Network Working Group S. Shepler
Request for Comments: 3530 B. Callaghan
Obsoletes: 3010 D. Robinson
Category: Standards Track R. Thurlow
Sun Microsystems, Inc.

C. Beame

Hummingbird Ltd.

M. Eisler

D. Noveck

Network Appliance, Inc.

April 2003

Network File System (NFS) version 4 Protocol
Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract

The Network File System (NFS) version 4 is a distributed filesystem
protocol which owes heritage to NFS protocol version 2, RFC 1094, and
version 3, RFC 1813. Unlike earlier versions, the NFS version 4
protocol supports traditional file access while integrating support
for file locking and the mount protocol. 1In addition, support for
strong security (and its negotiation), compound operations, client
caching, and internationalization have been added. Of course,
attention has been applied to making NFS version 4 operate well in an
Internet environment.

This document replaces RFC 3010 as the definition of the NFS version
4 protocol.

Key Words
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Shepler, et al. Standards Track [Page 1]


https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc2119

RFC 3530 NFS version 4 Protocol

Table of Contents

April 2003

[ T T [ (Y
‘M‘H‘H‘O‘O‘O\@\@\m\m

1. Introduction
1.1. Changes since REC 3010
1.2. NFS version 4 Goals. . e e e e e e
1.3 Inconsistencies of this Document with Section 18
1.4. Overview of NFS version 4 Features
1.4.1. RPC and Security .
1.4.2. Procedure and Operation Structure
1.4.3. Filesystem Mode. .
1.4.3.1. Filehandle Types
1.4.3.2. Attribute Types.
1.4.3.3. Filesystem Replication and
Migration.
1.4.4. OPEN and CLOSE
1.4.5. File locking . .
1.4.6. Client Caching and Delegatlon
1.5. General Definitions.
2. Protocol Data Types.
2.1. Basic Data Types
2.2. Structured Data Types.
3. RPC and Security Flavor.

3.1. Ports and Transports

w
N

Security Flavors

w
w

Security Negotiation
3.3.1. SECINFO.
3.3.2. Security Error

3.4. Callback RPC Authentication.

4. Filehandles

4.1. Obtaining the Flrst Fllehandle

4.1.1. Root Filehandle.
4.1.2. Public Filehandle.
Filehandle Types

N
N

Volatile Filehandle.

4.3. Client Recovery from Filehandle Explratlon

5. File Attributes.
5.1. Mandatory Attrlbutes
5.2. Recommended Attributes

a1
w

Named Attributes

3.1.1. Client Retransmission Behavior

3.2.1. Security mechanlsms for NFS version 4.
3.2.1.1. Kerberos V5 as a security triple
3.2.1.2. LIPKEY as a security triple.
3.2.1.3. SPKM-3 as a security triple.

4.2.1. General Propertles of a Fllehandle
4.2.2 Persistent Filehandle.

4.2.3. Volatile Filehandle.

4.2.4. One Method of Constructing a

WININRRIRIOGI0I[0I[ININOG O o o | W w o o o | W W w |w

LK KSR
~N NN o o s


https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3010

Shepler, et al. Standards Track [Page 2]



RFC 3530 NFS version 4 Protocol April 2003

5.4 Classification of Attributes
5.5. Mandatory Attributes - Definitions
5.6. Recommended Attributes - Definitions
5.7. Time Access. . e e e
5.8. Interpreting owner and owner_group
5.9 Character Case Attributes.
5.10. Quota Attributes
5.11. Access Control Lists

5.11.1. ACE type

5.11.2. ACE Access Mask.

5.11.3. ACE flag

5.11.4. ACE who

5.11.5. Mode Attribute

5.11.6. Mode and ACL Attribute

5.11.7. mounted_on_fileid.

6. Filesystem Migration and Replication

6.1. Replication.

6.2. Migration. .

6.3. Interpretation of the fs locatlons Attrlbute

6.4. Filehandle Recovery for Migration or Replication
7. NFS Server Name Space

7.1. Server Exports

7.2. Browsing Exports

7.3. Server Pseudo Filesystem

7.4 Multiple Roots .

7.5 Filehandle Volatility.

7.6. Exported Root.

7.7 Mount Point Crossing e e e

7.8. Security Policy and Name Space Presentation.
8. File Locking and Share Reservations.

8.1. Locking. .o
8.1.1. Client 1ID. .
Server Release of Cllentld

VO INNNNNNNNNNNNOGDODOGIOG DD O[O [0|0| |0 o ol ol o1 |01 |o1 |01 |o1 o1 |01 [ ||| |w
GREERREBEGRRERBREBGEREBZERRRERRRBEIEIEKLKSEEREREIEIE RS EEE

8.1.2
8.1.3 lock_owner and stateid Definition.
8.1.4 Use of the stateid and Locking
8.1.5. Sequencing of Lock Requests.
8.1.6 Recovery from Replayed Requests.
8.1.7 Releasing lock_owner State
8.1.8 Use of Open Confirmation

8.2. Lock Ranges. . .

8.3. Upgrading and Downgradlng Locks

8.4. Blocking Locks

8.5. Lease Renewal.

8.6. Crash Recovery .o .
8.6.1. Client Failure and Recovery
8.6.2. Server Failure and Recovery.
8.6.3. Network Partitions and Recovery.

8.7 Recovery from a Lock Request Timeout or Abort


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 3]



RFC 3530 NFS version 4 Protocol April 2003

8.8 Server Revocation of Locks. . . . . . . . . . . . . 85
8.9 Share Reservations. . . . . . . . . . . . . . . .. 86
8.10 OPEN/CLOSE Operations . . . . e e e 87
8.10.1. Close and Retention of State
Information. . . . . . . . . . . . . . . . 88
8.11. Open Upgrade and Downgrade. . . . . . . . . . . . . 88
8.12. Short and Long Leases . . . . e e 89
8.13. Clocks, Propagation Delay, and Calculatlng Lease
Expiration. . . . . . . . . . . . oo 89
8.14. Migration, Replication and State. . . . . . . . . . 920
8.14.1. Migration and State. . . . . . . . . . . . 90
8.14.2. Replication and State. . . . e e 91
8.14.3. Notification of Migrated Lease o e 92
8.14.4. Migration and the Lease_time Attribute . . 92
9. Client-Side Caching . . . . . . . . .o 93
9.1. Performance Challenges for Cllent Slde Cachlng . 93
9.2. Delegation and Callbacks. . . . . . . . . . . . . . 94
9.2.1. Delegation Recovery . . . . . . . . . . . . 96
9.3 Data Caching. . . . . . . . . . . . . . . . . ... 98
9.3.1. Data Caching and OPENs . . . . . . . . . . 98
9.3.2 Data Caching and File Locking. . . . . . . 99
9.3.3. Data Caching and Mandatory File Locking. . 101
9.3.4 Data Caching and File Identity . . . . . . 101
9.4 Open Delegation . . . e . 0 )4
9.4.1. Open Delegatlon and Data Cachlng .. . .. 104
9.4.2 Open Delegation and File Locks . . . . . . 106
9.4.3. Handling of CB_GETATTR . . . . . . . . . . 106
9.4.4 Recall of Open Delegation. . . . . . . . . 109
9.4.5 Clients that Fail to Honor
Delegation Recalls . . . . . . . . . . . . 111
9.4.6. Delegation Revocation. . . . . . . . . . . 112
9.5 Data Caching and Revocation . . . . . 24
9.5.1. Revocation Recovery for Write Open
Delegation . . . . . . . . . . . . . . . . 113
9.6 Attribute Caching . . . . . . 113
9.7. Data and Metadata Caching and Memory Mapped Flles . 115
9.8 Name Caching . . . . . . . . . . . . . . . . . . . 118
9.9 Directory Caching . . . . . . . . . . . . . . . . . 119
10. Minor Versioning . . . . . . . . . . .+ 4 4 o+ w .. o.o. 120
11. Internationalization . . . e . oo 122
11.1. Stringprep profile for the utf85tr _Cs type . . . . 123
11.1.1. Intended applicability of the
nfs4_cs_prep profile . . . . . ]
11.1.2. Character repertoire of nfs4_cs_prep . . . 124
11.1.3. Mapping used by nfs4_cs_prep . . . . . . . 124
11.1.4. Normalization used by nfs4_cs_prep . . . . 124
11.1.5. Prohibited output for nfs4_cs_prep . . . . 125
11.1.6. Bidirectional output for nfs4_cs_prep. . . 125


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 4]



RFC 3530 NFS version 4 Protocol April 2003

11.2. Stringprep profile for the utf8str_cis type . . . . 125
11.2.1. Intended applicability of the
nfs4_cis_prep profile. . . . . . . . . . 125
11.2.2. Character repertoire of nfs4_cis_prep . . 125
11.2.3. Mapping used by nfs4_cis_prep . . . . . . 125
11.2.4. Normalization used by nfs4_cis_prep . . . 125
11.2.5. Prohibited output for nfs4_cis_prep . . . 126
11.2.6. Bidirectional output for nfs4_cis_prep . . 126
11.3. Stringprep profile for the utf8str_mixed type . . . 126
11.3.1. Intended applicability of the
nfs4_mixed_prep profile. . . . . . . . 126
11.3.2. Character repertoire of nfs4_| mlxed _prep . 126
11.3.3. Mapping used by nfs4_cis_prep . . . . . . 126
11.3.4. Normalization used by nfs4_mixed_prep . . 127
11.3.5. Prohibited output for nfs4_mixed_prep . . 127
11.3.6. Bidirectional output for nfs4_mixed_prep . 127
11.4. UTF-8 Related Errors. . . . . . . . . . . . « . . . 127
12. Error Definitions . . . . . . . . . . . . . . . . . . . . 128
13. NFS version 4 Requests . . . . . . . . . . . « « « . . . . 134
13.1. Compound Procedure. . . . . e 71
13.2. Evaluation of a Compound Request. . e o« o« o+« . . . 135
13.3. Synchronous Modifying Operations. . . . . . . . . . 136
13.4. Operation vValues. . . . . . . . . . « + « « « . . . 136
14. NFS version 4 Procedures . . . . . . . « . « « « .+« . . . . 136
14.1. Procedure 0: NULL - No Operation. . . . . 136
14.2. Procedure 1: COMPOUND - Compound Operatlons . . . . 137
14.2.1. Operation 3: ACCESS - Check Access
Rights. . . . . . . .. 140
14.2.2. Operation 4: CLOSE - Close Flle . . .. 142
14.2.3. Operation 5: COMMIT - Commit
Cached Data . . . . . . e e .. 144
14.2.4. Operation 6: CREATE - Create a
Non-Regular File Object . . . . . . . . . 147
14.2.5. Operation 7: DELEGPURGE -
Purge Delegations Awaiting Recovery . . . 150
14.2.6. Operation 8: DELEGRETURN - Return
Delegation. . . . . 151
14.2.7. Operation 9: GETATTR - Get Attrlbutes . . 152
14.2.8. Operation 10: GETFH - Get Current
Filehandle. . . . . . . . . . . . . . . . 153
14.2.9. Operation 11: LINK - Create Link to a
File. . . . . . . . . . . . . . . . . . . 154
14.2.10. Operation 12: LOCK - Create Lock . . . . 156
14.2.11. Operation 13: LOCKT - Test For Lock . . . 160
14.2.12. Operation 14: LOCKU - Unlock File . . . . 162
14.2.13. Operation 15: LOOKUP - Lookup Filename. . 163
14.2.14. Operation 16: LOOKUPP - Lookup

Parent Directory. . . . . . . . . . . . . 65


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 5]



RFC 3530 NFS version 4 Protocol April 2003

14.2.15. Operation 17: NVERIFY - Verify

Difference in Attributes 166
14.2.16. Operation 18: OPEN - Open a Regular

File. . 168
14.2.17. Operation 19: OPENATTR - Open Named

Attribute Directory .o 178
14.2.18. Operation 20: OPEN_CONFIRM -

Confirm Open . 180
14.2.19. Operation 21: OPEN_ DOWNGRADE -

Reduce Open File Access 182
14.2.20. Operation 22: PUTFH - Set

Current Filehandle. 184

14.2.21. Operation 23: PUTPUBFH -
Set Public Filehandle . . . . . . . . . . 8
14.2.22. Operation 24: PUTROOTFH -
Set Root Filehandle Co
14.2.23. Operation 25: READ - Read from Flle o 8
14.2.24. Operation 26: READDIR -

o

[N
~N o

Read Directory. .o 190
14.2.25. Operation 27: READLINK -

Read Symbolic Link. 193
14.2.26. Operation 28: REMOVE -

Remove Filesystem Object. 195

14.2.27. Operation 29: RENAME -
Rename Directory Entry. . . . . . . . . . 9

~

14.2.28. Operation 30: RENEW - Renew a Lease 200
14.2.29. Operation 31: RESTOREFH -
Restore Saved Filehandle. 201
14.2.30. Operation 32: SAVEFH - Save
Current Filehandle. 202
14.2.31. Operation 33: SECINFO - Obtaln
Available Security. . . 203
14.2.32. Operation 34: SETATTR - Set Attrlbutes. 206
14.2.33. Operation 35: SETCLIENTID -
Negotiate Clientid. . . 209
14.2.34. Operation 36: SETCLIENTID_CONFIRM -
Confirm Clientid. 213
14.2.35. Operation 37: VERIFY -
Verify Same Attributes. 217
14.2.36. Operation 38: WRITE - Write to Flle 218
14.2.37. Operation 39: RELEASE_LOCKOWNER -
Release Lockowner State 223
14.2.38. Operation 10044: ILLEGAL -
Illegal operation 224
15. NFS version 4 Callback Procedures . 225
15.1. Procedure 0: CB_NULL - No Operatlon 225
15.2. Procedure 1: CB_COMPOUND - Compound
Operations. 226


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 6]



RFC 3530 NFS version 4 Protocol April 2003

15.2.1. Operation 3: CB_GETATTR - Get

Attributes e 228
15.2.2. Operation 4: CB_RECALL -

Recall an Open Delegation. 229

15.2.3. Operation 10044: CB_ILLEGAL -
Illegal Callback Operation 230
16. Security Considerations 231
17. TIANA Considerations e e 232
17.1. Named Attribute Definition. .o 232
17.2. ONC RPC Network Identifiers (netids). 232
18. RPC definition file 234
19. Acknowledgements 268
20. Normative References 268
21. Informative References 270
22. Authors' Information 273
22.1. Editor's Address. 273
22.2. Authors' Addresses. 274
23. Full Copyright Statement 275


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 7]



RFC 3530 NFS version 4 Protocol April 2003

1. Introduction
1.1. Changes since RFC 3010

This definition of the NFS version 4 protocol replaces or obsoletes
the definition present in [RFC3010]. While portions of the two
documents have remained the same, there have been substantive changes
in others. The changes made between [REC3010] and this document
represent implementation experience and further review of the
protocol. While some modifications were made for ease of
implementation or clarification, most updates represent errors or
situations where the [REC3010] definition were untenable.

The following list is not all inclusive of all changes but presents
some of the most notable changes or additions made:

0 The state model has added an open_owner4 identifier. This was
done to accommodate Posix based clients and the model they use for
file locking. For Posix clients, an open_owner4 would correspond
to a file descriptor potentially shared amongst a set of processes
and the lock_owner4 identifier would correspond to a process that
is locking a file.

0o Clarifications and error conditions were added for the handling of
the owner and group attributes. Since these attributes are string
based (as opposed to the numeric uid/gid of previous versions of
NFS), translations may not be available and hence the changes
made.

o Clarifications for the ACL and mode attributes to address
evaluation and partial support.

o For identifiers that are defined as XDR opaque, limits were set on
their size.

0 Added the mounted_on_filed attribute to allow Posix clients to
correctly construct local mounts.

0 Modified the SETCLIENTID/SETCLIENTID_CONFIRM operations to deal
correctly with confirmation details along with adding the ability
to specify new client callback information. Also added
clarification of the callback information itself.

0 Added a new operation LOCKOWNER_RELEASE to enable notifying the
server that a lock_owner4 will no longer be used by the client.

0 RENEW operation changes to identify the client correctly and allow
for additional error returns.


https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010

Shepler, et al. Standards Track [Page 8]



[

RFC 3530 NFS version 4 Protocol April 2003

Verify error return possibilities for all operations.

Remove use of the pathname4 data type from LOOKUP and OPEN in
favor of having the client construct a sequence of LOOKUP
operations to achieive the same effect.

Clarification of the internationalization issues and adoption of
the new stringprep profile framework.

NFS Version 4 Goals

The NFS version 4 protocol is a further revision of the NFS protocol
defined already by versions 2 [REC1094] and 3 [REC1813]. It retains
the essential characteristics of previous versions: design for easy
recovery, independent of transport protocols, operating systems and
filesystems, simplicity, and good performance. The NFS version 4
revision has the following goals:

(o]

w

Improved access and good performance on the Internet.

The protocol is designed to transit firewalls easily, perform well
where latency is high and bandwidth is low, and scale to very
large numbers of clients per server.

Strong security with negotiation built into the protocol.

The protocol builds on the work of the ONCRPC working group in
supporting the RPCSEC_GSS protocol. Additionally, the NFS version
4 protocol provides a mechanism to allow clients and servers the
ability to negotiate security and require clients and servers to
support a minimal set of security schemes.

Good cross-platform interoperability.

The protocol features a filesystem model that provides a useful,
common set of features that does not unduly favor one filesystem
or operating system over another.

Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
compromise backward compatibility.

Inconsistencies of this Document with Section 18

Section 18, RPC Definition File, contains the definitions in XDR

description language of the constructs used by the protocol. Prior
to Section 18, several of the constructs are reproduced for purposes


https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813

Shepler, et al. Standards Track [Page 9]



RFC 3530 NFS version 4 Protocol April 2003

of explanation. The reader is warned of the possibility of errors in
the reproduced constructs outside of Section 18. For any part of the
document that is inconsistent with Section 18, Section 18 is to be
considered authoritative.

1.4. Overview of NFS version 4 Features

To provide a reasonable context for the reader, the major features of
NFS version 4 protocol will be reviewed in brief. This will be done
to provide an appropriate context for both the reader who is familiar
with the previous versions of the NFS protocol and the reader that is
new to the NFS protocols. For the reader new to the NFS protocols,
there is still a fundamental knowledge that is expected. The reader
should be familiar with the XDR and RPC protocols as described in
[REC1831] and [REC1832]. A basic knowledge of filesystems and
distributed filesystems is expected as well.

1.4.1. RPC and Security

As with previous versions of NFS, the External Data Representation
(XDR) and Remote Procedure Call (RPC) mechanisms used for the NFS
version 4 protocol are those defined in [RFC1831] and [RFC1832]. To
meet end to end security requirements, the RPCSEC_GSS framework
[REC2203] will be used to extend the basic RPC security. With the
use of RPCSEC_GSS, various mechanisms can be provided to offer
authentication, integrity, and privacy to the NFS version 4 protocol.
Kerberos V5 will be used as described in [RFC1964] to provide one
security framework. The LIPKEY GSS-API mechanism described in
[REC2847] will be used to provide for the use of user password and
server public key by the NFS version 4 protocol. With the use of
RPCSEC_GSS, other mechanisms may also be specified and used for NFS
version 4 security.

To enable in-band security negotiation, the NFS version 4 protocol
has added a new operation which provides the client a method of
querying the server about its policies regarding which security
mechanisms must be used for access to the server's filesystem
resources. With this, the client can securely match the security
mechanism that meets the policies specified at both the client and
server.

1.4.2. Procedure and Operation Structure

A significant departure from the previous versions of the NFS
protocol is the introduction of the COMPOUND procedure. For the NFS
version 4 protocol, there are two RPC procedures, NULL and COMPOUND.
The COMPOUND procedure is defined in terms of operations and these
operations correspond more closely to the traditional NFS procedures.


https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2847

Shepler, et al. Standards Track [Page 10]



RFC 3530 NFS version 4 Protocol April 2003

wWith the use of the COMPOUND procedure, the client is able to build
simple or complex requests. These COMPOUND requests allow for a
reduction in the number of RPCs needed for logical filesystem
operations. For example, without previous contact with a server a
client will be able to read data from a file in one request by
combining LOOKUP, OPEN, and READ operations in a single COMPOUND RPC.
With previous versions of the NFS protocol, this type of single
request was not possible.

The model used for COMPOUND is very simple. There is no logical OR
or ANDing of operations. The operations combined within a COMPOUND
request are evaluated in order by the server. Once an operation
returns a failing result, the evaluation ends and the results of all
evaluated operations are returned to the client.

The NFS version 4 protocol continues to have the client refer to a
file or directory at the server by a "filehandle". The COMPOUND
procedure has a method of passing a filehandle from one operation to
another within the sequence of operations. There is a concept of a
"current filehandle" and "saved filehandle". Most operations use the
"current filehandle" as the filesystem object to operate upon. The
"saved filehandle" is used as temporary filehandle storage within a
COMPOUND procedure as well as an additional operand for certain
operations.

1.4.3. Filesystem Model

The general filesystem model used for the NFS version 4 protocol is
the same as previous versions. The server filesystem is hierarchical
with the regular files contained within being treated as opaque byte
streams. 1In a slight departure, file and directory names are encoded
with UTF-8 to deal with the basics of internationalization.

The NFS version 4 protocol does not require a separate protocol to
provide for the initial mapping between path name and filehandle.
Instead of using the older MOUNT protocol for this mapping, the
server provides a ROOT filehandle that represents the logical root or
top of the filesystem tree provided by the server. The server
provides multiple filesystems by gluing them together with pseudo
filesystems. These pseudo filesystems provide for potential gaps in
the path names between real filesystems.

1.4.3.1. Filehandle Types

In previous versions of the NFS protocol, the filehandle provided by
the server was guaranteed to be valid or persistent for the lifetime
of the filesystem object to which it referred. For some server
implementations, this persistence requirement has been difficult to


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 11]



RFC 3530 NFS version 4 Protocol April 2003

meet. For the NFS version 4 protocol, this requirement has been
relaxed by introducing another type of filehandle, volatile. With
persistent and volatile filehandle types, the server implementation
can match the abilities of the filesystem at the server along with
the operating environment. The client will have knowledge of the
type of filehandle being provided by the server and can be prepared
to deal with the semantics of each.

1.4.3.2. Attribute Types

The NFS version 4 protocol introduces three classes of filesystem or
file attributes. Like the additional filehandle type, the
classification of file attributes has been done to ease server
implementations along with extending the overall functionality of the
NFS protocol. This attribute model is structured to be extensible
such that new attributes can be introduced in minor revisions of the
protocol without requiring significant rework.

The three classifications are: mandatory, recommended and named
attributes. This is a significant departure from the previous
attribute model used in the NFS protocol. Previously, the attributes
for the filesystem and file objects were a fixed set of mainly UNIX
attributes. If the server or client did not support a particular
attribute, it would have to simulate the attribute the best it could.

Mandatory attributes are the minimal set of file or filesystem
attributes that must be provided by the server and must be properly
represented by the server. Recommended attributes represent
different filesystem types and operating environments. The
recommended attributes will allow for better interoperability and the
inclusion of more operating environments. The mandatory and
recommended attribute sets are traditional file or filesystem
attributes. The third type of attribute is the named attribute. A
named attribute is an opaque byte stream that is associated with a
directory or file and referred to by a string name. Named attributes
are meant to be used by client applications as a method to associate
application specific data with a regular file or directory.

One significant addition to the recommended set of file attributes is
the Access Control List (ACL) attribute. This attribute provides for
directory and file access control beyond the model used in previous
versions of the NFS protocol. The ACL definition allows for
specification of user and group level access control.


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 12]



RFC 3530 NFS version 4 Protocol April 2003

1.4.3.3. Filesystem Replication and Migration

wWith the use of a special file attribute, the ability to migrate or

replicate server filesystems is enabled within the protocol. The
filesystem locations attribute provides a method for the client to
probe the server about the location of a filesystem. In the event of
a migration of a filesystem, the client will receive an error when
operating on the filesystem and it can then query as to the new file
system location. Similar steps are used for replication, the client
is able to query the server for the multiple available locations of a
particular filesystem. From this information, the client can use its
own policies to access the appropriate filesystem location.

1.4.4. OPEN and CLOSE

1.4.

1.

The NFS version 4 protocol introduces OPEN and CLOSE operations. The
OPEN operation provides a single point where file lookup, creation,
and share semantics can be combined. The CLOSE operation also
provides for the release of state accumulated by OPEN.

5. File locking

with the NFS version 4 protocol, the support for byte range file
locking is part of the NFS protocol. The file locking support is
structured so that an RPC callback mechanism is not required. This
is a departure from the previous versions of the NFS file locking
protocol, Network Lock Manager (NLM). The state associated with file
locks is maintained at the server under a lease-based model. The
server defines a single lease period for all state held by a NFS
client. If the client does not renew its lease within the defined
period, all state associated with the client's lease may be released
by the server. The client may renew its lease with use of the RENEW
operation or implicitly by use of other operations (primarily READ).

4.6. Client Caching and Delegation

The file, attribute, and directory caching for the NFS version 4
protocol is similar to previous versions. Attributes and directory
information are cached for a duration determined by the client. At
the end of a predefined timeout, the client will query the server to
see if the related filesystem object has been updated.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to determine if the file has
been changed. Based on this information, the client determines if
the data cache for the file should kept or released. Also, when the
file is closed, any modified data is written to the server.


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 13]



RFC 3530 NFS version 4 Protocol April 2003

If an application wants to serialize access to file data, file
locking of the file data ranges in question should be used.

The major addition to NFS version 4 in the area of caching is the
ability of the server to delegate certain responsibilities to the
client. When the server grants a delegation for a file to a client,
the client is guaranteed certain semantics with respect to the
sharing of that file with other clients. At OPEN, the server may
provide the client either a read or write delegation for the file.
If the client is granted a read delegation, it is assured that no
other client has the ability to write to the file for the duration of
the delegation. If the client is granted a write delegation, the
client is assured that no other client has read or write access to
the file.

Delegations can be recalled by the server. If another client
requests access to the file in such a way that the access conflicts
with the granted delegation, the server is able to notify the initial
client and recall the delegation. This requires that a callback path
exist between the server and client. If this callback path does not
exist, then delegations can not be granted. The essence of a
delegation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, WRITE without immediate
interaction with the server.

1.5. General Definitions

The following definitions are provided for the purpose of providing
an appropriate context for the reader.

Client The "client" is the entity that accesses the NFS server's
resources. The client may be an application which contains
the logic to access the NFS server directly. The client
may also be the traditional operating system client remote
filesystem services for a set of applications.

In the case of file locking the client is the entity that
maintains a set of locks on behalf of one or more
applications. This client is responsible for crash or
failure recovery for those locks it manages.

Note that multiple clients may share the same transport and
multiple clients may exist on the same network node.

Clientid A 64-bit quantity used as a unique, short-hand reference to
a client supplied Verifier and ID. The server is
responsible for supplying the Clientid.


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 14]



REC 3530

Lease

Lock

Server

NFS version 4 Protocol April 2003

An interval of time defined by the server for which the
client is irrevocably granted a lock. At the end of a
lease period the lock may be revoked if the lease has not
been extended. The lock must be revoked if a conflicting
lock has been granted after the lease interval.

All leases granted by a server have the same fixed
interval. Note that the fixed interval was chosen to
alleviate the expense a server would have in maintaining
state about variable length leases across server failures.

The term "lock" is used to refer to both record (byte-
range) locks as well as share reservations unless
specifically stated otherwise.

The "Server" is the entity responsible for coordinating
client access to a set of filesystems.

Stable Storage

Stateid

NFS version 4 servers must be able to recover without data
loss from multiple power failures (including cascading
power failures, that is, several power failures in quick
succession), operating system failures, and hardware
failure of components other than the storage medium itself
(for example, disk, nonvolatile RAM).

Some examples of stable storage that are allowable for an
NFS server include:

1. Media commit of data, that is, the modified data has
been successfully written to the disk media, for
example, the disk platter.

2. An immediate reply disk drive with battery-backed on-
drive intermediate storage or uninterruptible power
system (UPS).

3. Server commit of data with battery-backed intermediate
storage and recovery software.

4, Cache commit with uninterruptible power system (UPS) and
recovery software.

A 128-bit quantity returned by a server that uniquely
defines the open and locking state provided by the server
for a specific open or lock owner for a specific file.


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 15]



RFC 3530 NFS version 4 Protocol April 2003
Stateids composed of all bits © or all bits 1 have special
meaning and are reserved values.

Verifier A 64-bit quantity generated by the client that the server
can use to determine if the client has restarted and lost
all previous lock state.

2. Protocol Data Types

N

1.

The syntax and semantics to describe the data types of the NFS
version 4 protocol are defined in the XDR [REC1832] and RPC [RFC1831]

documents.
types and structures specific to this protocol.

The next sections build upon the XDR data types to define

Basic Data Types
Data Type Definition
int32_t typedef int int32_t;
uint32_t typedef unsigned int uint32_t;
int64_t typedef hyper int64_t;
uinté4_t typedef unsigned hyper uint64_t;
attrlist4 typedef opaque attrlist4<>;
Used for file/directory attributes
bitmap4 typedef uint32_t bitmap4<>;
Used in attribute array encoding.
changeid4 typedef uinté4_t changeid4;
Used in definition of change_info
clientid4 typedef uint64_t clientid4;
Shorthand reference to client identification
component4 typedef utf8str_cs component4;
Represents path name components
count4 typedef uint32_t count4;
Various count parameters (READ, WRITE, COMMIT)
length4 typedef uint64_t length4;

Describes LOCK lengths


https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc1831

Shepler, et al. Standards Track [Page 16]



REC 3530

linktext4

mode4

nfs_cookie4

nfs_fh4

nfs_ftype4d

nfsstat4

offset4

pathname4

qop4

sec_oid4

seqid4

utf8string

utf8str_cis

utf8str_cs

NFS version 4 Protocol April 2003

typedef utf8str_cs linktext4;
Symbolic link contents
typedef uint32_t mode4;

Mode attribute data type

typedef uint64_t nfs_cookie4;
Opaque cookie value for READDIR

typedef opaque nfs_fh4<NFS4_FHSIZE>;
Filehandle definition; NFS4_FHSIZE is defined as 128

enum nfs_ftype4;
Various defined file types

enum nfsstat4;
Return value for operations

typedef uint64_t offset4;
Various offset designations (READ, WRITE,
LOCK, COMMIT)

typedef component4 pathname4<>;
Represents path name for LOOKUP, OPEN and others

typedef uint32_t qgop4;
Quality of protection designation in SECINFO

typedef opaque sec_oid4<>;

Security Object Identifier

The sec_oid4 data type is not really opaque.
Instead contains an ASN.1 OBJECT IDENTIFIER as used
by GSS-API in the mech_type argument to
GSS_Init_sec_context. See [RFC2743] for details.

typedef uint32_t seqid4;
Sequence identifier used for file locking

typedef opaque utf8string<>;
UTF-8 encoding for strings

typedef opaque utf8str_cis;
Case-insensitive UTF-8 string

typedef opaque utf8str_cs;
Case-sensitive UTF-8 string


https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc2743

Shepler, et al. Standards Track [Page 17]



RFC 3530 NFS version 4 Protocol April 2003

utf8str_mixed typedef opaque utf8str_mixed;
UTF-8 strings with a case sensitive prefix and
a case insensitive suffix.

verifier4 typedef opaque verifier4[NFS4_VERIFIER_SIZE];
Verifier used for various operations (COMMIT,
CREATE, OPEN, READDIR, SETCLIENTID,
SETCLIENTID_CONFIRM, WRITE) NFS4_VERIFIER_SIZE is
defined as 8.

2.2. Structured Data Types

nfstime4
struct nfstime4 {
int64_t seconds;
uint32_t nseconds;

}

The nfstimed4 structure gives the number of seconds and nanoseconds
since midnight or @ hour January 1, 1970 Coordinated Universal Time
(UTC). Values greater than zero for the seconds field denote dates
after the © hour January 1, 1970. Values less than zero for the
seconds field denote dates before the 0 hour January 1, 1970. 1In
both cases, the nseconds field is to be added to the seconds field
for the final time representation. For example, if the time to be
represented is one-half second before © hour January 1, 1970, the
seconds field would have a value of negative one (-1) and the
nseconds fields would have a value of one-half second (500000000).
Values greater than 999,999,999 for nseconds are considered invalid.

This data type is used to pass time and date information. A server
converts to and from its local representation of time when processing
time values, preserving as much accuracy as possible. If the
precision of timestamps stored for a filesystem object is less than
defined, loss of precision can occur. An adjunct time maintenance
protocol is recommended to reduce client and server time skew.

time_how4
enum time_how4 {

SET_TO_SERVER_TIME4
SET_TO_CLIENT_TIMEA4

I
P ©

iy


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 18]



RFC 3530 NFS version 4 Protocol April 2003

settime4

union settime4 switch (time_how4 set_it) {
case SET_TO_CLIENT_TIME4:
nfstime4 time;
default:
void;

iy

The above definitions are used as the attribute definitions to set
time values. If set_it is SET_TO_SERVER_TIME4, then the server uses
its local representation of time for the time value.

specdata4

struct specdata4d {
uint32_t specdatal; /* major device number */
uint32_t specdata2; /* minor device number */

i

This data type represents additional information for the device file
types NF4CHR and NF4BLK.

fsid4

struct fsid4 {
uint6é4_t major;
uint64_t minor;

iy

This type is the filesystem identifier that is used as a mandatory
attribute.

fs_location4

struct fs_location4d {
utf8str_cis server<>;
pathname4 rootpath;

i¥

fs_locations4

struct fs_locations4 {
pathname4 fs_root;
fs_location4 locations<>;

iy


https://datatracker.ietf.org/doc/html/rfc3530

Shepler, et al. Standards Track [Page 19]



RFC 3530 NFS version 4 Protocol April 2003

The fs_location4 and fs_locations4 data types are used for the
fs_locations recommended attribute which is used for migration and
replication support.

fattr4

struct fattr4d {
bitmap4 attrmask;
attrlist4 attr_vals;

iy

The fattr4 structure is used to represent file and directory
attributes.

The bitmap is a counted array of 32 bit integers used to contain bit
values. The position of the integer in the array that contains bit n

can be computed from the expression (n / 32) and its bit within that
integer is (n mod 32).

change_info4

struct change_info4 {

bool atomic;
changeid4 before;
changeid4 after;

iy

This structure is used with the CREATE, LINK, REMOVE, RENAME
operations to let the client know the value of the change attribute
for the directory in which the target filesystem object resides.

clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */

iy

The clientaddr4 structure is used as part of the SETCLIENTID
operation to either specify the address of the client that is using a
clientid or as part of the callback registration. The


https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc1833

Shepler, et al. Standards Track [Page 20]



RFC 3530 NFS version 4 Protocol April 2003

r_netid and r_addr fields are specified in [RFC1833], but they are
underspecified in [RFC1833] as far as what they should look like for
specific protocols.

For TCP over IPv4 and for UDP over IPv4, the format of r_addr is the
US-ASCII string:

hi1.h2.h3.h4.pl.p2

The prefix, "h1.h2.h3.h4", is the standard textual form for
representing an IPv4 address, which is always four octets long.
Assuming big-endian ordering, hi1, h2, h3, and h4, are respectively,
the first through fourth octets each converted to ASCII-decimal.
Assuming big-endian ordering, pl and p2 are, respectively, the first
and second octets each converted to ASCII-decimal. For example, if a
host, in big-endian order, has an address of Ox0A010307 and there is
a service listening on, in big endian order, port O0x020F (decimal
527), then the complete universal address is "10.1.3.7.2.15".

For TCP over IPv4 the value of r_netid is the string "tcp". For UDP
over IPv4 the value of r_netid is the string "udp"

For TCP over IPv6 and for UDP over IPv6, the format of r_addr is the
US-ASCII string:

X1:X2:Xx3:X4:x5:X6:X7:X8.pl.p2

The suffix "p1.p2" is the service port, and is computed the same way
as with universal addresses for TCP and UDP over IPv4. The prefix,
"X1:x2:x3:x4:x5:x6:x7:x8", 1is the standard textual form for
representing an IPv6 address as defined in Section 2.2 of [RFC2373].
Additionally, the two alternative forms specified in Section 2.2 of

[RFC2373] are also acceptable.

For TCP over IPv6 the value of r_netid is the string "tcp6". For 