) Store the received CRC-32c value,

 2) Replace the 32 bits of the Checksum field in the received SCTP
 packet with all '0's and calculate a CRC-32c value of the whole
 received packet. And,

 3) Verify that the calculated CRC-32c value is the same as the
 received CRC-32c value. If not, the receiver MUST treat the
 packet as an invalid SCTP packet.

 The default procedure for handling invalid SCTP packets is to
 silently discard them.

 Any hardware implementation SHOULD be done in a way that is
 verifiable by the software.

 We define a 'reflected value' as one that is the opposite of the
 normal bit order of the machine. The 32 bit CRC is calculated as
 described for CRC-32c and uses the polynomial code 0x11EDC6F41
 (Castagnoli93) or x^32+x^28+x^27+x^26+x^25
 +x^23+x^22+x^20+x^19+x^18+x^14+x^13+x^11+x^10+x^9+x^8+x^6+x^0. The
 CRC is computed using a procedure similar to ETHERNET CRC [ITU32],
 modified to reflect transport level usage.

 CRC computation uses polynomial division. A message bit-string M is
 transformed to a polynomial, M(X), and the CRC is calculated from
 M(X) using polynomial arithmetic [Peterson 72].

 When CRCs are used at the link layer, the polynomial is derived from
 on-the-wire bit ordering: the first bit 'on the wire' is the high-
 order coefficient. Since SCTP is a transport-level protocol, it
 cannot know the actual serial-media bit ordering. Moreover,
 different links in the path between SCTP endpoints may use different
 link-level bit orders.

 A convention must therefore be established for mapping SCTP transport
 messages to polynomials for purposes of CRC computation. The bit-
 ordering for mapping SCTP messages to polynomials is that bytes are
 taken most-significant first; but within each byte, bits are taken
 least-significant first. The first byte of the message provides the
 eight highest coefficients. Within each byte, the least-significant
 SCTP bit gives the most significant polynomial coefficient within

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 4]

RFC 3309 SCTP Checksum Change September 2002

 that byte, and the most-significant SCTP bit is the least significant
 polynomial coefficient in that byte. (This bit ordering is sometimes
 called 'mirrored' or 'reflected' [Williams93].) CRC polynomials are
 to be transformed back into SCTP transport-level byte values, using a
 consistent mapping.

 The SCTP transport-level CRC value should be calculated as follows:

 - CRC input data are assigned to a byte stream, numbered from 0
 to N-1.

 - the transport-level byte-stream is mapped to a polynomial
 value. An N-byte PDU with j bytes numbered 0 to N-1, is
 considered as coefficients of a polynomial M(x) of order 8N-1,
 with bit 0 of byte j being coefficient x^(8(N-j)-8), bit 7 of
 byte j being coefficient x^(8(N-j)-1).

 - the CRC remainder register is initialized with all 1s and the
 CRC is computed with an algorithm that simultaneously
 multiplies by x^32 and divides by the CRC polynomial.

 - the polynomial is multiplied by x^32 and divided by G(x), the
 generator polynomial, producing a remainder R(x) of degree less
 than or equal to 31.

 - the coefficients of R(x) are considered a 32 bit sequence.

 - the bit sequence is complemented. The result is the CRC
 polynomial.

 - The CRC polynomial is mapped back into SCTP transport-level
 bytes. Coefficient of x^31 gives the value of bit 7 of SCTP
 byte 0, the coefficient of x^24 gives the value of bit 0 of
 byte 0. The coefficient of x^7 gives bit 7 of byte 3 and the
 coefficient of x^0 gives bit 0 of byte 3. The resulting four-
 byte transport-level sequence is the 32-bit SCTP checksum
 value.

 IMPLEMENTATION NOTE: Standards documents, textbooks, and vendor
 literature on CRCs often follow an alternative formulation, in which
 the register used to hold the remainder of the long-division
 algorithm is initialized to zero rather than all-1s, and instead the
 first 32 bits of the message are complemented. The long-division
 algorithm used in our formulation is specified, such that the the
 initial multiplication by 2^32 and the long-division are combined
 into one simultaneous operation. For such algorithms, and for
 messages longer than 64 bits, the two specifications are precisely
 equivalent. That equivalence is the intent of this document.

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 5]

RFC 3309 SCTP Checksum Change September 2002

 Implementors of SCTP are warned that both specifications are to be
 found in the literature, sometimes with no restriction on the long-
 division algorithm. The choice of formulation in this document is to
 permit non-SCTP usage, where the same CRC algorithm may be used to
 protect messages shorter than 64 bits.

 If SCTP could follow link level CRC use, the CRC would be computed
 over the link-level bit-stream. The first bit on the link mapping to
 the highest-order coefficient, and so on, down to the last link-level
 bit as the lowest-order coefficient. The CRC value would be
 transmitted immediately after the input message as a link-level
 'trailer'. The resulting link-level bit-stream would be (M(X)x) *
 x^32) + (M(X)*x^32))/ G(x), which is divisible by G(X). There would
 thus be a constant CRC remainder for 'good' packets. However, given
 that implementations of RFC 2960 have already proliferated, the IETF
 discussions considered that the benefit of a 'trailer' CRC did not
 outweigh the cost of making a very large change in the protocol
 processing. Further, packets accepted by the SCTP 'header' CRC are
 in one-to-one correspondence with packets accepted by a modified
 procedure using a 'trailer' CRC value, and where the SCTP common
 checksum header is set to zero on transmission and is received as
 zero.

 There may be a computational advantage in validating the Association
 against the Verification Tag, prior to performing a checksum, as
 invalid tags will result in the same action as a bad checksum in most
 cases. The exceptions for this technique would be INIT and some
 SHUTDOWN-COMPLETE exchanges, as well as a stale COOKIE-ECHO. These
 special case exchanges must represent small packets and will minimize
 the effect of the checksum calculation.

3 Security Considerations

 In general, the security considerations of RFC 2960 apply to the
 protocol with the new checksum as well.

4 IANA Considerations

 There are no IANA considerations required in this document.

https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc2960

Stone, et. al. Standards Track [Page 6]

RFC 3309 SCTP Checksum Change September 2002

5 Acknowledgments

 The authors would like to thank the following people that have
 provided comments and input on the checksum issue:

 Mark Adler, Ran Atkinson, Stephen Bailey, David Black, Scott Bradner,
 Mikael Degermark, Laurent Glaude, Klaus Gradischnig, Alf Heidermark,
 Jacob Heitz, Gareth Kiely, David Lehmann, Allision Mankin, Lyndon
 Ong, Craig Partridge, Vern Paxson, Kacheong Poon, Michael Ramalho,
 David Reed, Ian Rytina, Hanns Juergen Schwarzbauer, Chip Sharp, Bill
 Sommerfeld, Michael Tuexen, Jim Williams, Jim Wendt, Michael Welzl,
 Jonathan Wood, Lloyd Wood, Qiaobing Xie, La Monte Yarroll.

 Special thanks to Dafna Scheinwald, Julian Satran, Pat Thaler, Matt
 Wakeley, and Vince Cavanna, for selection criteria of polynomials and
 examination of CRC polynomials, particularly CRC-32c [Castagnoli93].

 Special thanks to Mr. Ross Williams and his document [Williams93].
 This non-formal perspective on software aspects of CRCs furthered
 understanding of authors previously unfamiliar with CRC computation.
 More formal treatments of [Blahut 94] or [Peterson 72], was also
 essential.

6 References

 [Castagnoli93] G. Castagnoli, S. Braeuer and M. Herrman,
 "Optimization of Cyclic Redundancy-Check Codes with
 24 and 32 Parity Bits", IEEE Transactions on
 Communications, Vol. 41, No. 6, June 1993

 [McKee75] H. McKee, "Improved {CRC} techniques detects
 erroneous leading and trailing 0's in transmitted
 data blocks", Computer Design Volume 14 Number 10
 Pages 102-4,106, October 1975

 [RFC1700] Reynolds, J. and J. Postel, "ASSIGNED NUMBERS", RFC
1700, October 1994.

 [RFC2026] Bradner, S., "The Internet Standards Process --
 Revision 3", BCP 9, RFC 2026, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L. and V. Paxson, "Stream Control Transmission
 Protocol," RFC 2960, October 2000.

https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2960

Stone, et. al. Standards Track [Page 7]

RFC 3309 SCTP Checksum Change September 2002

 [ITU32] ITU-T Recommendation V.42, "Error-correcting
 procedures for DCEs using asynchronous-to-synchronous
 conversion", section 8.1.1.6.2, October 1996.

7.1 Informative References

 [STONE] Stone, J., "Checksums in the Internet", Doctoral
 dissertation - August 2001.

 [Williams93] Williams, R., "A PAINLESS GUIDE TO CRC ERROR
 DETECTION ALGORITHMS" - Internet publication, August
 1993,

http://www.geocities.com/SiliconValley/Pines/
8659/crc.htm.

 [Blahut 1994] R.E. Blahut, Theory and Practice of Error Control
 Codes, Addison-Wesley, 1994.

 [Easics 2001] http://www.easics.be/webtools/crctool. Online tools
 for synthesis of CRC Verilog and VHDL.

 [Feldmeier 95] David C. Feldmeier, Fast software implementation of
 error detection codes, IEEE Transactions on
 Networking, vol 3 no 6, pp 640-651, December, 1995.

 [Glaise 1997] R. J. Glaise, A two-step computation of cyclic
 redundancy code CRC-32 for ATM networks, IBM Journal
 of Research and Development} vol 41 no 6, 1997.

http://www.research.ibm.com/journal/rd/416/
glaise.html.

 [Prange 1957] E. Prange, Cyclic Error-Correcting codes in two
 symbols, Technical report AFCRC-TN-57-103, Air Force
 Cambridge Research Center, Cambridge, Mass. 1957.

 [Peterson 1972] W. W. Peterson and E.J Weldon, Error Correcting
 Codes, 2nd. edition, MIT Press, Cambridge,
 Massachusetts.

 [Shie2001] Ming-Der Shieh et. al, A Systematic Approach for
 Parallel CRC Computations. Journal of Information
 Science and Engineering, Vol.17 No.3, pp.445-461

 [Sprachman2001] Michael Sprachman, Automatic Generation of Parallel
 CRC Circuits, IEEE Design & Test May-June 2001

https://datatracker.ietf.org/doc/html/rfc3309
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm
http://www.geocities.com/SiliconValley/Pines/8659/crc.htm
http://www.easics.be/webtools/crctool
http://www.research.ibm.com/journal/rd/416/glaise.html
http://www.research.ibm.com/journal/rd/416/glaise.html

Stone, et. al. Standards Track [Page 8]

RFC 3309 SCTP Checksum Change September 2002

Appendix

 This appendix is for information only and is NOT part of the
 standard.

 The anticipated deployment of SCTP ranges over several orders of
 magnitude of link speed: from cellular-power telephony devices at
 tens of kilobits, to local links at tens of gigabits. Implementors
 of SCTP should consider their link speed and choose, from the wide
 range of CRC implementations, one which matches their own design
 point for size, cost, and throughput. Many techniques for computing
 CRCs are known. This Appendix surveys just a few, to give a feel for
 the range of techniques available.

 CRCs are derived from early work by Prange in the 1950s [Prange 57].
 The theory underlying CRCs and choice of generator polynomial can be
 introduced by either the theory of Galois fields [Blahut 94] or as
 ideals of an algebra over cyclic codes [cite Peterson 72].

 One of the simplest techniques is direct bit-serial hardware
 implementations, using the generator polynomial as the taps of a
 linear feedback shift register (LSFR). LSFR computation follows
 directly from the mathematics, and is generally attributed to Prange.
 Tools exist which, a CRC generator polynomial, will produce
 synthesizable Verilog code for CRC hardware [Easics 2001].

 Since LSFRs do not scale well in speed, a variety of other techniques
 have been explored. One technique exploits the fact that the divisor
 of the polynomial long-division, G, is known in advance. It is thus
 possible to pre-compute lookup tables giving the polynomial remainder
 of multiple input bits --- typically 2, 4, or 8 bits of input at a
 time. This technique can be used either in software or in hardware.
 Software to compute lookup tables yielding 2, 4, or 8 bits of result
 is freely available. [Williams93]

 For multi-gigabit links, the above techniques may still not be fast
 enough. One technique for computing CRCS at OC-48 rates is 'two-
 stage' CRC computation [Glaise 1997]. Here, some multiple of G(x),
 G(x)H(x), is chosen so as to minimize the number of nonzero
 coefficients, or weight, of the product G(x)H(x). The low weight of
 the product polynomial makes it susceptible to efficient hardware
 divide-by-constant implementations. This first stage gives M(x)/
 (G(x)H(x)), as its result. The second stage then divides the result
 of the first stage by H(x), yielding (M(x)/(G(x)H(x)))/H(x). If H(x)
 is also relatively prime to G(x), this gives M(x)/G(x). Further
 developments on this approach can be found in [Shie2001] and
 [Sprachman2001].

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 9]

RFC 3309 SCTP Checksum Change September 2002

 The literature also includes a variety of software CRC
 implementations. One approach is to use a carefully-tuned assembly
 code for direct polynomial division. [Feldmeier 95] reports that for
 low-weight polynomials, tuned polynomial arithmetic gives higher
 throughput than table-lookup algorithms. Even within table-lookup
 algorithms, the size of the table can be tuned, either for total
 cache footprint, or (for space-restricted environments) to minimize
 total size.

 Implementors should keep in mind, the bit ordering described in
Section 2: the ordering of bits within bytes for computing CRCs in

 SCTP is the least significant bit of each byte is the most-
 significant polynomial coefficient(and vice-versa). This 'reflected'
 SCTP CRC bit ordering matches on-the-wire bit order for Ethernet and
 other serial media, but is the reverse of traditional Internet bit
 ordering.

 One technique to accommodate this bit-reversal can be explained as
 follows: sketch out a hardware implementation, assuming the bits are
 in CRC bit order; then perform a left-to-right inversion (mirror
 image) on the entire algorithm. (We defer, for a moment, the issue
 of byte order within words.) Then compute that "mirror image" in
 software. The CRC from the "mirror image" algorithm will be the
 bit-reversal of a correct hardware implementation. When the link-
 level media sends each byte, the byte is sent in the reverse of the
 host CPU bit-order. Serialization of each byte of the "reflected"
 CRC value re-reverses the bit order, so in the end, each byte will be
 transmitted on-the-wire in the specified bit order.

 The following non-normative sample code is taken from an open-source
 CRC generator [Williams93], using the "mirroring" technique and
 yielding a lookup table for SCTP CRC32-c with 256 entries, each 32
 bits wide. While neither especially slow nor especially fast, as
 software table-lookup CRCs go, it has the advantage of working on
 both big-endian and little-endian CPUs, using the same (host-order)
 lookup tables, and using only the pre-defined ntohl() and htonl()
 operations. The code is somewhat modified from [Williams93], to
 ensure portability between big-endian and little-endian
 architectures. (Note that if the byte endian-ness of the target
 architecture is known to be little-endian the final bit-reversal and
 byte-reversal steps can be folded into a single operation.)

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 10]

RFC 3309 SCTP Checksum Change September 2002

/***/
/* Note Definition for Ross Williams table generator would */
/* be: TB_WIDTH=4, TB_POLLY=0x1EDC6F41, TB_REVER=TRUE */
/* For Mr. Williams direct calculation code use the settings */
/* cm_width=32, cm_poly=0x1EDC6F41, cm_init=0xFFFFFFFF, */
/* cm_refin=TRUE, cm_refot=TRUE, cm_xorort=0x00000000 */
/***/

/* Example of the crc table file */
#ifndef __crc32cr_table_h__
#define __crc32cr_table_h__

#define CRC32C_POLY 0x1EDC6F41
#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])

unsigned long crc_c[256] =
{
0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,
0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 11]

RFC 3309 SCTP Checksum Change September 2002

0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,
0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L,
};

#endif

 /* Example of table build routine */

#include <stdio.h>
#include <stdlib.h>

#define OUTPUT_FILE "crc32cr.h"
#define CRC32C_POLY 0x1EDC6F41L
FILE *tf;

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 12]

RFC 3309 SCTP Checksum Change September 2002

unsigned long
reflect_32 (unsigned long b)
{
 int i;
 unsigned long rw = 0L;

 for (i = 0; i < 32; i++){
 if (b & 1)
 rw |= 1 << (31 - i);
 b >>= 1;
 }
 return (rw);
}

unsigned long
build_crc_table (int index)
{
 int i;
 unsigned long rb;

 rb = reflect_32 (index);

 for (i = 0; i < 8; i++){
 if (rb & 0x80000000L)
 rb = (rb << 1) ^ CRC32C_POLY;
 else
 rb <<= 1;
 }
 return (reflect_32 (rb));
}

main ()
{
 int i;

 printf ("\nGenerating CRC-32c table file <%s>\n", OUTPUT_FILE);
 if ((tf = fopen (OUTPUT_FILE, "w")) == NULL){
 printf ("Unable to open %s\n", OUTPUT_FILE);
 exit (1);
 }
 fprintf (tf, "#ifndef __crc32cr_table_h__\n");
 fprintf (tf, "#define __crc32cr_table_h__\n\n");
 fprintf (tf, "#define CRC32C_POLY 0x%08lX\n", CRC32C_POLY);
 fprintf (tf, "#define CRC32C(c,d) (c=(c>>8)^crc_c[(c^(d))&0xFF])\n");
 fprintf (tf, "\nunsigned long crc_c[256] =\n{\n");
 for (i = 0; i < 256; i++){
 fprintf (tf, "0x%08lXL, ", build_crc_table (i));
 if ((i & 3) == 3)

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 13]

RFC 3309 SCTP Checksum Change September 2002

 fprintf (tf, "\n");
 }
 fprintf (tf, "};\n\n#endif\n");

 if (fclose (tf) != 0)
 printf ("Unable to close <%s>." OUTPUT_FILE);
 else
 printf ("\nThe CRC-32c table has been written to <%s>.\n",
 OUTPUT_FILE);
}

/* Example of crc insertion */

#include "crc32cr.h"

unsigned long
generate_crc32c(unsigned char *buffer, unsigned int length)
{
 unsigned int i;
 unsigned long crc32 = ~0L;
 unsigned long result;
 unsigned char byte0,byte1,byte2,byte3;

 for (i = 0; i < length; i++){
 CRC32C(crc32, buffer[i]);
 }
 result = ~crc32;

 /* result now holds the negated polynomial remainder;
 * since the table and algorithm is "reflected" [williams95].
 * That is, result has the same value as if we mapped the message
 * to a polynomial, computed the host-bit-order polynomial
 * remainder, performed final negation, then did an end-for-end
 * bit-reversal.
 * Note that a 32-bit bit-reversal is identical to four inplace
 * 8-bit reversals followed by an end-for-end byteswap.
 * In other words, the bytes of each bit are in the right order,
 * but the bytes have been byteswapped. So we now do an explicit
 * byteswap. On a little-endian machine, this byteswap and
 * the final ntohl cancel out and could be elided.
 */

 byte0 = result & 0xff;
 byte1 = (result>>8) & 0xff;
 byte2 = (result>>16) & 0xff;
 byte3 = (result>>24) & 0xff;

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 14]

RFC 3309 SCTP Checksum Change September 2002

 crc32 = ((byte0 << 24) |
 (byte1 << 16) |
 (byte2 << 8) |
 byte3);
 return (crc32);
}

int
insert_crc32(unsigned char *buffer, unsigned int length)
{
 SCTP_message *message;
 unsigned long crc32;
 message = (SCTP_message *) buffer;
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 /* and insert it into the message */
 message->common_header.checksum = htonl(crc32);
 return 1;
}

int
validate_crc32(unsigned char *buffer, unsigned int length)
{
 SCTP_message *message;
 unsigned int i;
 unsigned long original_crc32;
 unsigned long crc32 = ~0L;

 /* save and zero checksum */
 message = (SCTP_message *) buffer;
 original_crc32 = ntohl(message->common_header.checksum);
 message->common_header.checksum = 0L;
 crc32 = generate_crc32c(buffer,length);
 return ((original_crc32 == crc32)? 1 : -1);
}

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 15]

RFC 3309 SCTP Checksum Change September 2002

Authors' Addresses

 Jonathan Stone
 Room 446, Mail code 9040
 Gates building 4A
 Stanford, Ca 94305

 EMail: jonathan@dsg.stanford.edu

 Randall R. Stewart
 24 Burning Bush Trail.
 Crystal Lake, IL 60012
 USA

 EMail: rrs@cisco.com

 Douglas Otis
 800 E. Middlefield
 Mountain View, CA 94043
 USA

 EMail: dotis@sanlight.net

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 16]

RFC 3309 SCTP Checksum Change September 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/rfc3309

Stone, et. al. Standards Track [Page 17]

